Participarea Romaniei la EUROfusion WPCD si cercetari complementare

Director de proiect : Calin Atanasiu (INFLPR, cva@ipp.mpg.de)

Elaborarea unor coduri 3D pentru descrierea curentilor halo si a asimetriilor in tokamak, rezultati in timpul unor disruptii majore ale plasmei

Descoperite in 1996, la tokamakul JET, instabilitatile (modurile) “wall touching kink modes (WTKM)” sunt excitate in mod frecvent in timpul evenimentelor de deplasare verticala, “Vertical Displacement Events (VDE)”, cauzand forte laterale foarte mari asupra carcasei tokamak. Aceste forte nu pot fi acceptate intr-un tokamak. In timpul disruptiilor, circulatia curentului electric intre plasma si perete joaca un rol important in dinamica plasmei, determinand amplitudinea si localizarea acestor forte. O prima evaluare a acestor forte la tokamkul ITER a avut drept efect modificarea structurii de suport a carcasei acestui tokamak. Proiectul de fata asigura o etapa initiala in implementarea unui perete de carcasa 3D intr-un model magneto-hidrodinamic. Ipoteza de lucru, perfect valabila la scala temporala de desfasurare a acestor disruptii, este cea a unui perete subtire. Densitatea curentilor de suprafata prezinta doua componente : una de divergenta nula si cealalta de rotor nul. S-a reusit elaborarea unui model de calcul in care cele doua componente sa fie abordate in acelasi mod. Modelul si metodologia de calcul elaborate de noi au fost verificate pe un model cu solutie analitica, eroarea relativa, la o discretizare suficient de mare, a fiind de 0.001. Prin realizarea unor interfete intre codul nostru si alte coduri de dinamica plasmei, JOREK, de exemplu, se vor putea simula disruptiile in tokamakul ITER si JET, in vederea stabilizarii lor.

Perioada de desfasurare: 2014-2017

Obiective:

Parteneri externi:

Rezultatele obtinute:

Publicatii:

Articole

[1] L.E. Zakharov, C.V. Atanasiu, K. Lackner, M. Hoelzl, E. Strumberger, “Electromagnetic Thin-Wall Model for Simulation of Plasma Wall Touching Kink and Vertical Modes”, J. Plasma Physics, 81, 515810610 (2015)..

[2] M. Hoelzl, G. T. A. Huysmans, P. Merkel, C.V. Atanasiu, K. Lackner, K. Nardon et al., ”Non-linear Simulations of MHD Instabilities in Tokamaks including Eddy Current Effects and Perspectives for the Extension to Halo Currents”, J. Phys.: Conf. Ser. 561, 012011 (2014).

[3] C.V. Atanasiu, L.E. Zakharov, D. Dumitru, “Calculation of the Reaction of a 3D Wall to an External Kink Mode of Rotating Plasma”, Romanian Reports in Physics, 67,3 564-572 (2015).

[4] C.V. Atanasiu, L.E. Zakharov, “Response of a Partial Wall to an External Perturbation of Rotating Plasma”, Phys. Plasmas 20, 092506 (2014).

[5] G. Steinbrecher, N. Pometescu, "Minimization algorithm in the simulation of the wall touching kink modes", Physics AUC, vol. 27 (2017), p. 1-9; physics.plasm-ph physics.comp-ph arXiv:1712.01750v1.

[6] G. Steinbrecher, N. Pometescu, “Solvable model for the electric field on singular surfaces in tokamak wall”, Physics AUC, vol. 27 (2017), p. 10-16.

[7] G. Steinbrecher, N. Pometescu, “The convergence rate in the triangular Bezier finite element”, Annals of University Craiova, Physics AUC, vol. 27, p.17-23 (2017).

Conferinte:

[1] C.V. Atanasiu, L.E. Zakharov, K. Lackner, M. Hoelzl, E. Strumberger, “Simulation of Plasma Wall-Touching Kink and Vertical Modes in Tokamak”, The Joint Meeting on Quantum Fields and Nonlinear Phenomena, 09-13 March 2016, Sinaia, Romania (oral presentation).

[2] C.V. Atanasiu, L.E. Zakharov, K. Lackner, M. Hoelzl, E. Strumberger, “Simulation of Surface Currents Excited by Plasma Wall Touching Kink and Vertical Modes in Tokamak”, International Symposium on Fundamentals of Electrical Engineering, Bucharest, Romania, 30 June-2 July 2016, paper 351 (invited paper).

[3] C.V. Atanasiu, “ Electromagnetic Thin Wall Model for Simulation of Plasma Wall Touching Kink Modes”, Progress in physics with JOREK, 18 November 2015 video-meeting, Cadarache France.

[4] C.V. Atanasiu, L.E. Zakharov, “Calculation of Eddy Currents in 3D Thin Multiply Connected Wall Structures Induced by a Rotating Plasma Perturbation”, International Symposium on Fundamentals of Electrical Engineering, Bucharest, Romania, 28-29 November 2014, (invited paper).

[5] L.E. Zakharov, H. Xiong, D. Hu, X. L, C.V. Atanasiu, “Hiro Currents: physics and a bit of politics”, Theory and Simulation of Disruptions Workshop, July 17-19, PPPL, Princeton NJ, USA (2013).

[6] C.V. Atanasiu, L.E. Zakharov, K. Lackner, M. Hoelzl, E. Strumberger, “Simulation of the electromagnetic wall response to plasma wall-touching kink and vertical modes with application to ITER”, 59th Annual Meeting of the APS Division of Plasma Physics, Milwaukee, WI, US, October 23-27, 2017 (oral presentation).

[7] C.V. Atanasiu, L.E. Zakharov, K. Lackner, M. Hoelzl, F.J. Artola, E. Strumberger, X. Li, “Modelling of wall currents excited by plasma wall-touching kink and vertical modes during a tokamak disruption, with application to ITER”, 17th European Fusion Theory Conference, Athens – Greece, October 9-12, 2017 (oral presentation).

[8] Leonid E. Zakharov, Xujing Li, S.N. Gerasimov and JET Contributors, C.V. Atanasiu, K. Lackner, M. Hoelzl, E. Strumberger, J. Artola Such, “Tokamak MHD and its interface (ssec) with the wall model”, 30th ITPA-MHD Disruptions & Control topical group workshop October 9 2017, Fusion For Energy, Barcelona, Spain, 2017 (oral presentation).

[9] L.E. Zakharov, H. Xiong, D.L. Hu, L. Xujing and C.V. Atanasiu, “Hiro currents: physics and a bit of politics”, Theory and Simulation of Disruptions Workshop, July 17-19, 2014,PPPL, Princeton NJ, USA.

[10] L.E. Zakharov, L. Guazzotto, L. Xujing and C.V. Atanasiu, “Outline of our work on disruption”, Informal discussion, August 14, 2014, PPPL, Princeton NJ, USA.

[11] L.E. Zakharov, C.V. Atanasiu, L. Xujing, “Interface of wall current modeling with disruption simulation codes”, JOREK-STARWALL discussion meeting, IPP, Garching bei München, Germany, March 10, 2017.L

[12] C.V. Atanasiu, L.E. Zakharov, K. Lackner, M. Hoelzl and E. Strumberger, “Wall currents excited by plasma wall-touching kink and vertical modes”, JOREK Meeting, Prague - 20-24/03/2017 (oral presentation).

[13] L.E. Zakharov, L. Xujing, S.N. Gerasimov and JET Contributors, C.V. Atanasiu, K. Lackner, M. Hoelzl, E. Strumberger and Artola Such J, “Tokamak MHD and its interface (ssec) with the wall model”, 30th ITPA-MHD Disruptions & Control topical group workshop October 9 2017, Fusion For Energy, Barcelona, Spain (oral presentation).

[14] F.J. Artola, C.V. Atanasiu, M. Hoelzl, G.T.A. Huijsmans, K. Lackner, S. Mochalskyy, G. Oosterwegel, E. Strumberger and L.E. Zakharov, Second intermediate report for ITER project IO/16/CT/4300001383 on the “Implementation and validation of a model for halo-currents in the nonlinear MHD code JOREK and demonstration of 3-D VDEs simulations in ITER”, Version 2, March 5th 2017.

[15] C.V. Atanasiu, L.E. Zakharov, K. Lackner, M. Hoelzl, F.J. Artola, E. Strumberger, X. Li, G. Steinbrecher, N. Pometescu, “Modelling of Wall-Touching Kink and Vertical Modes in ITER”, Euratom-Fusion Association Day, Bucharest, February 2nd 2017.

Persoanele de contact: C.V. Atanasiu (cva@ipp.mpg.de) Gyorgy Steinbrecher (gyorgy.steinbrecher@gmail.com) Nicolae Pometescu (npomet@yahoo.com)


Mentenanta portal WP-CD

Perioada de desfasurare: 2014-2016

Obiective:

Etapele si activitatile prevazute:

Parteneri externi:

Rezultatele obtinute:

Publicatii:

Articole

[1] G. Falchetto et al. including V Pais, V Stancalie “ The European Integrated Tokamak Modelling (ITM) effort: achievements and first physics results, Nuclear Physics 54, 043018(2014)

[2] I. Voitsekhovitch et al including V. Pais “Recent EUROfusion achievement in support to computationally demanding multi-scale fusion physics simulations and integrated modeling” IAEA synopsis 2016.

[3] V. Pais, V. Stancalie, A. Mihailescu, A. Stancalie, C. Iorga, WPCD Portal for Fusion and Complementary Research, EURATOM-FUSION Association Day, 14 May. 2015, Bucharest-Magurele

Persoane de contact:

V. Pais (vasile.pais@inflpr.ro, V. Stancalie (viorica.stancalie@inflpr.ro)


Dezvoltare de coduri specifice pentru functii de densitate de referinta si date atomice

Obiective:

Proiectul de fata completeaza, prin dezvoltarea de coduri specifice, integrarea codurilor care vor modela plasma din instalatia ITER. In acest scop s-au propus doua Obiective majore: 1) Producerea de date atomice si a unei interfete in sprijinul utilizarii acestor date atomice (Obiectiv complementar activitatilor AMNS (Atomic Molecular Nuclear and Surface Data); 2) Accelerarea codurilor girocinetice prin folosirea unor aproximatii ale solutiilor stationare ale ecuatiei Fokker-Planck asociate, cunoscuta sub denumirea de functie de distributie de referinta.

Etape si Activitati

I. Modele fizice si metode numerice pentru dezvoltare de coduri specifice:

Act I.1. Furnizare de date atomice si module de interfata in sprijinul activitatii AMNS

Act I.2. Calcularea functiilor de distributie de referinta pentru primele simulari principale folosind principiul classic al entropiei clasice.

II. Dezvoltare de coduri pentru modelare de date atomice si functii de densitate de referinta:

Act. II.1. Calcul de date atomice; Validarea datelor.

Act. II.2. Calculul functiilor de densitate de referinta pentru primele simulari principale, folosind principiul entropiei maxime generalizate.

III. Validarea datelor atomice calculate si a functiei de densitate de referinta.

Act. III.1. Validarea datelor.

Act. III.2. Verificarea modulelor, studiul dependentei de datele de intrare a stabilitatii numerice si preciziei.

Parteneri Externi:

Rezultate obtinute:

Toate aceste coduri au solicitat o mententanta continua pentru a fi utilizate in contextul schimbarilor de hardware si de sisteme de operare implementate pe Gateway (Platforma EUROfusion)

Publicatii

Articole

[1] G. Sonnino, A. Cardinali, P. Peeters, and G. Steinbrecher, A. Sonnino, and P. Nardone, Derivation of reference distribution functions for Tokamak plasmas by statistical thermodynamics , Eur. Phys. J. D (2014) 68: 44.

[2] G. Sonnino, G. Steinbrecher, Generalized extensive entropies for studying dynamical systems in highly anisotropic phase space. Phys. Rev. E 89 (2014) 062106.

[3] V. Stancalie, Photoionization dynamics of the C2+ ion in Rydberg states, Eur. Phys. J D 68:349 (2014).

[4] G. Sonnino, P. Peeters, A. Sonnino, P. Nardone and G. Steinbrecher, Stationary distribution functions for ohmic Tokamak-plasmas in the weak-collisional transport regime by MaxEnt principle. J. Plasma Physics 2015, 81(1), 905810116.

[5] V Stancalie, Contribution to the theoretical investigation of electron interaction with carbon atoms in the divertor and edge plasma regions, Romanian Reports in Physics no 67, 3, 1087-1098 ( 2015).

[6] V. Stancalie, Static and dynamic polarizability for C2+ in Rydberg states, AIP Advances 5,077186 (2015)

[7] C. Iorga, V Stancalie, A quantitative study of the forbidden and intercombination transitions arising from the Li-like Al autoionizing levels, Canadian Journal of Physics, 93(11)1413-1419 (2015)

[8] V. Stancalie, Contribution to the theoretical investigation of electron and photon interactions with carbon and its ions, IOP J. Phys. Conf Ser. Vol.576, 012010,2015

[9] K.M. Aggarwal, P. Bogdanovich, R. Karpuskiene, F.P.Keenan, R. Kiselius, V Stancalie, Energy levels and radiative rates for transitions in Cr-like Co IV and Ni IV, At. Data & Nucl. Data Tables, 107, 140-220(2016)

[10] G. Steinbrecher, G. Sonnino, Generalized Rényi Entropy and Structure Detection of Complex Dynamical Systems, arXiv:1512.06108v1 [physics.data-an](2015)

[11] B. Weyssow, M. Negrea, G. Steinbrecher, I. Petrisor, D. Constantinescu, N. Pometescu, M. Vlad, F. Spineanu, Ideas in fusion plasma physics and turbulence, Romanian Reports in Physics, Vol. 67, No.2, P.547-563, 2015

[12] G. Steinbrecher, A. Sonnino, and G. Sonnino, Category Theoretic Properties of the A. Rényi and C. Tsallis Entropies. Journal of Modern Physics, 7, 251-266, (2016)

Persoane de Contact:

G. Steinbrecher (gyorgy.steinbrecher@gmail.com), N. Pometescu (npomet@yahoo.com), V. Stancalie (viorica.stancalie@inflpr.ro)