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Main theories dealing with uncertainty

Probability Theory (Blaise Pascal 1634 to Kolmogorov 1933): objective (# of
favorable cases / # of possible cases) assuming uniform

distribution,Frequencies of occurrence drawn from statistical data, or
subjective (De Finetti’s betting approach interpreting P(.) as degree of belief)

Possibility Theory (Zadeh 1978) : based on fuzzy sets (1965) of mutual
exclusive values. Zadeh interprets fuzzy sets as possibility distributions.

Belief Function Theory :introduced by Shafer in 1976

Imprecise Probabilities (Walley 1991): deals with probability intervals




Why belief functions ?

Probabilities do not account for partial knowledge since it deals generally with
information drawn from generic knowledge based either on population of items, laws of

physics, common sense, ...

Probabilities capture only one aspect of uncertain information (the randomness, i.e. the
variability through repeated measurements). Probability can’t distinguish between
uncertainty due to variability and uncertainty due to the lack of knowledge.

Beliefs often are related with singular event and are not necessarily related with statistical
data and generic knowledge.They are related with singular evidence. Belief functions are
well adapted for dealing with partial knowledge contrariwise to probabilities.

Variability: Precisely observed random observations

Incompletness/non specificity: missing/partial information




Introduction: What is DSmT in short ?

DSmT (Dezert-Smarandache Theory) started in end of 2001 as a
natural extension to Dempster-Shafer Theory (DST) which :

| - proposes a new mathematical framework for quantitative or
qualitative information fusion

2 - incorporates any kinds of model (free, hybrid DSm models and/
or Shafer’s model) for taking into account any integrity constraints
of the fusion problem

3 - combines uncertain, high conflicting and imprecise sources of
evidence with new rules of combination and overcomes limitations
of the Dempster’s rule

4 - is adapted to static or dynamic fusion applications represented
in terms of belief functions based on the same general unified
formalism
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Dempster-Shafer Theory (DST) - 1976

We are concerned with the true value of some quantity or hypothesis 6 taking
its possible values in ©.

Working with subsets as propositions: Py(A) & The true value of 0 is in a subset A of ©.

Operations Subsets Propositions
Intersection /conjunction ANB Po(A) N Py(B)
Union/disjunction AUB Po(A) V Py(B)
Inclusion/implication ACB Po(A) = Py(B)
Complementation/negation | A = co(B) | Po(A) = = Py(B)

Frame of discernment: © ={0,,: = 1,...,n} Finite set of exhaustive and exclusive elements

Shafer’s model : Close world assumption + exclusivity (implicit refinement done)

Powerset: P(©)2£2° |p©) =2° 6’1\@ @
Example : O ={601,05,03} = @

2° = {(),01,62,03,01 Ub2,01 U0z, 02U03,01U6bU 03} 29| =23 =8

02




Belief functions in DST

Basic belief assignment (bba)/mass

m(.):2° —[0,1] m()) =0  and Z m(A4) =1

Ae2©

A is a focal element iff m(A)>0 Core of m(.) = set of focal elements

Belief of A Plausibility of A

Bel(A)= S m(B) PIA)= > m(B)

Be2® BCA Be€2© BNA#D

Total mass of information Total mass of information consistent with A
implying the occurence of A

In general, 0 < Bel(A) < PI(A) <1
Vacuous belief Assignment (VBA) (represents ignorant source)
VA#O,my(A)=0andm,(0) =1 ==~ VA#0O,Bel(4)=0 Bel(O)=1
Bayesian belief assignment : focal elements are singletons of the power set

m(.) = Bel(.) = PI(.) = P(.)




Dempster’s rule of combination

Fusion of 2 independent equally reliable sources with bba’s my and mg

(DS) m@)=0 and VA #0,m(A) =

Degre of (total) conflict

Example: © = {91, 92}

mi (91) = 0.1 my (92) = 0.2 my (91 U 92) = 0.7 k1o = m1(91)m2(92) + m1(92)m2(91)
mo(61) = 0.3 ma(f2) =0.2 mo(6; Uby) =0.5 k12 =0.1-0.2+0.2-0.3 =0.02 4+ 0.06 = 0.08

(91) — [m1 (01)m2(6’1)—|—m1 (91)m2(01U92)—|—m2(91)m1 ((91U92)]/(1—]€12) = 029/092 ~ 0.316
— [m

m
m(92) 1(92)m2(92)+m1 (92)m2(¢91U92)—|—m2(92)m1 (91U92)]/(1—]€12) = 028/092 ~ (0.304
m(6’1 U 92) = 1M (01 U 92)m2(91 U (92)/(1 — klg) — 035/092 ~ (0.380




Advantages and drawbacks of DS rule

Advantages Drawbacks

Commutativity and associativity e (DS) is not defined when conflict is 1

Extension for N > 2 sources e (DS) provides questionable results when k15 increases
Neutrality of VBA e No way to trust (DS) result beforehand
Coherence with Bayes’ rule when m(.) = P(.) Justification/necessity of working with Shafer’s model ?

[Zadeh 1979,Yager 1983, Dubois&Prade 1986, Pear| 1988,
Voorbraak 1991, Walley 1996, Fixsen&Mahler 1997]

Several origins of the problem

1 Different reliability of the sources (statistical criteria), but sources can be equally reliable.

2 Limited knowledge or experience of sources/experts. Sources have their own interpretation of
elements of the frame - subjectivity and biasness is possible.

3 The final interest of experts can also be different when they report their assessment on a given problem ...




Infinite classes of counter-examples for (DS)

Class #1 : Trivial

If every column contains S
ource 1

at least one zero, (DY) is Source 2

not defined '

Source k

Class #2 : Generalization of
Zadeh's example

|. If there exists a column of small
positive masses for say for element i

2. If all other columns # i include at

least a zero Source 1
Source 2

(DS) provides a counter-intuitive
result because it is independent of
values of column i and can reflect the
minority opinion

Source k




Infinite classes of counter-examples for (DS)

Class #3 : Smarandache (extension of Zadeh’s class to non Bayesian case)

@:{01,...,9n},n22

Hn Uq “o Up
Source 1 oo | Mg, (On) || msy(w1) | oon | Mgy (up)
Source 2 oo | Mgy (Bn) || msy(ur) | oon | Mgy (uyp)

Source k oo | Mg, (On) || ms, (wr) | ... | M, (up)

Um, m = 1,..., pare disjunctions of elements 0;, (: € {1,...,n} of the frame ©.

. If there is at least one zero in every column 8, 05,6,

2. If there exists one column u; which contains non zero

independent of the positive
values involved in u; !!!

Then m(u;) = [Mms, ®ms, B... OmMs, |(u;) =1

(DS) result

Example:

(0.01-0.02) _1
(0+0+0+0+40.01-0.02)

0= {91792793794} . : m(ﬁg Uﬂ;):




How to circumvent troubles with DS rule ?

Classical solutions

Apply some heuristic/ad hoc thresholding techniques on the level of the conflict
to accept (or reject) the fusion result. How to choose the threshold ?

Apply discounting techniques on sources. How to be sure that no problem will
occur with DS rule after discounting ? How to discount sources when no
statistical data are available ?

Mix the two previous «solutions». How and justification ?

Use other alternative rules. Which one ? Why ?

Main question: How to prevent troubles in fusion beforehand ?

Proposal (detailed in part 2)

Switch to a new paragdim to deal with the fusion of vague, uncertain, imprecise, highly conflicting
quantitative and qualitative information fusion for static or dynamic problematics.




Main alternatives to DS rule

Assumption: Shafer’s model

Disjunctive rule: mpis;(4)= Y mi(B)ma(C)

B,Ce2°
BuC=A
VA€ 29, A#0,A+#0
Yager’s rule: [Yager 1983] )

my (©) =m1(0)ma(0) + > mi(X)ma(Y) when A=06

X,y e2®
\ XNy =0

Dubois & Prade’s (hybrid) rule: [Dubois & Prade 1988]

(mDp(@) =

0
(DP) mpp(A) = Y mi(X)ma(Y)+ Y mi(X)ma(Y)  VA#(

X,y e2® X,y e2®
XNY=A XUY=A
L XNY #() XNY=0

Adaptive Combination Rule (ACR): [Florea 2005]
A weighted balance between conjunctive and disjunctive rules depending on the total conflict.

Assumption: Open-world

Smets’ rule: [Smets 1994] It is the non-normalized version of Dempster’s rule (keep
conflicting mass on empty set at credal level when combining).




Unified formulation of the rules

General Weighted Operator (GWO)

Step1 : Derivation of the TOTAL conflict k2 Y ma(X1)ma(Xa)

X1,X€2°
X1NXgo=0

Step2 : Redistribution of the total conflict with given set of weights

m(0) = wy, (0) - k12 Y wn(X)=1 et wp(X)e[0,1]

X €20

[ D> ma(X)ma(X2)] + w (X) ki

X1,X2€2°
X1NXo=X

The GWO formalism includes most of known fusion operators based on the
conjunctive consensus (Dempster, Smets, Yager, etc) depending on the choice
of weighting factors.

There is an infinity of fusion rules !!!




Reliability Discounting of sources

Consider an unreliable source providing the bba m(.) and having a known reli-
ability factor a € [0, 1].

« = 1 means no discounting (full reliability of the source)

a = 0 means total discounting (full unreliable/ignorant source)

: m(A) B m/(A) = a-m(A) VA # 0O
Discounted bba {m(@) {m,(@) (- a)ta.m(©)

This approach makes sense (and has to be used) if one has a good estimation of reliability
factor of each source (based on statistical experiment AND ground truth).

A sophisticated method exists [Denoeux et al. 2005,2006] where discounting factor
depends on subsets.

Remark : Discounting = conjunctive fusion on {© x {Rel, notRel}} and the marginalization on © [Haenni 2005]

We are not sure of discounting factors (most of the time we don’t have these factors at
all ). Discounting in such cases appears only as an ad-hoc engineering trick to prevent
troubles with (DS) ...

Fundamentally, discounting do not solve the inherent problem of (DS); it’s just a mean to
increase the mass of belief on the total ignorance.

Reliability Discounting # Importance Discounting (see end of Part 2)
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Fusion Spaces

Frame of the problem © = {4,,60,,...,6,} Finite set of exhaustive elements
(discrete/continuous/fuzzy/relative concepts)

Fusion spaces : Power sets, Hyper-power set (Dedekind’s lattice) and Super-power sets

S© 2 (0,u,n,c()|>|D° =(0,u,n)| > |2° = (©,V)

|

Super-power set = power set of the refined frame




Hyper-power sets

O = {01,0,...,0,).

How to generate it
1. @,91,...,9nED@
2. VAc D® BeD® (AuB)ec D®° (ANB)c D®

3. No other elements belong to D®, except those, ob-
tained by using rules 1 or 2.
Hyper-power set reduces to classical power set for the Shafer’s model (when all elements are exclusive)

The cardinality of hyper-power sets follows Dedekind’s numbers sequence when the size of the frame

Increases.

Example for n=3 © = {0,,0,,05} d(n=3)=19

ag = () ay = 05N 6 as = (01NO)U (01 NG3)U(0B2N03) aiz= (01N62)U0s g 260, Ubs

(
a1 = 01N 0N 03 as = (01 U0)N03 a9 26y a1g = (61 N6s) U6, 17 = 6y U 65
= (

a1y = 92ﬂ93)U91 a18é91U92U93

15 é 91 U(92

az £ 6, N6, aﬁé(eerg)ﬂeg Ozloéez

A
053:91m93 a7é(92U93)ﬂ91 a11é93




DSmMT basics : DSm Models

The granularity of the model of the frame characterizes the intrinsic nature (discrete/
continuous,precise/vague,absolute/relative, etc) of the concepts involved in the fusion

Process.
Parts have vague boundaries

Free DSm model

Elements of the frame are vague and potentially
overlapping. Free = no constraint on elements.
Useful to manipulate continuous concepts having
relative interpretation (where ultimate refinement is
inaccessible)

Hybrid DSm model

Some elements of the frame can be exclusive
and/or non existing specially for dynamic fusion
applications. Hybrid model means introduction of
integrity constraints into the free DSm model.

Special hybrid model: Shafer’s model

All exhaustive elements of the frame are known to
be truly exclusive (i.e.a refinement is accessible)

Constraints are represented by the characteristic non-emptiness MY(O)
function ®(A) for all A in hyper-power set: ®(A)=1 if A non-empty
or 0 otherwise.

Parts have precise boundaries




Generalized (quantitative) belief functions

Generalized basic belief assignment (gbba)

m():G® —[0,1] with m(@)=0 and D> m(4) =1
AeG®

where G® is the fusion space (i.e. 22, D®, or §© = 29refined)

Generalized belief function Generalized plausibility function

Bel(4) = » m(B)

BBQG% BeG®
~

Question: How to combine efficiently belief functions generated by
several sources of evidence ?

mi1® ... 5 mg(X)




Generalized bba (example)

Let’s consider the simple frame ©® = {A, B}, then depending on the model we
choose for G®, one will deal with:

e G° as © (Bayesian bba):
m(A) +m(B) =1
e (G° as the power set 2° and therefore:
m(A) + m(B) + m(AUB) =1
o G© as the hyper-power set D® and therefore:
m(A)+m(B)+m(AUB)+m(ANB) =1
e (G° as the super-power set S© and therefore:

m(A)+m(B)+m(AUB)+m(ANB)
+m(c(A)) + m(c(B)) + m(c(A)Uc(B)) =1




Fusion based on belief functions

Decision level

Fusion level
(DSmH/PCR5)

Integrity level

Intermediate level
(DSmMQC)

Sources level
(+ discounting)

Static scheme (all sources are combined altogether)

Decision-making

Hybrid DSm rule for hybrid model M (©)

or if one wants to be more precise, use PCRS.

Introduction of integrity constraints into D®
Hybrid model M (©)

Classic DSm rule based on free model M/ (©)

(Conjunctive consensus on hyper-power set D©)

quantitative bba qualitative bba




DSm Hybrid rule of combination (DSmH)

For any model, the fusion of k independent equally (otherwise discounting techniques are applied

first) reliable sources is done by

(DSmH) M) (X)

AL

Qb(X) {Sl (X) + S5 (X) + S5 (X)} hybrid rule means

conjunctive mixed
with disjunctive

(DSMC) No division is required, DSmH = Dempster’s rule

\;

N

S1(X) =

So(X)

X1UXoU...UX=A
X1NXaN...NX.€0

I, £26,U... U 67; 1s the total igndranoe.
U = U(Xl) Uu...U U(Xk)

u(X) is the union of all #; that compose X

D r¢ = set of propositions forced to be empty in M

All propositions involved in formulas are expressed in their canonical form (i.e. disjunctive
normal form, also known as disjunction of conjunctions in Boolean algebra, which is unique).

Special case : (DSmH) reduces to classic DSm rule (i.e. DSmC) when the free DSm-
model is used, i.e. only S1(X) is kept in (DSmH) formula.




Static versus dynamic fusion

Static Fusion : The frame and its model do not change with time

Dynamic Fusion: The frame and/or its model change with time

Young 0ld

Example of dynamic fusion (testimony problem)

white hairs

O(t;) = {6, = young, f; = old, f3 = white hairs}

Mar o)) (01 N02) =0.25  mpgr ) (0 Nb3) =025 murop)(f2N03) =0.25 mur o)) (f3) = 0.25
Yo{ing 0ld
If one learns later that young people don’t have white

hairs, one introduces this integrity constraint in the
model, i.e. ® (6, N O3) 2o white hairs

mame (1)) (03) =025 muygo, 1)) (01N02) =0.25 muyo,,))(02N03) =0.25 mpe,,)) (01U03) = 0.25




Example in Zadeh’s class

m1(91) :1—61 m1(92) =0

_ Input
@ {81762703} p S m2(91) =0 m2(6’2) =1—e9

If one adopts Shafer’s model m(fs) = 1 0T (6)16(21 n =1
—€1) - . — €9 €1€2

When O0<e, <1and0<e, <1, Dempster’s rule provides in this case same result whatever the values of e,
and e, are !!l Dempster’s rule is mathematically not defined when e = e,=0.
It provides only a coherent and trivial solution when e = e,= 1.

If one adopts free DSm model and DSmC rule

m(93) = €1€9 m(91 M 92) = (1 — 61)(1 — 62) m(91 M 93) = (1 — 61)62 m(92 M (93) = (1 — 62)61

If one adopts Shafer’s model and DSmH rule
m(Qg) — €1€2 m(@l U (92) = (1 — 61)(1 — 62) m(91 U 93) = (1 — 61)62 m(92 U (93) = (1 — 62)61

(DSmH) provides a more consistent result which depends on e, and e,.
e, and e, can take any values in [0,1].

Same conclusion is drawn for examples in Smarandache’s class.




Robustness of (DS) and (DSmH) w.r.t. imprecision

0 /2 03
Frame © = {91, 05, 93} InpUtS Source 1 | my(61) = 0.99 — € | mq(6: i mi(f3) = 0.01
: H

Source 2 77)-2(91) = € ny’ R ) g 7712( ;) =0.01

Shafer’s model

A small variation of € induces a big A small variation of € induces a small

variation of (DS) result variation of (DSmH) result.
For ¢ = 0, m(f;) = 1 (6,) = m(f) = 0 m(81) = mis) = 0.0003
m(f3) = 0.0001 For ¢ = 0.0005, < m(03) = 0.0001
m(91 U (92) = 0.9801 m(6; U ) = 0.9791
(91 U ‘93) — m(92 U 63) — 0.0099 L (91 U (93) = m(92 U 03) = 0.0099

m

m(6,) = 0.45410
For € = 0.0005, { m(fy) = 0.45410

4
miA5) = 00018 \

m(8;) with (DSmH) m(6,) with (DSmH) m(63) with (DSmH)
1 1

m(6,) with (DS) m(8,) with (DS) m(63) with (DS)

001 0.02
Values of €

m(8;U8y) with (DSmH) m(8;U84) with (DSmH) m(8,U83) with (DSmH)
TR HRH S s




Example in Smarandache’s class

© = {(91, (92, 93, (94} |npUtS m1 ((91) = 0.99 m1(6’3 U (94) = 0.01
m2(92) = 0.98 m2(03 U (94) = 0.02

If one adopts Shafer’s model

(DS) m(fs U 6,) = (0.01-0.02) _ 1  Other masses are zero.
(0+04+0+4+0+0.01-0.02) Counter-intuitive result

If one adopts free DSm model
(DSmC) m(61 N 602) = 0.9702 m(f1 N (63 U61)) = 0.0198 m(fa N (65 UB4)) = 0.0098 m(z Ubs) = 0.0002

If one adopts Shafer’s model

(DSmH) m(61 Ufy) =0.9702 m(6; U3 Uby) =0.0198 m(fy UbsUbs) =0.0098 m(f3U8b) = 0.0002

DSmT still provides a coherent result




Testinomy example (dynamic case)

@ — {91’ 82’ 93} original m1(91) = 0.1 m1(92) =04 m1(93) = 0.2 m1(91 U 92) = 0.3

withesses _ _ _ _
mo(01) = 0.5 mo(0s) =0.1 mo(03) =0.3 mo(6; UB>) =0.1
set of a priori exclusive and reports 2(01) 2(62) 2(05) 2(01 U 02)

exhaustive suspects

New info arrives: The third suspect provides a strong alibi

(non existential/integrity constraint)

m(6y) = 0.21 m(fz) = 011w m(03) = 0.06——= 7711(6’1 U#y) =0.03
m(61 N 6s) = 0.21—t0r 03 = 0.13 ~m (02 N 0O3) = 0.14 m(f3N (61 UHy)) = 0.11

The conflicting mass to transfer is then k12 = 0.06 +0.21 +0.13+0.14 +0.11 = 0.65

(DSMmH)  m@®) =0 m(6) =034 m(6:) =025 m(6; Ubs) = 0.41

ms((b) = 0.65 m5(91) =0.21 m5(92) =0.11 m5(91 U 92) = 0.03

my(@) =0 my<01) = 0.21 my(eg) = 0.11 my(91 U 92) = 0.03 + k12 = 0.03 + 0.65 = 0.68




Testinomy example (dynamic case)

Dempster’s rule

0.21 0.11 0.03
~ (0.314 mDS(Gl U (92) = ~ 0.086

(DS) mps(0) =0 mpgs(01) = 1-065 0.60 mps(62) = 1—0.65 1 —0.65

Dubois & Prade’s rule (DP)
mpp(D) =0
mDp(Ql) = |my ((91)777,2(91) + m1(91)m2(91 U (92) + m2(91)m1 (91 U 92)] + [m1 (91)m2 ((93) + m2(91)m1(93)] = (0.34

mDp(Qg) = [m1 (92)777/2 ((92) —+ m1(92)m2(91 U 92) —+ m2(92)m1(91 U (92)] —+ [m1 (92)7712 (93) —+ mo ((92)7711(93)] = 0.25
mDp((91U92) = [ml(ﬁlueg)mg (01U92)]+[m1 (91U92)m2(6’3)—|—mg(¢91U92)m1(03)]—|—[ml(91)m2 (92)4-7722(91)7%1(92)] =0.35

If one adds the masses up, one gets 0.94 < |

Dubois & Prade’s rule doesn’t work for dynamic fusion problems when a singleton or an

union of singletons becomes empty.
This problem is fixed by the sum S, in DSmH.

When there is no non-existential constraint, DSmH = DP




DSm rules for imprecise beliefs

Operations on sets Addition S18 5 =S B8 2 {x|z =151 1+s525 €81, € S}
Subtraction S1B8, = {x|x=s — 52,51 € 51,52 € 52}

Multiplication S1E8s £ {z|x=s1"52,5 € 51,52 € Sa}

Inputs: Imprecise admissible generalized bba ml(.) are of the form

m' (A) = [a1,b1]U. . .U[am, bm]U(c1, d1)U. . .U(cn, dp)U(e1, f1]U. . .U(ep, f]Ulg1, hi)U. . .Ulgy, hg)U{A1,... A}

where all the bounds or elements involved into m’ (A) belong to [0, 1]

DSmH for imprecise beliefs

(DSmH-IMp)  mi\q)(4) 2 6(A) B | S](4) B S5(A) B S (4)]

miy(A) = [m] & ma|(4)
0.04,0.10] U [0.12, 0.15]
4

A simple 2D example (DSmH-Imp) [0,0.40] U [0.42,0.48]
0

/ (0.16,0.58]
mi(A) m3(A)

0.1,0.2] U {0.3} [0.4,0.5] m! (A) = [m] ® mi](A)
(0.4,0.6) U [0.7,0.8] | |0,0.4]U {0.5,0.6} 0.04,0.10] U [0.12,0.15]
(DSMC-Imp) [0,0.40] U [0.42, 0.48]

Inputs (0.16(,)().58]




Proportional Conflict Redistribution (PCR)

Why PCR fusion rules ? To not increase the mass on uncertainties in the fusion

e Step 1: Compute the conjunctive rule  m2(X) = Z m1(X1)ma(X2)

Xl,XQEG@
X1NXo=X

e Step 2: compute all the conflicting masses (partial and/or total).

k12 = Z mi(X1)ma(X2)

Xl 7XQEG® \
X1NXa=0 Partial conflicts

e Step 3: then proportionally redistribute the conflicting
mass (total or partial) to non-empty sets involved in
the model according to all integrity constraints.

The way the conflicting mass is redistributed yields to several versions of PCR (PCR1-PCR6) which work

for any degree of conflict and for any models and both in DST and DSmT and for static or dynamical fusion
applications.




PCR rule # 5 (PCR5)

PCRS5 transfers the partial conflicting masses to the elements
involved in the partial conflict proportionally to mass m+(.) and mx(.)
of elements involved in the partial conflict ONLY.

VX #£0,X € G®

m1(X)?ma(Y) mao(X)?m1(Y)

mpcors(X) = mi2(X) + Z |

Y eGP \{X}
XNY =0

i (X) + ma(¥) T ma(X) £ m (V)

Extension possible for N>2 sources

Advantage : PCR5 does a more exact redistribution than PCR1- PCR4. PCR5
works on any model and preserves the neutrality of VBA.

A new rule (PCR6), more intuitive than (PCR5) for combining s>2 sources, is
proposed by Martin & Osswald in DSmT Book,Vol. 2.

Drawback: pcRr5 as most rules (but DS rule) is not associative
(quasi-associative only)




TCN Fusion rule (Fuzzified PCRS)

[Tchamova, Dezert, Smarandache 2006, DSmT Book3 Chap 15]

This rule 1s based on fuzzy T-norm (min for conjunction) and fuzzy T-conorm (max for
disjunction) operators.

min T-norm conjunctive consensus

Conflicting masses are distributed to all non-empty sets involved in the conflict
proportionally with respect to the maximum between the elements of corre-
sponding mass matrix’s columns, associated with the given element of G®.

2{: min{m1(X), mo(Y)}+
X, Yeg® .
XNY=A Normalization -
mron(A)

min{mq(A4), mo(X)} min{mso(A), m1(X)}
> (mu(4) x maxc{my (A), ma (X))} max {1 (A). (X)) > mron(4)

XeG®
XNA=0(

Can be extented to N sources;

TCN does not belong to the General Weighted Operator Class;

very easy to implement, satisfying the neutrality of Vacuous Belief Assignment;
commutative, convergent to idempotence, reflecting majority opinion.




Example for PCR5

A B AUB ]{712:m12(AﬂB)

O = {A B} Inout ) | 06__03 0. — (A my(B)ms
nputs 00y g0 O L(A)ms(B) + my (B)ma(A)

0.44 027 005 = 0881+ 0:06 = 0.24

Shafer’s model miz(.)

mo(A) = 0.2 and m1(B) = 0.3 did make an impact on the conflict because ms(A)mq(B) = 0.2-0.3 = 0.06 was added
to the conflicting mass. So, A and B are involved in the conflict (A U B is not involved), hence only A and B deserve a

part of the conflicting mass, A U B does not deserve.

Let z; be the conflicting mass to be redistributed to A, and y; the conflicting mass redistributed to B from the first partial
conflicting mass 0.18, and similarly for 2 and yo with partial conflict 0.06; one has:

71 =06-02=0.12
21/0.6 = y1/0.3 = (z1 +1)/(0.6 + 0.3) =0M8/0.9=0.2 =—> =03 02006

75 = 0.2-0.12 = 0.024
0.2 = 42/0.3 = (22 + y2)/(0.2 + 0.3) =10006/0.5 = 0.12 >
72/02 = 12/03 = (@2 +y2)/( ) / s =0.3-0.12=0.036

With PCRS5 With DSmH and Dubois & Prade’s rules With Dempster’s rule
mpcors(A) =0.44 4 0.12+{0.024 = 0.584 mpsma(A) = mpp(A) = 0.44 mps(A) ~ 0.579
mpcors(B) = 0.27 + 0.06|+]0.036|= 0.366 mpsmu(B) = mpp(B) = 0.27 mps(B) ~ 0.355
mpcrs(AUB) = 0.05+0 = 0.05 Mmpsmu(AUB) =mpp(AUB) =029 | | mps(AU B) = 0.066

The mass put on 1ignorance with PCRS5 is the lowest

Note: Example for imp-PCRS5 can be found in [DSmT Book 2]




PCRG6 versus PCR5

The difference between PCR5 and PCR6 lies in the way the proportional conflict redistribution is
done as soon as three or more sources are involved in the fusion (for 2 sources, PCR6=PCRY5).

Let’s consider mq(.), mz(.) and ms(.), AN B = () for the model of the frame ©.

ma(B) = 0.3, ms(B) = 0.1

PCR5 ng’R’S 0.018

With PCR5: - _ _m(A)ma(B)ms(B) Ta

(B) ~ mr(A) + ma(B)ms(B) 0.6 0.03 0.6 +0.03

5O =0.60 - 0.02857 ~ 0.01714
= 0.03 - 0.02857 ~ 0.00086

Therefore, one gets {

With PCR6: hO10 gl wpG™ i (A)ma(B)ms(B) S S 0.018

- - - = = 0.018
mi(A)  ma(B) ms(B)  mi(A) + ma(B) + ms(B) 0.6 0.3 01  0.6+03+0.1

PCRG6
— 0.6-0.018 = 0.0108
A 2RO — 0.0108

whence =0.3-0.018=0.0054  Therefore, one gets { Aore  PORG . PCRG
—0.1-0.018 = 0.0018 : =2po txgy =0.0054+0.0018 =0.0072

Note: PCR6 is more simple to implement than PCR5 (see MatLab Code)




Zadeh’s Example (1979)

A B C
© = {A,B,C. Inputs : 0(.)9 009 81

Shafer’s model

Partial conflicts: mi12(AN B) = 0.81, mi2(ANC) = mi2(BNC) = 0.09

Total conflict: k1o = mi(A)mo(B) + mi(A)ms(C) + mo(B)my(C') = 0.81 + 0.09 + 0.09 = 0.99

Comparison of Fusion results

(DS) (DSmH=DP) (PCR5) (Yager)

mps(C) =1 | mpsmu(AUB) =081 | mpcps(A) =0.486 | mr(AUBUC) =099

)
)

mpsmu (B UC) = 0.09 mpcors(C) = 0.028

mDSmH(? — 0.01 T

What is the most reasonable/trustable result ?

No definitive answer since ~ 30 years !!! but simulations can be done based
on groundtruth to compare performances of different rules.




Smarandache’s example (non Bayesian case)

©={A,B,C,D} Shafer’s model

Inputs

Partial conflicts:  12(A N B) = mi(A)mz(B) = 0.9801
mi2 (A M (C U D)) = my (A)mg(C’ U D) = 0.0099
m12(B M (C U D)) =1m (C U D)mg(B) = 0.0099

Total conflict: k12 = mi1(A)ma(B) + mi(A)ma(C U D) + my (C U D)ma(B) = 0.9801 + 0.0099 + 0.0099 = 0.9999

With (DS) rule, one will get mps(CUD) =1

. . mDSmH(AUB) = 0.9801
With (DSmH) rUIG, onhe will get mpsmir(AUC U D) = 0.0009 mpsme(C U D) = 0.0001

mDSmH(B uCcu D) = 0.0099

With (PCRS) rule, one will get mpcrs(A) = mpors(B) = 0.499851
mpcrs(C U D) = 0.000298

With TBM and Smets’ rule, one gets ms(0) =0.9999 ms(C'U D) = 0.0001




Target type tracking with (DS) and (PCR5)

2 targets sequentially observed and classified with C; = [

0.75 0.25
0.25 0.75
Fighter

Cargo / l \
Estimation UfKSgnment f;;.%\ Estimation of belief assignment for Fighter Type
IEr T T

pe
l
% Groundtruth

(PCR5) — e | ]

4

F .
rIJ-,
..II_,

X

d

Grroundtruth
Demspter's rule
PCRS5 rule

| |
60 100
Scan number Scan number

Cargo Type Tracking Fighter Type Tracking

[Dezert, Tchamova, Konstantinova, Smarandache 2006]




Example : (PCR5) for Gaussian Bayesian
belief distributions

Here we restrict masses to be Bayesian and we extend PCR5 to
work on a continuous frame

. — - - - - - — . - - 0 . 4 - — -— “ - - - —
5 10 15 20 25 30 35 40 45 50 0 5 15 20 25 30 35 40 45 50

where Cte is a normalization constant

Case 1 : ma(.) = mq(.) Case 2 : ma(.) # ma(.)

Application: Particle Filtering for target tracking [Fusion 2007]




Fusion of beliefs based on sampling

[Fredeéric Dambreville, Chap.6, DSmT Book 3,2009]

Dempster’s rule obtained from sampling approach

The estimate mpg(.) of mpg(.) is obtained by the following sampling process:
1. Repeat from n=1ton = N:

(a) Generate Y7 and Y5 by means of m1(.) and ms(.) respectively,
(b) If Y1 NY5 =0, then set X,, = rejected,
(¢) Otherwise, keep X,, = Y1 NY5,

2. Compute the rejection rate z = N I X, = rejected],

3. For any X € G®, compute mpg( y:

N
mps(X N(1-7%) Z

nzl




Fusion of beliefs based on sampling

PCRS5 rule obtained from sampling approach

The estimate mpcors(.) of mpors(.) is obtained by the sampling process:
1. Repeat from n =1 ton = IV:

(a) Generate Y7 and Y5 by means of mq(.) and ms(.) respectively,
(b) Ile ﬂYQ # Q), then take Xn :Yl ﬂYz,

(c) Otherwise, do:

mi (Yl)
m1(Y1)+ma(Y2)

ii. Generate a random number u uniformly distributed on [0, 1],
iii. If u < 0, set X,, = Y7 ; otherwise, set X,, = Y5,

i. Compute 0 =

2. For any X € G®, compute mpcrs(X) by:

.
mpcrs(X) = N Z

A general theoretical framework for the fusion based on sampling techniques has been
developed by Dambreville [DSmT book 3]




Simple MatLab Code for PCR5 and PCR6

(For Shafer’s model only)

File : PCR5fusion.m

function [mPCR5,TotalConflict]=PCR5fusion(BBA)
% Author and copyrights: Jean Dezert

% Input: BBA matrix

% Output: mPCRS = resulting bba after fusion with PCR5
% TotalConflict = level of total conflict between sources
NbrSources=size(BBA,2);
CardTheta=log2(size(BBA,1)+1);

if (NbrSources==1)

mPCR5=BBA(:,1) ;TotalConflict=0;return

end

Card2PowerTheta=2" (CardTheta)-1;

% All possible combinations
vec=[1:Card2PowerTheta] ;

Combinations=vec;

for s=1:NbrSources-1
Combinations=combvec(Combinations,vec);

end

Combinations=Combinations’;

mPCR5=zeros (Card2PowerTheta,1) ;
TotalConflict=0;

NbrComb=size (Combinations,1);

for c=1:NbrComb

PC=Combinations(c,:);
mConj=zeros(1,NbrSources);

for s=1:NbrSources

mConj (s)=BBA(PC(s),s);

end

massConj=prod(mConj,2) ;

if (massConj>0)

% Check if this is a real partial conflict or not
Intersections=PC(1);

for s=2:NbrSources

X=PC(s);
Intersections=bitand(Intersections,X);

end

if (Intersections™=0) 7 the intersection is not empty
mPCR5 (Intersections)=mPCR5(Intersections)+massConj;
else % the intersection is empty
TotalConflict=TotalConflict+massConj;

% Let’s apply PCR5 rule principle
UQ=unique (PC) ;

Proportions=0*UQ;

DenPCR5=0;

for u=1:size(UQ,2)

SamePropositions=find (PC==UQ(u)) ;
MassProd=prod (mConj (SamePropositions)) ;
Proportions(u)= MassProd*massConj;
DenPCR5=DenPCR5+MassProd;

end

Proportions=Proportions/DenPCR5;

% PCR5 redistribution

for u=1:size(UQ,2)

mPCR5 (UQ (u) )=mPCR5 (UQ (u) ) +Proportions(u) ;

end, end, end, end, return

File : PCR6fusion.m

function [mPCR6,TotalConflict]=PCR6fusion(BBA)

% Author and copyrights: Jean Dezert

% Input: BBA matrix

% Output: mPCR6 = resulting bba after fusion with PCR6

% TotalConflict = level of total conflict between sources

NbrSources=size (BBA,2);
CardTheta=log2(size(BBA,1)+1);

if (NbrSources==1)

mPCR6=BBA(:,1);

TotalConflict=0;

return

end

Card2PowerTheta=2" (CardTheta)-1;

% All possible combinations
vec=[1:Card2PowerTheta] ;
Combinations=vec;

for s=1:NbrSources-1
Combinations=combvec(Combinations,vec);
end

Combinations=Combinations’;

mPCR6=zeros (Card2PowerTheta,1);
TotalConflict=0;

NbrComb=size (Combinations,1);

for c=1:NbrComb

PC=Combinations(c,:); % particular combination
mConj=zeros(1,NbrSources) ;

for s=1:NbrSources

mConj (s)=BBA(PC(s),s);

end

massConj=prod(mConj,2) ;

if (massConj>0)

Intersections=PC(1);

for s=2:NbrSources

X=PC(s);
Intersections=bitand(Intersections,X);
end

if (Intersections™=0) % intersection not empty
mPCR6 (Intersections)=mPCR6(Intersections)+massConj;
else 7 empty intersection
TotalConflict=TotalConflict+massConj;
% PCR6 rule principle

for s=1:NbrSources

Proportion= mConj(s)*(massConj/(sum(mConj,2)));
% Redistribution back to element PC(s)
mPCR6 (PC(s))=mPCR6 (PC(s))+Proportion;
end, end, end, end, return

Sophisticated toolboxes for DSmT are available for research purpose:

By A. Martin - See DSmT Book 3 and upon request to this author

B)’ F. Dambreville - nttp://refereefunction. fredericdambreville.com




On the associativity of DSm rules

General case : Hybrid DSm model

DSmH and PCRS5 rules are commutative and quasi-associative, i.e. in order to preserve the associativity we
keep the result of the conjunctive rule and, when new evidence comes in, this result is combined with the new
evidence and then one applies the redistribution of the confliciting mass using (DSmH).

m1 @ mae @ ms](.) # [(m1 ©ma) ®ms](.) # [m1 D (m2 ©m3)](.) # [m2 ® (m1 ®ms3)|(.)

\ . J/ \ . J/ \ . J/ \ . J/
~~ ~~ ~~ ~~

Optimal Fusion Suboptimal fusion Suboptimal fusion Suboptimal fusion

To preserve optimality and coherence of the fusion result, all the sources have to be
combined altogether at same fusion level (centralized fusion), not sequentially.

Sequential/decentralized fusion is only suboptimal since part of information is lost during
iIntermediate fusion steps.

Special case : Free DSm model (no constraint)
DSmH reduces to DSmC (i.e. the conjunctive consensus over hyper-power set).

DSMC is commutative and associative on free DSm models whatever values bba’s take.

DS rule is commutative and associative but provides counter-intuitive results when the
conflict between sources becomes high.




On the refinement of the frame

O = {(91 = Small, 92 = Tall}

m2(6’1) = 0.6 mg(eg) = 0.2 m2(6’1 U 92) = 0.2
]-C12 = m1(¢91)m2 ((92) + m2(91)m1(92) = 0.38

Case 1: Assume Shafer’s model holds

0.38 0.22 0.02
(DS) m@) =0 m) =52 =0613  m() = 52 =0355  m(6iUb) = - o =0.032

(DSmH) m()) =0 m(61) = 0.38 m(6s) = 0.22 m(6; UBy) =0.02 4 0.38 =0.40

DSmH is not equivalent to Dempster’s rule (DS)

For this simple 2D static fusion problem, DSmH coincides with Yager’s and Dubois & Prade’s rules.

Case 2: Assume Shafer’s model doesn’t hold

because of the continuity and vagueness of elements and their relative interpretation
Possible appraoches: 1) use DSmC with free model, or 2) use DS on a refined frame




On the refinement of the frame (cont’d)

Case 2: Assume Shafer’s model doesn’t hold

Approach 1: work directly on DSm free model with DSmC

(DSmC) m(@) =0 m(0Nby) =038 m0) =038 m(fs) =022 m(b Uby)=0.02

Approach 2: refine the frame and see what DS provides

01 02 0:M05 = 0, Orer = {0 = Small’, 05 = Medium, 65 = Tall’}

6, = 6 U8, me (07 U65) = 0.6 ms (05 U 05) = 0.2 my (07 U605 U05) =0.2

Applying DS rule (there is NO conflict now)
m(0) =0

m(63)

(DS) m (0] U 05)

)

)

I
3

67 U 05)m5 (05 U 05) + m5 (07 U 05)m) (65 U 65) = 0.38

67 U 05)m5(07 U 65) + mi (0] U 65 U 65)m5 (67 U 05) +mbh(07 U5 U 63)m) (0] Uby) = 0.38
05, U 05)mb5 (05 U 05) + mi (07 U 05 U 605)m5 (65 U 05) +mb(07 U 05 U 03)m) (05 U 05) = 0.22
67 U 65 U 05)mb (07 U5 U 03) = 0.02

I
3

m(fy U 03
m(6; U 65 U 65

RS =) 1S S

(
(
(
(

Il
3

m

Thus (DS) reduces to (DSmC) with the necessity and justification (?) of the existence of a
possible refinement. It introduces useless complexity w.r.t the direct DSmT formalism.
Just work directly on hyper power set !!!




Example of refinement with hybrid model

mi ((91) = 0.6 m1(<92) = 0.3 m1(93) = 0.1
mo ((91) =04 m2(<92) =04 m2(93) = (0.2

k12 =0.04 +0.04 + 0.12 4 0.06 = 0.26

Conjunctive consensus | m1(01 =aUB) =0.6 mi(f2=0U~vy) =03 my(f3=9)=0.1
Mol =aUB) =04 | 04x06—aUp 0.4x 0.3 — 0.4x0.1 >0
ma(fy = BU~) = 0.4 0.4 % 0.6 — f 0.4x 0.3 — BU~ 0.4 % 0.1 — 0
03 ma(3 = §) = 0.2 0.2x0.6—0 0.2x0.3—0 02x0.1—94

mps(a U 6 — (91) = 024/(1 — klz) = 0.324324

@ref — {Of, 6’ f'}/’ 5} (DS) mps(ﬁ = (91 M 92) = 036/(1 — klz) — 0.486486
mps(ﬁ U Y = 92) = 0.12/(1 — klg) = 0.162162

mps(d = 03) =0.02/(1 — k1) = 0.027028

mpsmu(@UB ="01) =024  mpgmu(d =03) =0.02 mpcprs(aU B = 01) = 0.362

(DSmMH) | Mpsmu(B8=01N6) =036 mpsmu(d1Ub;) =016 | (PCRS5) mpcrs(8 = 61N 62) = 0.360

mpCRg)(B U~y = 92) = 0.188
m Uy ==60)=0.12 mH (02 U6O3) =0.10
mps H(ﬁ Y 2) mps H( 2 3) mPCR5((5 _ 93) — 0.090

Conclusion: when working on hybrid models, Dempster’s rule applied on refined frame
Is different from DSmT rules (DSmH and PCRY).




Problem with Smets rule (TBM framework)

© = {A,B,C)} Sequential/Temporal Fusion

Shafer’s model 1 = = i

0.4 0 0.6 S | Fusi
0.7 0.3 0 equential Fusion

0.28 0 0 . of 2 sources

, 1
Shafer’s model { , 0.28 0 0

0.574725 0.111429 0.313846

AuB AUC BUC

0 0.12 0.42 0.18

In the dynamic fusion suppose that a new source ms(.) provides the information below. Then one sequentially combines the

results obtained by mi?g,,(.), me(.), mps, ;7 (-) and mEx »=(.) with mg(.) and one gets:

B C m AUB AuC BUC AuBUC
ms(.) 0.8 0.2

T o) 0 0 1 The specificity is lost forever
mgg() (DS) not working (division by 0)

123
Shafer’s model{ T i) 0 0.240 0120 |0 0224 0056 0
miZ . () | 0277490 0.545010 0.177500

If again a fourth, fifth, etc. source provide information and we need to sequentially combine each such source
with the previous result one gets for TBM:

mrpm (0) = mipa (0) mrem (D) = m?gf]l\?[(@) —1 . mreym(0) = mlTQB]\Z(@) =1

TBM approach does not respond to new information while DSm rules (DSmH and/or
PCR5) respond to new information to combine. (DS) is not working at all.

The only ad-hoc solution to overcome this behavior is to introduce some temporal discounting
factors and/or avoid to fall into such pathological cases ....




Dynamic versus static fusion of three sources

The masses m1(.),m2(.), m3(.) are those used in the previous example

Dynamic/temporal Fusion

The three sources are combined sequentially

A

B

C

0 AUB AuC BuUC AuBUC

mg()

0

0.8

0.2

my ()

0

0

0

1 TBM not responding and the specificity is lost

mps()

(DS) not working

(division by 0)

Shafer’s 123

mDSmH()

0

0.240

0.120

0 0224 0.056 0 0.360

model 123

mpors ()

{

0.277490 0.545010 0.177500

Static Fusion

Dynamic Fusion — [(my & m2) & ms](.)

The three sources are combined alltogether

A

B

C

0 AuB AUuC BUC AuBUC

0.4

0

0.6

0.7

0.3

0

0

0.8

0.2

0

0

0

1 TBM not responding and the specificity is lost

(BS) not working

division by 0)

0

0

0

0 0.32 0.14 0.18 0.36

0.345115

0.404783 0.250102

Static Fusion — [m1 & mo @ ms](.)




Belief conditioning and Non-Bayesian Reasoning

Approach I: Following Shafer’s idea based on fusion

subjective certainty committed

1) Shafer’s “conditioning” rule (SCR?/ to A by source # 2

mo (A) =1

® = Dempster’s rule

my (.|A) = [m1 @ mea](.)  with {

SCR = Bayesian reasoning with plausibilities

2) PCR5 conditioning rule (PCRSCR) [Smarandache Dezert, Brest 2010]

We replace Dempster rule by PCR5 fusion rule

PCR5CR = Non Bayesian reasoning (NBR)

Approach 2: Direct Belief Conditioning Rules (BCR)




Approach 1 (based on fusion)

1) Extension of Bayesian Reasoning (Shafer’s cond.)

Bel, (X UY) — Bely (V) Consistency with
1 - Bely(Y) Bayes formula using
Bayesian bba’s:

Bel(X|Y)= ) mps(Z|Y) =
Ze2°
ZCX

Bel(X|Y) < P(X|Y) < PI(X]|Y)

P(XNY)
P(Y)

PL(XNY)
PL(Y)

——— P(X|Y) =

PIX|Y)= > mps(Z]Y)=

Ze2®
ZNX#0

Bayesian When Y = X and as soon as Bel(X) < 1, one gets Bel(X|X) = 1 because
Co. Beli1(X UY) = Bel; (X U X) = Bel1(0) = 1. For Bayesian belief, this implies
principle: P(X|X) =1 for any X such that P;(X) > 0.




Approach 1 (based on fusion)

2) Non Bayesian Reasoning (NBR or PCR5CR)

7n2@4)::1
@ = PCRbH Fusion rule

Principle:  mi(.[4) =[m1 &ma|(.)  with {

. _ _ oy, ma(X)? _ ma (Xa)
Result: mx|v)= XZ ma(X1)FO(XNY = 0)- 97 HOX = Y): XZ T+ m1(Xa)
X1NY=X XoNY =0

Bel(X |Y)= ) m(Z|Y)
Ze2®

2Ex This conditioning is
Bel(X | Y) < P(X|]Y) < PUX]JY) truly Non-Bayesian
K[ V)= 3 mz]7) since Bel(Y|]Y) <

ZEA=

Property of PCR5 rule: Bayesian & Non-Bayesian = Non-Bayesian (in general) ‘

Deconditioning: It is the inverse (dual) problem of conditioning. It consists to retrieve the prior belief function from a given posterior/
conditional belief function. Useful for revising/reconditioning knowledge w.r.t. other conditional hypothesis. More simply stated, we want to
see if for any given conditional bba m(.| |Y), we can compute m1(.) such that m(.||Y)=PCR5(m1(.),m2(.) with my(Y)=1.




Example of NBR with Bayesian prior

Example 1: with Bayesian prior o =1{4,B.0} yv-auB

Prior Bayesian bba’s Shater’s conditioning Non Bayesian conditioning

Focal Elem. m(.|Y) Y)

Focal Elem. mq m’l() 0.5 é Focal Elem. m(.|]Y) m’ (.||Y)
5 0.4900 0.0100

0.49 0.01 0.5
0.49 0.01 0 0 0.4900 0.0100
0.00039215 0.48505051
AUB 0 0
0.02 0.98 AU B 0.01960785 0.49494949

Bel(Y|Y)=1 Bel'(Y|Y)=1 Bel(Y||Y) = 0.99960785 < 1
Bel'(Y||Y) = 0, 51494949 < 1

ACY) = A(]Y) ACIY) ATCY)

[0,0] [0,0] . ..
[0.4900, 0.5096] [ 0.0100, 0.5050] Unique deconditioning

[0.4900, 0.5096] [ 0.0100, 0.5050] .
[0.0004, 0.0004] [0.4850,0.4850] of PCR5 conditioning

[0.9996,0.9996] [0.5150,0.5150] i i
[ 0.4904, 0.5100] [0.4950, 0.9900] 'S pOSSIF)le- (see paper)
[ 0.4904, 0.5100] [0.4950, 0.9900] contrariwise to SCR

[1,1] [1,1]

—
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A(Y) = [Bel(.]Y), PI(.|Y)]

see Smarandache-Dezert, Brest 2010 paper for details




Example of NBR with NON-Bayesian prior

Example 2: with Non-Bayesian prior ©=145C  Y=A4UB

Prior bba’s Shafer conditioning Non Bayesian conditioning

Focal Elem. . Focal Elem. m(.|Y) m’(.|Y) Focal Elem. m(. || Y) m’ (. || Y)
A A 0.222 0.222 A 0.20 0.20
B B 0.333 0.333 B 0.30 0.30
C
U

¢ C 0 0 0.01 0.01

A B

Bel(Y|Y)=1 Bel'(Y|Y) =1 Bel(Y||Y) = Bel'(Y]]Y) =0.99 < 1

A('|Y)[0:,01A,('|Y) A('Hy)[o:,o]Al('”Y) Unique deconditioning of PCR5

0.2220,0.8550)] (02000, 0-E00] conditioning is not possible in
[0.3330,0.7780] [0.3000,0.7900]

[0,0] [ 0.0100,0.0100] general with non Bayesian prior
[1,1] [0.9900,0.9900] o )
[0.2220,0.6670] [ 0.2100,0.7000] bba, unless additional constraints

0.3330,0.7780 0.3100,0.8000 .
| 11,1] | | 11,1] | are introduced.
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A(|Y) = [Bel(.|Y), PI(.]Y)]

see Smarandache-Dezert, Brest 2010 paper for details




Approach 2 : Direct Belief Conditioning Rules (BCR)

Justification : One makes a clear and fundamental distinction
between fusion of a prior bba m(.) with a source focused on a given

set A (Shafer’s approach) and belief revision conditioned by the fact
that absolute truth is in A (BCRs approach).

To compute m(.|A), and because the conditioning event A contains
the absolute truth, one proposes to revise the prior bba m(.) based
on NEW mass transfer, but NOT based on the fusion of m,(.) with

specialized bba m;(A)=1.Many BCRs (BCRI-31) have been recently
developed.

BCRI12 and BCR17 seems to be the most appealing so far (see
justification in next slides).




Example: visual perception and subjective certainty

Question: Is the color of squares A and B the same or different ?

Credit: Example borrowed from Edward H. Adelson



Let’s check

Ly
&>

%

Conclusion:

Subjective certainty + Objective (i.e. absolute) certainty




Hyper-power set decomposition (HPSD)

BCRs are based on a particular hyper-power set decomposition
imposed by the conditioning event, say A.

D@\{@}:DlUDQUDg

o D; 2Pp(A) =24n DO\ {§} = all non-empty parts of D® which are included in A;

e Dy 2 {(©\s(A)),U,N}\ {0} = the sub-hyper-power set generated by © \ s(A4) under U and N,
without the empty set.

e D3 = (D\{0})\ (D1 UDsy).

where s(A) =1{0;,,0,,...,0;,}, 1 < p <mn, be the singletons/atoms that compose A.

Example: if 4 = 01U (03N 0y) then s(A) = {01,03,04}.

The masses of D, and D3 elements are redistributed to D, non-empty elements according to
many ways (i.e.BCRI-BCR31)




Examples of HPSD

Let’s consider ©® = {A, B,C'} and the free DSm model.

Example | © 1Ifthe truthisin A4 Example 2 :  If the truth is in AN B
Dy = {C}

Dy ={A,ANB,ANC,ANBNC}=P(A) N (D®\0) D1={ANB,ANBNC}
Dy = ({B,C},u,n) = DBC = (B C,BUC,BNC}

D3={A,B,AUB,ANC,BNC,...} = (D°\ {0})\ (D, UD
Ds={AUB,AUC,AUBUC,AU(BNC)} = b= (DN (OD\ (DU D)

Example 3 . If the truth isin AU B

Dy ={A,B,ANB,AUB,...} D, = {C}

—>

all other sets included in these four ones, i.e. D3 = {A JC,BUC, AUuUBUC,CU (A M B)}
ANC,BNC,AnBNC,Au(BNC), BU(ANC), etc.

Example 4 ; Ifthetruthisin AUBUC Dy = D®\ {0} D> and D3 do not exist.




BCR #17

BCRI17 does the most refined/precise redistribution among all possible BCR; i.e.

- the mass m(W) of each element W in D,UD:s is transferred to the elements X in D, which
are included in W (if any) proportionally with respect to their non-empty masses;

- if no such X exists, the mass m(W) is transferred in a pessimistic/prudent way to the k-
largest elements from D, which are included in W (in equal parts) if any;

- if neither this way is possible, then m(W) is indiscriminately distributed to all X in D
proportionally with respect to their nonzero masses.

mpori7(X]A) =m(X) - || Z m(Z)|/ Z m(Y) +

ZeDq, Yeb,

or ZED> | AY €D withY CZ

WeDoUDs3
xcw, X1is k-largest
S(W)=0




Example #1 for BCR17

©=1{4,B,C} free DSm model with non-Bayesian bba

m(A) = m(B) = 0.1 m(C') = 0.2
m(AﬂB)—Ol m(AU B) =0.1 m(BUC) = 0.1
m(AU(BNC)) =0.1 m(AUBUC)=0.1

Let’s assume that the truth is in B U C, i.e. the conditioning term is B U C

Di={ANnBNC,BNC ANB,ANC,(ANB)U(BNC),(BNCYU(ANC),(ANnB)U(ANC)

(AnB)u(AnC)u(BNC),B,C,(ANC)UB,(ANB)UC,BUC}
Dy = {A}

={AU(BNC),AUB,AUC,AUBUC}

BCR17 conditioning: m(AUC) =0
For Ds:

m(A) = 0.2, where A € Do, is transferred to BN A since BN A C Aand m(B N A)

> 0.

(AUB) = 0.1 is transferred to B and BN A since these are the only D elements included in AU B whose masses

are non-zero, proportionally to their corresponding masses, i.€.
xp  wpna 0.1

p o _ 05 whence xp = 0.05 and wpn4 = 0.05.

For Ds:

. - : rp Yo _ ZBuc _ wpna 0.1
m(AU BUC) =0.1is transferred to B, C, BN A, BUC, i.e. T 03" 01 = o1 —o5 02

whence zp = 0.02, yo = 0.04, zpuc = 0.02 and wpna = 0.02.

(AU (BNC)) = 0.1is transferred to B N A only since no other D; element with non-zero mass is included in
AU(BNCQO).

BCR17 result:

mBCRl7(B|B U C) = 0.10+0.05+0.02 =0.17 mBCR17(B U O‘B U C) =0.10 +0.02 = 0.12
mBCRl7(C'|B U C) = 0.20 + 0.04 =0.24

mporir(BNA/BUC) = 0.1+ 0.2+ 0.05 4 0.02 4+ 0.1 = 0.47



Example #2 for BCR17

© ={A,B,C'} Shafer’s model with non-Bayesian bba
m(A) = 0.2 m(B) = 0.1 m(C') = 0.2
m(AU B) =0.1 m(BUC) =0.1 m(AUBUC) =0.3

Let’s assume as conditioning constraint that the truth is in BUC.

HPSD: D, ={B,C,BuUC} D2={A} D3={Au(BNC),AUB,AUC,AUBUC}

BCR17 conditioning:
rp Yo _ZBUC_0-2_05

For Dy, m(A) = 0.2 is transferred proportionally to all elements of D1, i.e. 0102 01 o4 Y

whence zp = 0.05, yo = 0.10, and zgyc = 0.05.

For D3, m(A U B) = 0.1 is transferred to B (no case of k-elements herein);
m(AU B UC) = 0.3 is transferred to B, C, B U C proportionally to their corresponding masses:

0.3
°5 _ JC _ ZBUC _ = _ .75  whence zp = 0.075, yo = 0.15, and 2L = 0.075.

01 02 01 04

Result with BCR17 Result with SCR

mpori7(B|BUC) =0.10 4+ 0.05 + 0.10 + 0.075 = 0.325 # mscr(B|BUC) =0.25

mBCRl?(C’B U C) = 0.2+ 0.10+0.15 = 0.450 WSCR(C’B U C) = 0.25
mBoRl7(B U C‘B U C) = 0.104+ 0.05 4+ 0.075 = 0.225 mSCR(B U C|B U C) = 0.50




Belief Conditioning Rule #12

mporiz(X|A) = [m(X) - > m(Z)]/ Y m(Y)

ZeDn, Yeb

or ZEDs | BY €D withY CZ

D m(W)/k

WeDaUDs
Xcw, X is k-largest

BCRI12 does the most pessimistic/prudent redistribution among all possible BCR:

- the mass m(W) of each W in D2UDs is transferred in a pessimistic/prudent way to the k-largest

elements X from D, which are included in W (in equal parts) if any;
- if this way is not possible, then m(WV) is indiscriminately distributed to all X from D,

proportionally with respect their nonzero masses.

BCRI12 can be regarded as a generalization of SCR from the power set to the hyper-
power set in the free DSm free model (all intersections non-empty). In this case the
result of BCR12 is equal to that of m|(.) combined with m2(A)=1, when the truth is in A,

using (DSMCQC).




Example #1 for BCR12

©={4,B,C} free DSm model with non-Bayesian bba

m(A) = 0.2 m(B) = 0.1 m(C') = 0.2
m(ANB) =0.1 m(AU B) =0.1 m(BUC) =0.1
m(AU(BNC))=0.1 m(AUBUC) =0.1

Let’s assume that the truth is in B U C, i.e. the conditioning term is B U C

Di={ANBNC,BNC ANB,ANC,(ANB)U(BNC),(BNC)U(ANC),(ANB)U(ANC)
(ANB)U(ANC)U(BNC),B,C,(ANC)UB,(ANB)UC,BUC)

Dy = {A} D3 ={AU(BNC),AUB,AUC,AUBUC}

BCR12 conditioning: m(AUC) =0
m(A) = 0.2 is transferred to (AN B) U (AN C) since it is the 1-largest element of D; included in A.

m(AU (BNC)) =0.11is transferred to (AN B)U (AN C) U (BNC) since it is the 1-largest element
of Dy included in AU (BN C).

m(AU B) = 0.1 is transferred to (A N C') U B since it is the 1-largest element of D; included in AU B.
m(AU BUC) = 0.1 is transferred to B U C since it is the 1-largest element of D; included in AU BU C.

BCR12 result: mpcr2(BUC | BUC) = 0.1+ 0.1 =0.2
mpcri2((ANB)U(ANC) | BUC)=0.2 mpcri2(B | BUC) =0.1
(

mpcri2((ANB)U(ANC)U(BNC) | BUC)=0.1 mpcri2(C | BUC) =0.2
mpcori2((ANC)UB | BUC) =0.1 mpcri2(ANB|BUC) =0.1




Example #2 for BCR12

© ={A,B,C} Shafer’s model with non-Bayesian bba
m(A) = 0.2 m(B) = 0.1 m(C) = 0.2
m(AU B) =0.1 m(BUC) =0.1 m(AUBUC) =0.3

Let’s assume as conditioning constraint that the truth is in BUC.

HPSD: D, ={B,C,BuC} D:2={A} D3={Au(BNC),AUB,AUC,AUBUC}

BCR12 conditioning:
m(A) = 0.2 is distributed to B, C' and B U C proportionally to their corresponding masses, i.e.

m(A)
0.2 &~

0.1 0.2 0.1 0.1+0.240.1

B Yo ZBUC

whence zp = 0.05, yo = 0.10 and zgyc = 0.05.

m(A U B) = 0.1 is transferred to B, i.e. the 1-largest element of D; included in A U B.
m(AU BUC) = 0.3 is transferred to BU C, i.e. the 1-largest element of D; included in AU BU C.

Result with BCR 12 Result with SCR

mpcri2(B | BUC) =0.14 0.1+ 0.05 = 0.25 mscr(B|BUC) = 0.25
mpcri2(C|BUC) = 0.20 + 0.10 = 0.30 ; mscr(C|BUC) =0.25

mpcri2(BUC | BUC) =0.14 0.05+ 0.3 = 0.45 mscr(BUC|IBUC) = 0.50




o= Example #3 for BCR12

b @ © ={A,B,C,D} Shafer’s model with Bayesian bba

QC ml(A) =04 mi (B) = 0.1 mi (C) = 0.2 ml(D) =0.3

Let’s assume that one finds out that the truth is in C' U D.

Actually we get same Result with all BCR

A B C D
ml() 0.4 0.1 0.2 0.3
mBCRl—Sl(-|C U D) 0 0 040 0.60

Result with SCR, based on Dempster’s, DSmH and PCRS fusionfules

A B C/D ‘/CUD AUCUD BUCUD

0 0 0.40 0.60 0 0 0

0 0 0.20 0.30 0 0.40 0.10
0.114286  0.009091 0.20 0.30 0.376623 0 0




Open questions

SCR and Dempster’s combination rules commute because SCR is based on
Dempster’s rule and Dempster’s rule is associative, but SCR is a special
case of fusion, not a real conditioning dealing with absolute truth.

In general (but in Shafer’s model with Bayesian bba’s), BCRs do not
commute with fusion operators, i.e.

_ mcr(.|A) #mpc(.|A)
“ \

mor(.|A) = Cond(mi(.)) ® Cond(ma(.)) mpc(.|A) = Cond(my(.) ® ma(.))

Q1: How to compute m(.|A) from m.(.) and m.(.) ?

Q2: How to justify if m(.|A)=m«(.|A) or if m(.|A)=mc(.|A)?




