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Important paper from 1979 by Tajima and Dawson

Wake�eld acceleration of electrons (trapped, injected, longitudinal
�eld, light pressure, ...); 10MeV (→ 1GeV ), �ux ∼ 1010 per pulse
(d ∼ 1mm)

High-intensity lasers developed by Mourou et co, ~1990s

Intensity, spot size, power, etc; 1018w/cm2, spot d ∼ 1mm (pet-
tawat!), energy ∼ 104J! λ0 ∼ 1µ (103 λ0 in the pulse); duration
∼ 10−12s (picosecs)

Most of the results presented here were obtained in collaboration
with

M GANCIU
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Electron plasma, density n, mass m, charge −e; neutralizing, rigid
ion background

Displacement �eld u(r, t), volume density imbalance δn = −ndivu

Charge density ρ = endivu, current density j = −enu̇

Maxwell equations
divE = 4πendivu , divH = 0

curlE = −1
c

∂H
∂t , curlH = 1

c
∂E
∂t − 4πen

c
∂u
∂t

(non-magnetic plasma)
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Wave eq with sources
1

c2
∂2E

∂t2
−∆E = −4πen · grad · divu +

4πen

c2
∂2u

∂t2

Non-relativistic motion, compensating polarization �elds

Newton's law, external �eld E0

mü = −eE− eE0

Fourier transforms

u(r, t) =
1

(2π)4

�
dkdωu(k, ω)ei(kr−iωt)
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Solution

ω2(ω2 − ω2
p − c2k2)u = −eω2

pc2

m
k

kE0

ω2 − ω2
p

+
e

m
(ω2 − c2k2)E0

Plasma frequency

ωp =

√
4πne2

m

Read the solutions:

Plasmons ω = ωp, dispersionless!, longitudinal (light re�ection)

Polaritons ω1 =
√

ω2
p + c2k2, dispersive ("propagating") (light refrac-

tion)
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Retain polaritons, transverse �elds (kE0 = 0, ku = 0, kE = 0)

Transverse solution

u =
e

m

ω2 − c2k2

ω2(ω2 − ω2
1)

E0

Dielectric function E0 = εEtot = ε(E0 + E)

ε(k, ω) = 1− ω2
p

ω2 − c2k2
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Vector potential A0 = −ic
ωE0

Perform �rst the inverse Fourier transform with respect to frequency
(ω1-contribution)

The full inverse Fourier transform

u(r, t) = − eω2
p

4mc

1

(2π)3

�
dk

1

ω2
1

A0(k, ω1)e
i(kr−ω1t)

Focus on a certain wavevector k0, make a series expansion of ω1 in
powers of q = k− k0, 0 < q < qc, cuto� qc ¿ k0 (isotropic)
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Get an isotropic wave packet extending over d = 2π/qc À λ10

λ10 is the wavelength of ω10 =
√

ω2
p + c2k2

0

The pulse propagates with the group velocity v = ∂ω1/∂k for k = k0

v =
c2k0√

ω2
p + c2k2

0

The pulse

u(r, t) ' − eω2
p

4mc

1

ω2
10

A0(k0, ω10)δ(r− vt)
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Assume ωp ¿ ω0 = ck0; then, the group velocity

v ' c


1− ω2

p

2ω2
0


 ' c

The First Great Equation: Electron energy

Eel =
mc2√

1− v2/c2
' ω0

ωp
mc2

For realistic values ~ω0 = 1eV (λ0 ' 1µ), electron density n =

1018cm−3, ~ωp = 3× 10−2eV

Eel =
ω0

ωp
mc2 À mc2 ' 17MeV
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Displacement in the pulse

u0 = − eω2
p

4mcω2
0d3

A0(k0, ω0)

Similar pulse for the vector potential A0

A0(r, t) = A0d3δ(r− vt)

Superposition of frequencies in the range ∆ω = cqc = 2πc/d, so
A0(k0, ω0) = A0d4/c and get �nally

u0 = − eω2
pd

4mc2ω2
0

A0

Transverse displacement u0 (k0u0 = 0)
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No volume charge density in the pulse

Charge distributed over the pulse surface over a region of thickness
∼ λ0

Approximately δn0 = nu0/λ0

Total number of electrons in the pulse

δN = πnd3 eω2
p

4mc2ω2
0

A0

Express the vector potential A0 by the density of the �eld energy
w0 = k2

0A2
0/4π
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Introduce the notations εp = ~ωp, ε0 = ~ω0 and εel = e2/d, the later
being the Coulomb energy of an electron localized in the pulse

Get the Second Great Equation (electron �ux)

δN = nd2λ0
ε2p

4mc2ε20

√
πεelW0

where W0 is the total amount of �eld energy in the pulse

W0 = I0d3/c

where I0 is the laser intensity (1018w/cm2)
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Numerics:

Typical values I0 = 1018w/cm2, d = 1mm (W0 = 1023eV and εel =
10−6eV )

n = 1018cm−3 (εp = 3 × 10−2eV ), ε0 = 1eV (λ0 ' 1µ) and mc2 =
0.5MeV

Get δN ' 1011 electrons in the pulse, accelerated at the energy
' 17MeV

Their total energy is Wel ' 1018eV , the remaining energy (up to
W0 = 1023eV ) being left in the laser pulse

Recent experimental measurements seem to be in good agreement
with these equations (Giulietti et al, 2010, etc, etc)
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Two Big Conclusions

Electron energy
Eel ∼

ω0

ωp
mc2

Electron �ux

δN ∼ nd3/2 ω2
p

mc2ω2
0

√
I0
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Some Comments

- E�ciency coe�cient, Wel = EelδN

η =
Wel

W0
= nd2λ0

εp

4ε0

√
πεel

W0
¿ 1 (10−5) (εel ∼ e2/d)

( η = 1 limit).

- Displacement u0 ' λ0, as expected

-Quasi-static pulse (ei(ω0t−k0r)), frequency ∼ ω2
p/2ω0, (wavelength

∼ 103λ0), electron velocity in the pulse ∼ c(ωp/ω0)
2 = c/103, non-

relativistic approximation

-It is their trapped motion carried along by the pulse that made them
acquire relativisic velocities

17



-But this motion is decoupled from the displacement u, it pertains to
the pulse coordinate r

-Dielectric function, k ' k0 and ω ' ω0 = ck0, which makes an
in�nite dielectric function

-Therefore, highly e�ective polarization in the pulse, total �eld inside
almost vanishing, which justi�es again the use of the non-relativistic
equation of motion for the internal motion of the electrons inside the
pulse

-Macroscopic pulse dielectric fnction ε = 4ω0c/ω2
pd, which, for our

numerical values given above is of the order of unity (the pulse is
transparent!)
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-This pulse dielectric function is e�ective in the motion of an external
electron a�ected by the pulse, which experiences a high �eld, of the
order of the external �eld E0

-External electric �eld is E0 ' 1012V/m, external magnetic �eld is
H0 ' 103Ts

-Pulse dispersion; high-order contribtutions in the q-expansion of the
frequency around the wavevector k0; it �atens gradually the pulse

-Fluctuations in the plasma density (Maxwellian), which are of the
order of n; induce a corresponding dispersion in the plasma frequency,
group velocity, in fact a set of pulses, propagating with various veloc-
ities; dispersion in the electron energy of the order of Eel
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Addenda

Le =
m

2a3

�
dr

[
u̇2 − m2c4

~2
u2 −mc2(divu)2

]

Real, vectorial (spin one) Proca �eld

(mixed components of an antisymmetric tensor of rank two

or the space components of a four-vector uµ = (u0,−u), with transver-
sality condition pµuµ = i~∂µuµ = 0)

u describes relativistic electron excitations in plasma, spin one, Bose-
Einstein statistics
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Equation of motion
1

c2
∂2u

∂t2
−∆u +

m2c2

~2
u = 0

gives the frequency ω =
√

m2c4/~2 + c2k2, ~ω =
√

m2c4 + c2p2

Density of electric charge ρ = −eδn = endivu, density of electric
current j = −enu̇

Lint = −
�

drρΦ+
1

c

�
drj (A + A0) = −en

�
dr·divu·Φ−en

c

�
dr·u̇ (A + A0)
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Maxwell equations
1
c2

∂2Φ
∂t2

−∆Φ = 4πρ = 4πendivu

1
c2

∂2A
∂t2

−∆A = 4π
c j = −4πen

c u̇

(Lorenz gauge)
1

c

∂Φ

∂t
+ divA = 0

and
1

c2
∂2u

∂t2
−∆u +

m2c2

~2
u =

e

mc2
gradΦ +

e

mc3

(
Ȧ + Ȧ0

)
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E =
mc2√

1− v2/c2
' Ω

ωp
E0 , ~Ω = E0 = mc2

E0 = 0.5MeV , ωp = 10eV , E ' 25GeV

The total number of accelerated electrons

δN ' nd2λ0
ε2pε20
E5

0

√
εelW0

Energy �ux I0 = 1024w/cm2 (W0 = I0d3/c = 1029eV ) in a pulse of
size d = 1mm (electric �eld ' 1015V/m, magnetic �eld ' 107Ts)

Coulomb energy is εel = 10−6eV
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Typical values n = 1022cm−3, ε0 = 1eV (λ0 = 1µ) (and εp = 10eV ,
E0 = 0.5MeV )

δN ' 10

High energy (25GeV ), low electron �ux
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