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Contents:

• Topological Order VS Normal Order

•Detailed introduction to the Fractional Quantum Hall effect, fractional 
statistics and edge excitations.

• How to determine topological order in generic ground-state wavefunction of 
a realistic (say Coulomb) Hamiltonian?

• Entanglement spectrum in the conformal limit

• New principle of adiabatic continuity. 



Most States of Matter are defined by Broken Symmetry

Same constituent forces, different macroscopic states of matter: liquid, vapor, crystal.

Broken Symmetry: differentiates different states of matter. 

Condensed matter: finding different states of matter. 

Crystal:Broken

translational 

symmetry

Magnet: Broken spin 

rotational symmetry

Superconductor: 

Broken gauge 

symmetry



Topological Phase: If Described by a Topological QFT



A Topological Phase Feels the Manifold on Which it Sits 

• Different ground-state 
degeneracy depending on 
genus of manifold

• This definition applies only 
to bulk gapped systems

• State “fits” differently on 
sphere and torus (property 
called “shift” in Fractional 
Quantum Hall systems)



The Quantum Hall Effect Revisited

• High Magnetic Fields (20-30 T)

•2D Electron Gas  (disorder!)

•Low Temperatures  (0.1-10 K)

•Two kinds of  Quantum Hall: Integer and Fractional. Fractional 
much more interesting. Start with Integer FQH: 
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The Integer Quantum Hall Effect: Landau Levels in Symmetric Gauge

Integer Quantum Hall is just single-electron physics (+localization)  

Lowest Landau Level (n=0) eigenstates:  
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The Integer Quantum Hall Effect: Landau Levels



2D states (B=0,T=0) 

are localized, but

extended states in 

center of 

Landau Levels

B>0:

DOS becomes series 

of d-functions:

Landau Levels

energy separation:
0
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broadening due to 

disorder
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The Quantum Hall Effect: Landau Levels



Fractional Quantum Hall: First Example of Topological Phase

• In 1982, it was observed that a Quantum Hall state appears at FRACTIONAL 

filling, i.e. when LESS than one full Landau Level is occupied.  Interacting! 



• First (most) FQH states observed are in the lowest Landau Level (LLL) 

• The non-interacting single particle wavefunctions in the LLL are holomorphic

• The fully filled Landau level is simply a SINGLE Slater determinant! 

The Laughlin’s Model State is the Simplest Example of a FQH State



The Laughlin State is the Simplest Example of a FQH State

The Laughlin State, although not an exact ground-state of a Coulomb Hamiltonian, 

has properties that make it an extremely good variational ground state:

• Translationally invariant

• Has very small probability when two particles are on top of each other (very good for 

coulomb) 

• It is now abundantly clear that the coulomb ground-state of the FQH system at filling 

1/3, although dependent on microscopic details of the sample, is in the same 

UNIVERSALITY class as the Laughlin state

• In finite size numerics, Haldane and Rezayi were able to adiabatically continue 

between Coulomb ground-state and Laughlin state. 



Quasiparticle excitations above the Laughlin State Obey 

Fractional Statistics!

• Bulk excitations have a thermodynamic limit finite energy GAP

•Neither bosons, nor fermions, but ANYons . Only possible in system in Low 

dimensions (<3), and with hard-core repulsion, as well as with Time-Reversal and 

Parity breaking. FQH has all of these. 

• For an excitation at position A and one at B far away from A, with electrons at 

position 1,2,...,N, the wavefunction is:

• Upon rotating B around A by 180 (interchange), we get a FRACTIONAL phase 

factor instead of the usual bosonic/fermionic 0 or 1



• If the bulk is gapped (bulk 

insulator), how does electric 

conduction take place?

•The bulk is GAPPED but the edge 

excitations are gapless

• Conduction takes place 

exclusively through the edge 

states

• The chirality of the edge states is 

given by the applied magnetic field 

The FQH state is also the first example of a holographic 

principle: bulk-edge duality. 
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Counting of edge excitations in angular momentum sectors for 

Laughlin state has the form: 1,1,2,3,5,7….

“Fermi Sea” on the edge

• Zeroes of the wavefunction sit on the particles

• Excitations on the edge:

• Counting of modes at ang. mom. L = partitions of L COUNTING of U(1) BOSON



•MANY other FQH states besides the one at the 

Laughlin filling 1/3 have been observed.

•For some of them, we have variational wavefunctions

and can determine their properties. For others we don’t

•Some are predicted to have non-abelian statistics!

•How do we know which state happens in the realistic 

sample when we do NOT yet have a variational

wavefunction to compare it with. 

•Even when we have a variational wavefunction, the 

main method of comparison is wavefunction overlap, 

which is flawed. 



maybeMaybe, experiments/numerics underway

Non-Abelian Top Phases exist! 5/2 Fractional Quantum Hall State

maybe

• Numerics seems to favor more exotic, 

non-abelian states at 5/2 (Moore-Read) 

and 12/5 (Maybe Read-Rezayi)



FQH Could Be Used For Topological Quantum Computing

Abelian 

Representation of 

Braid Group

Non-Abelian 

Representation of Braid 

Group

Quantum computing connection: Freedman, Kitaev,...

Matrix

Statistical angle =pi/3 for 1/3 

Laughlin state quasiholes



Laughlin (Abelian) and Moore-Read (Non-Abelian) FQH States

• Zeroes of the wavefunction sit on the particles

2

• Zeroes of the wf NOT on the particles; vanishes for 3 particles together.

• These “clustering”, zero conditions define Hamiltonians for which Laughlin 

and Moore-Read States are zero energy eigenstates

• Non-abelian State: 



•FQH states, at whatever filling, share some common 

general properties, the most fundamental of which are  

1: fractional abelian or nonabelian statistics and 2: the 

bulk-edge duality

•The number of edge state excitations at each angular 

momentum is an imprint of the state

•How to get this out of a realistic Hamiltonian of a 

sample



Look at Topological Entanglement Spectrum, Numerically, Model 

States Exhibits Far Fewer Levels Than They Should

Hui and Haldane, 2008; 
Regault, BAB, Haldane 2009;

BAB and Regnault, 2009;

Lz

Cutting an N=14 particle state in half,  since 

Landau orbitals are localized in space, the 

entanglement matrix should be order 7! X 

7! with 7! eigenvalues. This happens in the 

Coulomb state, but NOT in model Laughlin

Laughlin

Observe a remarkable counting structure 

of the eigenvalues of the entanglement 

spectrum: 1,1,2,3,5, etc

DIRECTLY FROM GROUND-STATE!



The counting of the entanglement levels of  the entanglement spectrum 

for Laughlin corresponds to the number of Edge States! 

Much Better at Characterizing Topological Order

“Fermi Sea” on the edge

• Zeroes of the wavefunction sit on the particles

• Excitations on the edge:

• Counting of modes at ang. mom. L = partitions of L COUNTING of U(1) BOSON



The generic state (diagonalization of a realistic Hamiltonian at filling 

1/3) shows many levels, but some of them are separated by an 

entanglement gap from the Laughlin low entanglement energy levels

Hui and Haldane, 2008; 
Regault, BAB, Haldane 2009;

BAB and Regnault, 2009;

However, entanglement gap might be 

small, impossible to differentiate 

between states (see slide)

How do we properly indentify the 

entanglement gap 

Laughlin

Coulomb



Most Realistic States Show Entanglement Gap Only For a Few 

Values  

Short-Range Interaction  (Coulomb) for at filling 5/2 for N=14. Has entanglement 

gap for only the first 2-3 values. Hard to distinguish the universality class of this 

state, since many states could have counting 1,2, 4.

?



Quantum Hall effect: 
Entanglement gap 
cannot be reliably 
defined  on the 
sphere.

Now Come Back to Question of How to Define Entanglement Gap, 
and How to See with High Sensitivity, Top Order in a generic 
Ground-State



Cure for the Quantum Hall state: Conformal limit basis, remove any 
information about magnetic length scales 

Normalization of slater determinants on the plane or sphere 
contains nonuniversal information such as magnetic length 

Normalization factors on the sphere and plane are orbital-dependent
(curvature), we want to remove them.

Also for bosons, remove (bosonic) multiplicities



1/3 Laughlin state

sphere normalization conformal limit



Clear conformal Gap I can write in with 16 font

Sphere Calculation

Conformal limit basis allows to define a clean entanglement gap and 
to resolve topological adiabacity connection for moore-read state

Increase lambda from 0 to 1



Energy Adiabaticity VS Entanglement Adiabaticity

Adiabatic theorem, (energy): two ground-states of two different Hamiltonians                     

belong to the same universality class if there is a path in the parameter space (say 

, with                    such that the energy gap doesn’t collapse

Requires knowledge of FULL spectrum, ground-states AND excited states of the 

two hamiltonians..

Adiabatic theorem, (entanglement): two ground-states of two different Hamiltonians                     

belong to the same universality class if there is a path in the parameter space (say 

, with                    such that the entanglement gap doesn’t 

collapse

Requires knowledge ONLY of the ground-states. Extra bonus for free: the counting 

gives you the universality class of the state



Conclusions:

• Topological phases/FQH still hold many interesting mysteries

• Product rule unravels the most important one: most of the weight of 
a model FQH state is held in the product rule configurations

• Explains part of the entanglement spectrum

• Suggests the “conformal limit” of the Haldane entanglement 
spectrum

• In this limit, easy to define entanglement gap and literally “SEE” the 
universality of the state

• Ent spectrum sees the low energy theory: for gapped sytems, these 
are edge states.



Origin of low energy state 

branch: Spinon modes

Momentum cut resolves the 

elementary gapless bulk 

excitations as the dominant 

entanglement levels of the 

Heisenberg state



ES of Heisenberg state in 
momentum orbital basis

ES of ½ Coulomb state
on quantum Hall sphere

Comparison to ES for Quantum Hall states



Connection between spin chains and Quantum Hall: 
the ½ Laughlin state is the Fourier transform of the 
Haldane-Shastry spin chain state.

The ES of Haldane-Shatry purely consists of the universal low 
energy states as Laughlin on the QH sphere



Logarithmic CFT corrections entering form the conform HS point



Squeezed ODLRO can distinguish Gaffnian vs Jain/Coulomb

• States at 2/5: Gaffnian and Jain State

11001001010010100101001010010011 = Jain

1100011000110001100011… = Gaffnian



Squeezed ODLRO can distinguish Gaffnian vs Jain/Coulomb

11001001010010100101001010010011 = Jain

1100011000110001100011… = Gaffnian



Conclusions

• Model states without exact diagonalization lead to 1000 increase in speed-time

• New product rule for weights of the model states

• Squeezed ODLRO for the generic FQH states can determine the pattern of 

zeroes

• New muscle shows difference between Jain and Gaffnian

• Entanglement spectrum for large sizes also shows difference (see N Regnault’s

talk)

• We can now see that the nonunitary Gaffnian fails to screen 





Perfect ODLRO is special case of Product Rule

ODLRO statement (for Laughlin states)           :

• Killing an electron in the N+1 particle Laugh = creating m fluxes in the N part Laugh

• This is just the product rule on m orbitals:

1001001001001…1001001

1000110001001…1001001

1000110000110…0011100

1000101001010…0011100

…

• This generalizes ODLRO to non-abelian states (For N particle MR, kill 2 electrons 

close to the north pole, you get 4 fluxes on top of the N-2 particle MR): Moore-Read 

state is perfect condensate of pattern 1100

0001001001001…1001001

0000110001001…1001001

0000110000110…0011100

0000101001010…0011100

Laughlin state is a 

perfect BEC of the 

pattern 100
(Read, Girvin Macdonald, 

Haldane Rezayi, 1990’s)



There’s Much More Than ODLRO

Can apply Read ODLRO twice (for Laughlin states) from N to N-2 particle states:

1001001001001…1001001

1000110001001…1001001

1000110000110…0011100

1001001001001…0011100

…+ many other slaters

• ASSUMPTION: generic states also have 

good Squeezed ODLRO.

• FQH states are BECs of squeezed 

configuration numbers

• True meaning of ODLRO: measures 

clustering conditions of FQH states (BAB 

and Haldane, 2007, Wen and Wang 2008)!

• Laughlin states have ODLRO for 

100100100 

011000100      BUT NOT   101000010           

100011000        FOR          110000001 

010101000

001110000

0001001001001…1001001

0000110001001…1001001

0000110000110…0011100

0001001001001…0011100

0000001001001…1001001

0000110001001…1001001

0000110000110…0011100

0000001001001…0011100

-

100100| = twice the ODLRO

011000| = squeezed ODLRO (new).

By product rule, removing these 

configurations from the N+1 

particle state also gives the 

EXACT N-1 particle state


