

Materials Science with secondary particles generated from an extreme light source

Günther Dollinger, Universität der Bundeswehr München, LRT 2, D-85577 Neubiberg, Germany

New source of secondary particles:

lons

Positrons

Muons

Neutrons

Materials modification

Materials analysis

Günther Dollinger

Unknown states or phases of matter

Laser driven particle sources for materials science

Advantages may be:

- Higher intensities
- Higher brilliances
- Easier or cheaper
- \Rightarrow New physics?
- \Rightarrow Easier access?
- \Rightarrow New applications?

Necessary: Prove of principle of particle production in comparison to existing facilities

Laser generated secondary particle source for materials science

Materials science with laser driven ion beams

- Standard ion beam analysis: no need of Laser driven source
- Materials modification on nanomater scale with secondary particles,
 - i.e. energetic heavy ions (I, Au, U)
 (100 MeV 1 GeV) : replace big accelerators!
 - Nanofocus of high intensity x-rays, electrons, ions?

Latent ion tracks in solids by thermal spike/Coulomb explosion effects

S DER

ZrO₂ BaFe₁₂O₁₉ Track diameter about 5 nm, dE/dx < 20 keV/nm => nanostructures in insulators Electron heating within < fs, lattice heating < 100 fs, cooling within ps

F. Studer, M. Hervieu, J.-M. Constantini, M. Toulemonde, Nucl. Instr. and Meth. B 122 (1997) 449 Günther Dollinger

Swift heavy ions from laser pulses

Heavy ion beam (> 100 MeV) Several ions focused on < 10 nm diameter within ps

- => latent tracks in metals, simple semiconductors??
- => i.e. nanowires in diamond?

Pump-probe experiments to investigate Coulomb explosion / thermal spike phenomena Direct generation of nm-tracks with focused x-ray pulses?

Scheme of SNAKE

Supraleitendes Nanoskop für Angewandte Kernphysikalische Experimente

lifetime ∞ (local electron density)⁻¹

- defect type from positron lifetime
- defect concentration (≥at ppm) from intensities

Coincident Spectroscopy of Doppler Broadened Annihilation

=> Monentum distribution of conduction electrons
=> Chemical information

intermetallic Fe₄₉Al₅₁

W. Egger, G. Bischof, V. Gröger, G. Krexner Materials Science Forum 363-365 (2001) 82-84

<u>Monoenergetic Positron-Beams:</u> => Depth profile of vacancy type defects

- Conventional method: defect-structure averaged over mm³
- Problem: grain-boundaries, surfaces, precipitates etc. burried in volume signal
- Solution: monoenergetic positron-beams of variable energy

Design of the Positron Source NEPOMUC at the FRM-II:

Most intense slow positron beam

C. Hugenschmidt, K. Schreckenbach, G. Kögel, P. Sperr, W. Triftshäuser Mat. Sci. For. 445-446 (2004)

Intense positron source (NEPOMUC) at new Munich research reactor FRM II

C. Hugenschmidt, K. Schreckenbach, G. Kögel, P. Sperr, W. Triftshäuser Mat. Sci. For. 445-446 (2004) 480

SPM: lateral resolution

Indentation in GaAs:

- beam energy 16 keV; mean implantation depth 550 nm; resolution 2 μ m; step-size 2.5 μ m;
- two lifetimes in the centre: 70% with 365 ps \Rightarrow vacancy clusters

Optical image

=>	104 -	10 ¹⁰	e+ p	er bun	ch !
----	-------	-------------------------	------	--------	------

New physics with positron bunches in matter

Do everything as with other sources plus Interaction of positrons with matter

- 1) Quantitative determination of defect densities:
- Structural materials => defect density 10¹⁸/cm³ - 10²⁰/cm³
- \Rightarrow 10³ 10⁵ defects in a cube of 100*100*100 nm³
- If more e+ per bunch than defects in the spot
- ⇒ All defects are filled => change of lifetime spectrum at a certain number of positrons

 \Rightarrow Quantitative measure of defect density !

Bose Einstein condensate of positronium in small cavities

temperature

 \Rightarrow 10¹⁰ in cavity, 1 µm diameter 1cm length => 511 keV x-ray laser possible

(Mills et al. Mat. Sci. For. 445-446 (2004)424

Molecule generation, signature: 4.941 eV excitation energy

J. Usukura et. al. Phys. Rev. A 58 (1998) 1918

Conclusion

Questions to solve in future:

Is laser driven particle source competitable to standard sources

Replace accelerators, reactors . . .

Intensities? Brilliances?

i.e. bunched positron beams from reactor source plus e+-traps?

If competitable to other sources: than a lot of applications in materials science

Muons

SPM: Lebensdauerbild eines Ermüdungsrisses in Cu

grosse Leerstellencluster (τ_2)

Günther Dollinger

Applied Surface Science 194 (2002) 214-217

SPM: Lebensdauerbild eines Ermüdungsrisses in Al 6013

ANT DER BOA

Strahlenergie 12 keV; Auflösung 5μm; Schrittweite 10 μm; 3·10⁵ Ereignisse / Pixel

SPM: Keilschliffmethode zur Erhöhung der Tiefenauflösung

• Ergebnis SPM-Messung: Leerstellencluster bei Rp/2

R. Krause-Rehberg, F. Börner, F. Redmann, W. Egger, G. Kögel, P. Sperr, W. Triftshäuser Physica B, 308-310 (2001), 442-445

- Konventionelle Methode: Defektstruktur über mm³ gemittelt.
- Problem: Grenzflächen, Oberflächen, Ausscheidungen etc. durch Volumensignal überdeckt
- Lösung: Monoenergetische Positronenstrahlen mit variabler Energie

Tiefenprofil

Günther Dollinger

PLEPS: Pulsed Low Energy Positron System

Quelle:< 30 mCi</td>Energie:0.5-20 keVPulsung:50 MHzZeitfenster:20 ns

Zählrate:500 / sPulsbreite:240 psPeak/BG:104Beamspot:2-3 mm

Dauer einer Meßreihe (0.5-20 keV): 1d

Etablierung der Positronenannihilation zur Untersuchung ultradünner Schichten und Grenzflächen:

Sind Monolagen-Schichten im Defekt-Tiefenprofil sichtbar? Charakterisierung der Defekte, Defektdichte

Elektrische / Optische Beeinflussung der Positronen im Festkörper

Neuer Zugang zur Untersuchung elektronischer Eigenschaften:

z. B. Untersuchung der Defektdichte an Oxid-Halbleitergrenzfläche eines Feldeffekt- oder Tunneltransistors

Anwendung auf Materialien im Verbund

Günther Dollinger

Depth resolution

Depth code, E. Szilagy

lon	Target	Experiment [keV/at/cm ²]	Tables (Ziegler) [keV/at/cm²]	Relativer Abstand
40 MeV 197Au	С	7,63E-16	7,40E-16	3,08%
40 MeV 197Au	0	8,14E-16	8,51E-16	-4,50%
40 MeV 197Au	AI	9,49E-16	1,12E-15	-18,12%
40 MeV 197Au	Si	1,29E-15	1,24E-15	4,10%
40 MeV 197Au	Hf	2,25E-15	2,41E-15	-7,16%

Günther Dollinger

3D Hydrogen Microscopy by Proton-Proton Scattering

Only method for "3D hydrogen microscopy" with ppm-sensitivity quantitative & matrix independent

Günther Dollinger

STAT DER BU

Hydrogen in CVD-diamond

P. Reichart et al. Science, 306 (2004) 1637

