INSTITUTE of ATOMIC PHYSICS Magurele-Bucharest

PULSE and IMPULSE of ELI

("Extreme Light Infrastructure")

Electron Pulses Accelerated by Laser Beams

M Apostol

Institute of Physics and Nuclear Engineering, Magurele-Bucharest April 2010

Important paper from 1979 by Tajima and Dawson

Wakefield acceleration of electrons (trapped, injected, longitudinal field, light pressure, ...); $10MeV (\rightarrow 1GeV)$, flux $\sim 10^{10}$ per pulse $(d \sim 1mm)$

High-intensity lasers developed by Mourou et co, ~1990s

Intensity, spot size, power, etc; $10^{18}w/cm^2$, spot $d \sim 1mm$ (pet-tawat!), energy $\sim 10^4 J!$ $\lambda_0 \sim 1\mu$ ($10^3 \lambda_0$ in the pulse); duration $\sim 10^{-12}s$ (picosecs)

Most of the results presented here were obtained in collaboration with M GANCIU

Electron plasma, density n, mass m, charge -e; neutralizing, rigid ion background

Displacement field $\mathbf{u}(\mathbf{r},t)$, volume density imbalance $\delta n = -ndiv\mathbf{u}$

Charge density $\rho = endivu$, current density $\mathbf{j} = -en\mathbf{\dot{u}}$

Maxwell equations

$$div\mathbf{E} = 4\pi endiv\mathbf{u} , div\mathbf{H} = 0$$

$$curl\mathbf{E} = -\frac{1}{c}\frac{\partial \mathbf{H}}{\partial t}$$
, $curl\mathbf{H} = \frac{1}{c}\frac{\partial \mathbf{E}}{\partial t} - \frac{4\pi en}{c}\frac{\partial \mathbf{u}}{\partial t}$
(non-magnetic plasma)

Wave eq with sources

$$\frac{1}{c^2}\frac{\partial^2 \mathbf{E}}{\partial t^2} - \Delta \mathbf{E} = -4\pi en \cdot grad \cdot div\mathbf{u} + \frac{4\pi en}{c^2}\frac{\partial^2 \mathbf{u}}{\partial t^2}$$

Non-relativistic motion, compensating polarization fields

Newton's law, external field E_0

$$m\ddot{\mathbf{u}} = -e\mathbf{E} - e\mathbf{E}_0$$

Fourier transforms

$$\mathbf{u}(\mathbf{r},t) = \frac{1}{(2\pi)^4} \int d\mathbf{k} d\omega \mathbf{u}(\mathbf{k},\omega) e^{i(\mathbf{k}\mathbf{r}-i\omega t)}$$

6

Solution

$$\omega^{2}(\omega^{2} - \omega_{p}^{2} - c^{2}k^{2})\mathbf{u} = -\frac{e\omega_{p}^{2}c^{2}}{m}\mathbf{k}\frac{\mathbf{k}\mathbf{E}_{0}}{\omega^{2} - \omega_{p}^{2}} + \frac{e}{m}(\omega^{2} - c^{2}k^{2})\mathbf{E}_{0}$$

Plasma frequency

$$\omega_p = \sqrt{\frac{4\pi n e^2}{m}}$$

Read the solutions:

Plasmons $\omega = \omega_p$, dispersionless!, longitudinal (light reflection)

Polaritons $\omega_1 = \sqrt{\omega_p^2 + c^2 k^2}$, dispersive ("propagating") (light refraction)

Retain polaritons, transverse fields ($kE_0 = 0$, ku = 0, kE = 0)

Transverse solution

$$\mathbf{u} = \frac{e}{m} \frac{\omega^2 - c^2 k^2}{\omega^2 (\omega^2 - \omega_1^2)} \mathbf{E}_0$$

Dielectric function $E_0 = \varepsilon E_{tot} = \varepsilon (E_0 + E)$

$$\varepsilon(\mathbf{k},\omega) = 1 - \frac{\omega_p^2}{\omega^2 - c^2 k^2}$$

Vector potential
$$A_0 = -\frac{ic}{\omega}E_0$$

Perform first the inverse Fourier transform with respect to frequency $(\omega_1$ -contribution)

The full inverse Fourier transform

$$\mathbf{u}(\mathbf{r},t) = -\frac{e\omega_p^2}{4mc} \frac{1}{(2\pi)^3} \int d\mathbf{k} \frac{1}{\omega_1^2} \mathbf{A}_0(\mathbf{k},\omega_1) e^{i(\mathbf{kr}-\omega_1 t)}$$

Focus on a certain wavevector \mathbf{k}_0 , make a series expansion of ω_1 in powers of $\mathbf{q} = \mathbf{k} - \mathbf{k}_0$, $0 < q < q_c$, cutoff $q_c \ll k_0$ (isotropic)

Get an isotropic wave packet extending over $d = 2\pi/q_c \gg \lambda_{10}$

 λ_{10} is the wavelength of $\omega_{10}=\sqrt{\omega_p^2+c^2k_0^2}$

The pulse propagates with the group velocity $\mathbf{v}=\partial\omega_1/\partial\mathbf{k}$ for $\mathbf{k}=\mathbf{k}_0$

$$v = \frac{c^2 k_0}{\sqrt{\omega_p^2 + c^2 k_0^2}}$$

The pulse

$$\mathbf{u}(\mathbf{r},t) \simeq -\frac{e\omega_p^2}{4mc} \frac{1}{\omega_{10}^2} \mathbf{A}_0(\mathbf{k}_0,\omega_{10})\delta(\mathbf{r}-\mathbf{v}t)$$

10

Assume $\omega_p \ll \omega_0 = ck_0$; then, the group velocity

$$v \simeq c \left(1 - \frac{\omega_p^2}{2\omega_0^2}\right) \simeq c$$

The First Great Equation: Electron energy

$$E_{el} = \frac{mc^2}{\sqrt{1 - v^2/c^2}} \simeq \frac{\omega_0}{\omega_p} mc^2$$

For realistic values $\hbar\omega_0 = 1eV$ ($\lambda_0 \simeq 1\mu$), electron density $n = 10^{18}cm^{-3}$, $\hbar\omega_p = 3 \times 10^{-2}eV$

$$E_{el} = \frac{\omega_0}{\omega_p} mc^2 \gg mc^2 \simeq 17 MeV$$

11

Displacement in the pulse

$$\mathbf{u}_0 = -\frac{e\omega_p^2}{4mc\omega_0^2 d^3} \mathbf{A}_0(\mathbf{k}_0, \omega_0)$$

Similar pulse for the vector potential \mathbf{A}_0

$$\mathbf{A}_{0}(\mathbf{r},t) = \mathbf{A}_{0}d^{3}\delta(\mathbf{r}-\mathbf{v}t)$$

Superposition of frequencies in the range $\Delta \omega = cq_c = 2\pi c/d$, so $A_0(k_0, \omega_0) = A_0 d^4/c$ and get finally

$$\mathbf{u}_0 = -\frac{e\omega_p^2 d}{4mc^2\omega_0^2}\mathbf{A}_0$$

Transverse displacement \mathbf{u}_0 ($\mathbf{k}_0 \mathbf{u}_0 = 0$)

No volume charge density in the pulse

Charge distributed over the **pulse surface** over a region of thickness $\sim \lambda_0$

Approximately $\delta n_0 = n u_0 / \lambda_0$

Total number of electrons in the pulse

$$\delta N = \pi n d^3 \frac{e\omega_p^2}{4mc^2\omega_0^2} A_0$$

Express the vector potential A_0 by the density of the field energy $w_0 = k_0^2 A_0^2/4\pi$

Introduce the notations $\varepsilon_p = \hbar \omega_p$, $\varepsilon_0 = \hbar \omega_0$ and $\varepsilon_{el} = e^2/d$, the later being the Coulomb energy of an electron localized in the pulse

Get the Second Great Equation (electron flux)

$$\delta N = n d^2 \lambda_0 \frac{\varepsilon_p^2}{4mc^2 \varepsilon_0^2} \sqrt{\pi \varepsilon_{el} W_0}$$

where W_0 is the total amount of field energy in the pulse

$$W_0 = I_0 d^3/c$$

where I_0 is the laser intensity $(10^{18}w/cm^2)$

Numerics:

Typical values $I_0 = 10^{18} w/cm^2$, d = 1mm ($W_0 = 10^{23} eV$ and $\varepsilon_{el} = 10^{-6} eV$)

 $n=10^{18}cm^{-3}~(\varepsilon_p=3\times10^{-2}eV),~\varepsilon_0=1eV~(\lambda_0\simeq1\mu)$ and $mc^2=0.5MeV$

Get $\delta N \simeq 10^{11}$ electrons in the pulse, accelerated at the energy $\simeq 17 MeV$

Their total energy is $W_{el} \simeq 10^{18} eV$, the remaining energy (up to $W_0 = 10^{23} eV$) being left in the laser pulse

Recent experimental measurements seem to be in good agreement with these equations (Giulietti et al, 2010, etc, etc)

Two Big Conclusions

Electron energy

$$E_{el} \sim \frac{\omega_0}{\omega_p} mc^2$$

Electron flux

$$\delta N \sim n d^{3/2} \frac{\omega_p^2}{m c^2 \omega_0^2} \sqrt{I_0}$$

Some Comments

- Efficiency coefficient, $W_{el} = E_{el}\delta N$

$$\eta = \frac{W_{el}}{W_0} = nd^2\lambda_0 \frac{\varepsilon_p}{4\varepsilon_0} \sqrt{\frac{\pi\varepsilon_{el}}{W_0}} \ll 1 (10^{-5}) \ (\varepsilon_{el} \sim e^2/d)$$
($\eta = 1$ limit).

- Displacement $u_0 \simeq \lambda_0$, as expected

-Quasi-static pulse $(e^{i(\omega_0 t - \mathbf{k}_0 \mathbf{r})})$, frequency $\sim \omega_p^2/2\omega_0$, (wavelength $\sim 10^3\lambda_0$), electron velocity in the pulse $\sim c(\omega_p/\omega_0)^2 = c/10^3$, non-relativistic approximation

-It is their trapped motion carried along by the pulse that made them acquire relativisic velocities

-But this motion is decoupled from the displacement ${\bf u},$ it pertains to the pulse coordinate ${\bf r}$

-Dielectric function, $k \simeq k_0$ and $\omega \simeq \omega_0 = ck_0$, which makes an infinite dielectric function

-Therefore, highly effective polarization in the pulse, total field inside almost vanishing, which justifies again the use of the non-relativistic equation of motion for the internal motion of the electrons inside the pulse

-Macroscopic pulse dielectric function $\varepsilon = 4\omega_0 c/\omega_p^2 d$, which, for our numerical values given above is of the order of unity (the pulse is transparent!)

-This pulse dielectric function is effective in the motion of an external electron affected by the pulse, which experiences a high field, of the order of the external field E_0

-External electric field is $E_0 \simeq 10^{12} V/m$, external magnetic field is $H_0 \simeq 10^3 Ts$

-**Pulse dispersion**; high-order contributions in the q-expansion of the frequency around the wavevector k_0 ; it flatens gradually the pulse

-Fluctuations in the plasma density (Maxwellian), which are of the order of n; induce a corresponding dispersion in the plasma frequency, group velocity, in fact a set of pulses, propagating with various velocities; dispersion in the electron energy of the order of E_{el}

Acknowledgments. The author is indebted to the *Workshop on Extreme Light Infrastructure (ELI)*, Magurele, February 1, 2010.

Addenda

$$L_e = \frac{m}{2a^3} \int d\mathbf{r} \left[\dot{\mathbf{u}}^2 - \frac{m^2 c^4}{\hbar^2} \mathbf{u}^2 - mc^2 (div\mathbf{u})^2 \right]$$

Real, vectorial (spin one) Proca field

(mixed components of an antisymmetric tensor of rank two

or the space components of a four-vector $u_{\mu} = (u_0, -\mathbf{u})$, with transversality condition $p^{\mu}u_{\mu} = i\hbar\partial^{\mu}u_{\mu} = 0$)

 ${\bf u}$ describes relativistic electron excitations in plasma, spin one, Bose-Einstein statistics

Equation of motion

$$\frac{1}{c^2}\frac{\partial^2 \mathbf{u}}{\partial t^2} - \Delta \mathbf{u} + \frac{m^2 c^2}{\hbar^2}\mathbf{u} = 0$$

gives the frequency $\omega = \sqrt{m^2 c^4/\hbar^2 + c^2 k^2}$, $\hbar \omega = \sqrt{m^2 c^4 + c^2 p^2}$

Density of electric charge $\rho = -e\delta n = endivu$, density of electric current $\mathbf{j} = -en\dot{\mathbf{u}}$

$$L_{int} = -\int d\mathbf{r}\rho \Phi + \frac{1}{c} \int d\mathbf{r} \mathbf{j} \left(\mathbf{A} + \mathbf{A}_{0}\right) = -en \int d\mathbf{r} \cdot div \mathbf{u} \cdot \Phi - \frac{en}{c} \int d\mathbf{r} \cdot \dot{\mathbf{u}} \left(\mathbf{A} + \mathbf{A}_{0}\right)$$

Maxwell equations

(Lorenz gauge)

$$\frac{1}{c^2} \frac{\partial^2 \Phi}{\partial t^2} - \Delta \Phi = 4\pi \rho = 4\pi endivu$$
$$\frac{1}{c^2} \frac{\partial^2 A}{\partial t^2} - \Delta A = \frac{4\pi}{c} \mathbf{j} = -\frac{4\pi en}{c} \dot{\mathbf{u}}$$
$$\frac{1}{c^2} \frac{\partial \Phi}{\partial t^2} + div \mathbf{A} = 0$$

$$\frac{1}{c}\frac{\partial\Phi}{\partial t} + div\mathbf{A} =$$

and

$$\frac{1}{c^2}\frac{\partial^2 \mathbf{u}}{\partial t^2} - \Delta \mathbf{u} + \frac{m^2 c^2}{\hbar^2} \mathbf{u} = \frac{e}{mc^2}grad\Phi + \frac{e}{mc^3}\left(\dot{\mathbf{A}} + \dot{\mathbf{A}}_0\right)$$

24

$$E = \frac{mc^2}{\sqrt{1 - v^2/c^2}} \simeq \frac{\Omega}{\omega_p} E_0 , \ \hbar\Omega = E_0 = mc^2$$
$$E_0 = 0.5 MeV, \ \omega_p = 10 eV, \ E \simeq 25 GeV$$

The total number of accelerated electrons

$$\delta N \simeq n d^2 \lambda_0 \frac{\varepsilon_p^2 \varepsilon_0^2}{E_0^5} \sqrt{\varepsilon_{el} W_0}$$

Energy flux $I_0 = 10^{24} w/cm^2$ ($W_0 = I_0 d^3/c = 10^{29} eV$) in a pulse of size d = 1mm (electric field $\simeq 10^{15} V/m$, magnetic field $\simeq 10^7 Ts$)

Coulomb energy is $\varepsilon_{el} = 10^{-6} eV$

Typical values $n = 10^{22} cm^{-3}$, $\varepsilon_0 = 1 eV$ ($\lambda_0 = 1\mu$) (and $\varepsilon_p = 10 eV$, $E_0 = 0.5 MeV$)

 $\delta N \simeq 10$

High energy (25 GeV), low electron flux