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Main theories dealing with uncertainty

Probability Theory (Blaise Pascal 1634 to Kolmogorov 1933): objective (# of 
favorable cases / # of possible cases) assuming uniform 
distribution,Frequencies of occurrence drawn from statistical data, or 
subjective (De Finetti’s betting approach interpreting P(.) as degree of belief)

Possibility Theory (Zadeh 1978) : based on fuzzy sets (1965) of mutual 
exclusive values. Zadeh interprets fuzzy sets as possibility distributions.

Belief Function Theory : introduced by Shafer in 1976 

Imprecise Probabilities (Walley 1991): deals with probability intervals



Why belief functions ?

Probabilities do not account for partial knowledge since it deals generally with 
information drawn from generic knowledge based either on population of items, laws of 
physics, common sense, ...

Probabilities capture only one aspect of uncertain information (the randomness, i.e. the 
variability through repeated measurements). Probability can’t distinguish between 
uncertainty due to variability and uncertainty due to the lack of knowledge.

Beliefs often are related with singular event and are not necessarily related with statistical 
data and generic knowledge.They are related with singular evidence. Belief functions are 
well adapted for dealing with partial knowledge contrariwise to probabilities.

Variability: Precisely observed random observations 

Incompletness/non specificity: missing/partial information



DSmT (Dezert-Smarandache Theory) started in end of 2001 as a 
natural extension to Dempster-Shafer Theory (DST) which :

1 - proposes a new mathematical framework for quantitative or 
qualitative information fusion

2 - incorporates any kinds of model (free, hybrid DSm models and/ 
or Shafer’s model) for taking into account any integrity constraints 
of the fusion problem

3 - combines uncertain, high conflicting and imprecise sources of 
evidence with new rules of combination and overcomes limitations 
of the Dempster’s rule

4 - is adapted to static or dynamic fusion applications represented 
in terms of belief functions based on the same general unified 
formalism

Introduction: What is DSmT in short ?
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Dempster-Shafer Theory (DST) - 1976

Shafer!s model :  Close world assumption + exclusivity (implicit refinement done)

Frame of discernment:  

4

La théorie de Dempster-Shafer (1976)

• Cadre de discernement : ensemble discret fini d’hypothèses
exclusives et exhaustives (closed-world approach)

Θ = {θi, i = 1, . . . , n}

• Power Set : Ensemble des parties de Θ

P(Θ) � 2Θ |P(Θ)| = 2|Θ|

• Exemple : Θ = {θ1, θ2, θ3}→ 8 élements dans P(Θ)

2Θ = {∅, θ1, θ2, θ3, θ1 ∪ θ2, θ1 ∪ θ3, θ2 ∪ θ3, θ1 ∪ θ2 ∪ θ3}

5

Le modèle de Shafer

Θ = {θ1, θ2, θ3}
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La théorie de Dempster-Shafer (1976)

• Cadre de discernement : ensemble discret fini d’hypothèses
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S1(A) corresponds to DSmC rule for k independent sources based onMf (Θ); S2(A)
represents the mass of all relatively and absolutely empty sets which is transferred to

the total or relative ignorances associated with non existential constraints (if any, like in

some dynamic problems); S3(A) transfers the sum of relatively empty sets directly onto
the canonical disjunctive form of non-empty sets. DSmH generalizes DSmC and is not

equivalent to Dempster’s rule. It works for any models (the free DSm model, Shafer’s

model or any other hybrid models) when manipulating precise generalized (or eventually

classical) basic belief functions.

c(X) = conjunctive normal form of X

Ex: If X = (A ∪B) ∩ [C ∩ (A ∪ C)]
then c(X) = (A ∪B) ∩ C

∅ � {∅,∅M} = {∅, set of propositions forced to be empty inM}

∅M = set of propositions forced to be empty inM

Θ = {θ1, θ2, θ3}⇒

6. Fusion of imprecise beliefs

Since it difficult to have sources/human experts providing precise beliefs, a more flexible

theory dealing with imprecise information is necessary. So we extended DSmT for deal-

ing with admissible imprecise generalized basic belief mI(.) defined as real subunitary
intervals of [0, 1], or even more general as real subunitary sets (not necessarily intervals).
These sets can be unions of (closed, open, or half-open/half-closed) intervals and/or

scalars all in [0, 1]. An imprecise belief assignment mI(.) over DΘ is said admissible if

and only if there exists for every X ∈ DΘ at least one real number m(X) ∈ mI(X)
such that

�
X∈DΘ m(X) = 1. The following simple operators on sets (addition � and

multiplication �) are necessary [8] for the fusion of imprecise beliefs:

X1 � X2 � {x | x = x1 + x2, x1 ∈ X1, x2 ∈ X2}

X1 � X2 � {x | x = x1 · x2, x1 ∈ X1, x2 ∈ X2}

From these operators, one generalizes DSmC from scalars to sets as follows [8] (Chap.

6): ∀A �= ∅ ∈ DΘ,

mI
Mf (Θ)(A) =

�

X1,X2,...,Xk∈DΘ

(X1∩X2∩...∩Xk)=A

�

i=1,...,k

mI
i (Xi) (8)

Example :  

Finite set of exhaustive and exclusive elements

We are concerned with the true value of some quantity or hypothesis θ taking
its possible values in Θ.

Operations Subsets Propositions

Intersection/conjunction A ∩B Pθ(A) ∧ Pθ(B)

Union/disjunction A ∪B Pθ(A) ∨ Pθ(B)

Inclusion/implication A ⊂ B Pθ(A) ⇒ Pθ(B)

Complementation/negation A = cΘ(B) Pθ(A) = ¬Pθ(B)

Working with subsets as propositions:

|2Θ| = 23 = 8

Pθ(A) � The true value of θ is in a subset A of Θ.
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Belief functions in DST

Basic belief assignment (bba)/mass 
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1 Introduction

[m1 ⊕ m2 ⊕ m3](.)
︸ ︷︷ ︸

Optimal Fusion

"= [m1 ⊕ m2] ⊕ m3](.)
︸ ︷︷ ︸

Suboptimal fusion

"= m1 ⊕ [m2 ⊕ m3](.)
︸ ︷︷ ︸

Suboptimal fusion

"= m2 ⊕ [m1 ⊕ m3](.)
︸ ︷︷ ︸

Suboptimal fusion

In the recent theory of plausible and paradoxical reasoning (DSmT) developed by Dezert and Smarandache [?, ?], a

new generalized pignistic transformation has been proposed to construct a subjective probability measure P{.} from any
generalized basic belief assignment m(.) defined over the hyper-power set DΘ. In reference [?], a simple example of

such generalized pignistic transformation has been presented only for the case n = |Θ| = 2. In this paper, we present the
complete derivation of this pignistic transformation for the case n = |Θ| = 3 and we generalize the result. Before intro-
ducing the GPT, it is however necessary to briefly present the DSmT [?, ?, ?, ?, ?, ?] with respect to the Dempster-Shafer

Theory (DST) [?].

[m1 ⊕ m2 ⊕ m3](.)
︸ ︷︷ ︸

Optimal Fusion

"= [(m1 ⊕ m2) ⊕ m3](.)
︸ ︷︷ ︸

Suboptimal fusion

"= [m1 ⊕ (m2 ⊕ m3)](.)
︸ ︷︷ ︸

Suboptimal fusion

"= [m2 ⊕ (m1 ⊕ m3)](.)
︸ ︷︷ ︸

Suboptimal fusion

m(.) : 2Θ → [0, 1]

m(∅) = 0 and
∑

A∈2Θ

m(A) = 1

Bel(A) =
∑

B∈2Θ,B⊆A

m(B)

Pl(A) =
∑

B∈2Θ,B∩A $=∅

m(B) = 1 − Bel(Ā)

m(∅) = 0

∗Partial support by the COST action 274 TARSKI acknowledged.
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Belief of A Plausibility of A

Θ = {θ1, θ2, θ3} ⇒

In general, 0 ≤ Bel(A) ≤ Pl(A) ≤ 1

∀A $= Θ, mv(A) = 0 andmv(Θ) = 1
The development of the DSmT [8] arises from the necessity to overcome the inher-

ent limitations of the DST [7] which are closely related with the acceptance of Shafer’s

model (i.e. working with an homogeneous1 frame of discernment Θ defined as a finite

set of exhaustive and exclusive hypotheses θi, i = 1, . . . , n), the third middle excluded
principle, and Dempster’s rule for the combination of independent sources of evidence.

Limitations of DST are well reported in literature [17,13] and several alternative rules

to Dempster’s rule of combination can be found in [1,16,3,5,6,8]. DSmT provides a new

mathematical framework for information fusion which appears less restrictive and more

general than the basis and constraints of DST. The basis of DSmT is the refutation of the

principle of the third excluded middle and Shafer’s model in general, since for a wide

class of fusion problems the hypotheses one has to deal with, can have different intrinsic

nature and also appear only vague and imprecise in such a way that precise refinement

is just impossible to obtain in reality so that the exclusive elements θi cannot be prop-

erly identified and defined. Many problems involving fuzzy/vague continuous and rela-

tive2 concepts described in natural language with different semantic contents and hav-

ing no absolute interpretation enter in this category. We claim that in general, the nega-

tion/complement is not accessible, but DSmT offers the possibility to deal with negation

and Shafer’s model as well. When the model of the problem fits with these constraints

(negation follows from exclusivity constraints), we include them in the frame and then

one forms the hyper-power set in the normal way. Thus DSmT deals naturally with nega-

tions/complements when necessary. DSmT starts with the notion of free DSm model and

considers Θ only as a frame of exhaustive elements which can potentially overlap and

have different intrinsic semantic natures and which also can change with time with new

information and evidences received on the model itself. DSmT offers a flexibility on the

structure of the model one has to deal with. When the free DSm model holds, the con-

junctive consensus is performed. If the free model does not fit the reality because it is

known that some subsets of Θ contain elements truly exclusive but also possibly truly

non existing at all at a given time (in dynamic3 fusion), new fusion rules must be per-

formed to take into account these integrity constraints. The constraints can be explicitly

introduced into the free DSm model to fit it adequately with our current knowledge of

the reality; we actually construct a hybrid DSm model on which the combination will

be efficiently performed. Shafer’s model, which is the basis of DST, corresponds to a

very specific hybrid DSm (and homogeneous) model including all possible exclusivity

1Although the homogeneity of Θ is not explicitly mentioned in the DST, it is a strong implicit assumption

inherent to the Shafer’s model. When working with DST, one implicitly assumes that all finite and exclusive

elements of Θ have somehow the same semantic nature, otherwise the complement defined over the power-set

becomes just a non-sense. The Shafer’s model cannot deal directly with non-homogeneous elements (carrying

different semantics) of Θ. This property however is necessary in many applications where the information
given by the sources can’t be expressed with same semantic due to the potentially different intrinsic nature of

information carried by the sources/experts/sensors.
2The notion of relativity comes from the own interpretation of the elements of the frame Θ by each sources

of evidences involved in the fusion process.
3i.e. when the frame Θ and/or the modelM is changing with time.

∀A "= Θ,Bel(A) = 0
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information and evidences received on the model itself. DSmT offers a flexibility on the

structure of the model one has to deal with. When the free DSm model holds, the con-

junctive consensus is performed. If the free model does not fit the reality because it is

known that some subsets of Θ contain elements truly exclusive but also possibly truly

non existing at all at a given time (in dynamic3 fusion), new fusion rules must be per-

formed to take into account these integrity constraints. The constraints can be explicitly

introduced into the free DSm model to fit it adequately with our current knowledge of

the reality; we actually construct a hybrid DSm model on which the combination will

be efficiently performed. Shafer’s model, which is the basis of DST, corresponds to a

1Although the homogeneity of Θ is not explicitly mentioned in the DST, it is a strong implicit assumption

inherent to the Shafer’s model. When working with DST, one implicitly assumes that all finite and exclusive

elements of Θ have somehow the same semantic nature, otherwise the complement defined over the power-set

becomes just a non-sense. The Shafer’s model cannot deal directly with non-homogeneous elements (carrying

different semantics) of Θ. This property however is necessary in many applications where the information
given by the sources can’t be expressed with same semantic due to the potentially different intrinsic nature of

information carried by the sources/experts/sensors.
2The notion of relativity comes from the own interpretation of the elements of the frame Θ by each sources

of evidences involved in the fusion process.
3i.e. when the frame Θ and/or the modelM is changing with time.

Bayesian belief assignment : focal elements are singletons of the power set

Core of m(.) = set of focal elementsA is a focal element iff m(A)>0

Total mass of information 
implying the occurence of A

Total mass of information consistent with A

m(.) = Bel(.) = Pl(.) = P (.)
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Dempster’s rule of combination

(DS)

Fusion of 2 independent equally reliable sources with bba!s m1 and m2

The Generalized Pignistic Transformation

Jean Dezert Florentin Smarandache Milan Daniel∗

ONERA Dpt.of Mathematics Institute of Computer Science

9 Av. de la Div. Leclerc Univ. of New Mexico Academy of Sciences of the Czech Republic

92320 Châtillon Gallup, NM 8730 Pod vodárenskou věžı́ 2, CZ - 182 07 Prague 8

France U.S.A. Czech Republic

Jean.Dezert@onera.fr smarand@unm.edu milan.daniel@cs.cas.cz

Abstract – This paper presents in detail the generalized pignistic transformation (GPT) succinctly developed in the Dezert-Smarandache

Theory (DSmT) framework as a tool for decision process. The GPT allows to provide a subjective probability measure from any gen-

eralized basic belief assignment given by any corpus of evidence. We mainly focus our presentation on the 3D case and provide the

complete result obtained by the GPT and its validation drawn from the probability theory.

Keywords: Dezert-Smarandache Theory (DSmT), Dempster-Shafer Theory,pignistic transformation, subjective probability, pignistic

probability, plausible and paradoxical reasoning, DSm cardinality, hybrid model, data fusion, decision-making, conflict, processing.

1 Introduction

[m1 ⊕ m2 ⊕ m3](.)
︸ ︷︷ ︸

Optimal Fusion

"= [m1 ⊕ m2] ⊕ m3](.)
︸ ︷︷ ︸

Suboptimal fusion

"= m1 ⊕ [m2 ⊕ m3](.)
︸ ︷︷ ︸

Suboptimal fusion

"= m2 ⊕ [m1 ⊕ m3](.)
︸ ︷︷ ︸

Suboptimal fusion

In the recent theory of plausible and paradoxical reasoning (DSmT) developed by Dezert and Smarandache [2, 10],

a new generalized pignistic transformation has been proposed to construct a subjective probability measure P{.} from
any generalized basic belief assignment m(.) defined over the hyper-power set DΘ. In reference [2], a simple example

of such generalized pignistic transformation has been presented only for the case n = |Θ| = 2. In this paper, we present
the complete derivation of this pignistic transformation for the case n = |Θ| = 3 and we generalize the result. Before
introducing the GPT, it is however necessary to briefly present the DSmT [1, 2, 3, 4, 5, 10] with respect to the Dempster-

Shafer Theory (DST) [9].

[m1 ⊕ m2 ⊕ m3](.)
︸ ︷︷ ︸

Optimal Fusion

"= [(m1 ⊕ m2) ⊕ m3](.)
︸ ︷︷ ︸

Suboptimal fusion

"= [m1 ⊕ (m2 ⊕ m3)](.)
︸ ︷︷ ︸

Suboptimal fusion

"= [m2 ⊕ (m1 ⊕ m3)](.)
︸ ︷︷ ︸

Suboptimal fusion

m(.) : 2Θ → [0, 1]

m(∅) = 0 and
∑

A∈2Θ

m(A) = 1

Bel(A) =
∑

B∈2Θ,B⊆A

m(B)

Pl(A) =
∑

B∈2Θ,B∩A $=∅

m(B) = 1 − Bel(Ā)

m(∅) = 0 and ∀A "= ∅, m(A) =
1

1 − k12

∑

X,Y ∈2Θ

X∩Y =A

m1(X)m2(Y ) ∀(A "= ∅) ∈ 2Θ

k12 !
∑

X,Y ∈2Θ

X∩Y =∅

m1(X)m2(Y )

∗Partial support by the COST action 274 TARSKI acknowledged.

Degre of (total) conflict

Θ = {θ1, θ2, θ3} ⇒

In general, 0 ≤ Bel(A) ≤ Pl(A) ≤ 1

∀A $= Θ, mv(A) = 0 andmv(Θ) = 1

(m(.) ≡ P (.))

k12 =
∑

X,Y ∈2Θ

X∩Y =∅

m1(X)m2(Y )

The development of the DSmT [8] arises from the necessity to overcome the inher-

ent limitations of the DST [7] which are closely related with the acceptance of Shafer’s

model (i.e. working with an homogeneous1 frame of discernment Θ defined as a finite

set of exhaustive and exclusive hypotheses θi, i = 1, . . . , n), the third middle excluded
principle, and Dempster’s rule for the combination of independent sources of evidence.

Limitations of DST are well reported in literature [17,13] and several alternative rules

to Dempster’s rule of combination can be found in [1,16,3,5,6,8]. DSmT provides a new

mathematical framework for information fusion which appears less restrictive and more

general than the basis and constraints of DST. The basis of DSmT is the refutation of the

principle of the third excluded middle and Shafer’s model in general, since for a wide

class of fusion problems the hypotheses one has to deal with, can have different intrinsic

nature and also appear only vague and imprecise in such a way that precise refinement

is just impossible to obtain in reality so that the exclusive elements θi cannot be prop-

erly identified and defined. Many problems involving fuzzy/vague continuous and rela-

tive2 concepts described in natural language with different semantic contents and hav-

ing no absolute interpretation enter in this category. We claim that in general, the nega-

tion/complement is not accessible, but DSmT offers the possibility to deal with negation

and Shafer’s model as well. When the model of the problem fits with these constraints

(negation follows from exclusivity constraints), we include them in the frame and then

one forms the hyper-power set in the normal way. Thus DSmT deals naturally with nega-

tions/complements when necessary. DSmT starts with the notion of free DSm model and

considers Θ only as a frame of exhaustive elements which can potentially overlap and

have different intrinsic semantic natures and which also can change with time with new

information and evidences received on the model itself. DSmT offers a flexibility on the

structure of the model one has to deal with. When the free DSm model holds, the con-

1Although the homogeneity of Θ is not explicitly mentioned in the DST, it is a strong implicit assumption

inherent to the Shafer’s model. When working with DST, one implicitly assumes that all finite and exclusive

elements of Θ have somehow the same semantic nature, otherwise the complement defined over the power-set

becomes just a non-sense. The Shafer’s model cannot deal directly with non-homogeneous elements (carrying

different semantics) of Θ. This property however is necessary in many applications where the information
given by the sources can’t be expressed with same semantic due to the potentially different intrinsic nature of

information carried by the sources/experts/sensors.
2The notion of relativity comes from the own interpretation of the elements of the frame Θ by each sources

of evidences involved in the fusion process.

Example: Θ = {θ1, θ2}
m1(θ1) = 0.1 m1(θ2) = 0.2 m1(θ1 ∪ θ2) = 0.7

m2(θ1) = 0.3 m2(θ2) = 0.2 m2(θ1 ∪ θ2) = 0.5
k12 = m1(θ1)m2(θ2) + m1(θ2)m2(θ1)

k12 = 0.1 · 0.2 + 0.2 · 0.3 = 0.02 + 0.06 = 0.08

m(θ1 ∪ θ2) = m1(θ1 ∪ θ2)m2(θ1 ∪ θ2)/(1− k12) = 0.35/0.92 ≈ 0.380
m(θ2) = [m1(θ2)m2(θ2)+m1(θ2)m2(θ1∪θ2)+m2(θ2)m1(θ1∪θ2)]/(1−k12) = 0.28/0.92 ≈ 0.304

m(θ1) = [m1(θ1)m2(θ1)+m1(θ1)m2(θ1∪θ2)+m2(θ1)m1(θ1∪θ2)]/(1−k12) = 0.29/0.92 ≈ 0.316
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Advantages and drawbacks of DS rule

Advantages

Θ = {θ1, θ2, θ3} ⇒

In general, 0 ≤ Bel(A) ≤ Pl(A) ≤ 1

∀A $= Θ, mv(A) = 0 andmv(Θ) = 1

(m(.) ≡ P (.))

k12 =
∑

X,Y ∈2Θ

X∩Y =∅

m1(X)m2(Y )

• Commutativity and associativity

• Extension for N > 2 sources
• Neutrality of VBA

• Coherence with Bayes’ rule whenm(.) ≡ P (.)

The development of the DSmT [?] arises from the necessity to overcome the inher-

ent limitations of the DST [?] which are closely related with the acceptance of Shafer’s

model (i.e. working with an homogeneous1 frame of discernment Θ defined as a finite

set of exhaustive and exclusive hypotheses θi, i = 1, . . . , n), the third middle excluded
principle, and Dempster’s rule for the combination of independent sources of evidence.

Limitations of DST are well reported in literature [?,?] and several alternative rules to

Dempster’s rule of combination can be found in [?,?,?,?,?,?]. DSmT provides a new

mathematical framework for information fusion which appears less restrictive and more

general than the basis and constraints of DST. The basis of DSmT is the refutation of the

principle of the third excluded middle and Shafer’s model in general, since for a wide

class of fusion problems the hypotheses one has to deal with, can have different intrinsic

nature and also appear only vague and imprecise in such a way that precise refinement

is just impossible to obtain in reality so that the exclusive elements θi cannot be prop-

erly identified and defined. Many problems involving fuzzy/vague continuous and rela-

tive2 concepts described in natural language with different semantic contents and hav-

ing no absolute interpretation enter in this category. We claim that in general, the nega-

tion/complement is not accessible, but DSmT offers the possibility to deal with negation

and Shafer’s model as well. When the model of the problem fits with these constraints

(negation follows from exclusivity constraints), we include them in the frame and then

one forms the hyper-power set in the normal way. Thus DSmT deals naturally with nega-

tions/complements when necessary. DSmT starts with the notion of free DSm model and

1Although the homogeneity of Θ is not explicitly mentioned in the DST, it is a strong implicit assumption

inherent to the Shafer’s model. When working with DST, one implicitly assumes that all finite and exclusive

elements of Θ have somehow the same semantic nature, otherwise the complement defined over the power-set

becomes just a non-sense. The Shafer’s model cannot deal directly with non-homogeneous elements (carrying

different semantics) of Θ. This property however is necessary in many applications where the information
given by the sources can’t be expressed with same semantic due to the potentially different intrinsic nature of

information carried by the sources/experts/sensors.
2The notion of relativity comes from the own interpretation of the elements of the frame Θ by each sources

of evidences involved in the fusion process.

Several origins of the problem

1 Different reliability of the sources (statistical criteria),  but sources can be equally reliable.

2 Limited knowledge or experience of sources/experts. Sources have their own interpretation of 

elements of the frame - subjectivity and biasness is possible.

3 The final interest of experts can also be different when they report their assessment on a given problem ...

Drawbacks

[Zadeh 1979, Yager 1983, Dubois&Prade 1986, Pearl 1988, 
Voorbraak 1991, Walley 1996, Fixsen&Mahler 1997]

Abstract - In this paper we consider and analyze the behavior of two temporal/sequential attribute data fusion rules real-time
Generalized Data Association - Multi Target Tracking systems (GDA-MTT) and provides an important result on the behavior of
PCR5 with respect to Dempster’s rule. The MatLab source code is also provided in the paper.

Keywords: Target Type Tracking, Dezert-Smarandache Theory, DSmT, PCR5 rule, Demspter’s rule.

1 Introduction
• (DS) is not defined when conflict is 1

• (DS) provides questionable results when k12 increases

• No way to trust (DS) result beforehand

• Justification/necessity of working with Shafer’s model ?
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Infinite classes of counter-examples for (DS)

If every column contains 
at least one zero, (DS) is 
not defined

The DSmT approach for information

fusion and some open problems

Jean Dezert a,1 and Florentin Smarandache b

aONERA, 92320 Châtillon, France
bDept. of Math., Univ. of New Mexico, USA

Abstract. This paper introduces the recent theory of plausible and paradoxical

reasoning, known as DSmT (Dezert-Smarandache Theory) in the literature, which

deals with imprecise, uncertain and potentially highly conflicting sources of infor-

mation. Recent publications have shown the interest and the potential ability of

DSmT to solve fusion problems where Dempster-Shafer Theory (DST) provides

counter-intuitive results, especially when conflict between sources becomes high

and information becomes vague and imprecise. This short paper presents the foun-

dations of DSmT, its main rules of combination including the most recent ones and

introduce briefly some open challenging problems in fusion.

Keywords. Information fusion, Dezert-Smarandache theory, DSmT, Plausible

reasoning

1. Introduction

Θ = {θ1, . . . , θn}, n ≥ 2

θ1 θ2 . . . θn

Source 1 ms1(θ1) ms1(θ2) . . . ms1(θn)
Source 2 ms2(θ1) ms2(θ2) . . . ms2(θn)
...

...
...

...
...

Source k msk(θ1) msk(θ2) . . . msk(θn)

CM(.)

CM(X)

c(X) = conjunctive normal form of X

Ex: If X = (A ∪B) ∩ [C ∩ (A ∪ C)]
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1. Introduction

Θ = {θ1, . . . , θn}, n ≥ 2

θ1 θ2 . . . θn

Source 1 ms1(θ1) ms1(θ2) . . . ms1(θn)
Source 2 ms2(θ1) ms2(θ2) . . . ms2(θn)
...

...
...

...
...

Source k msk(θ1) msk(θ2) . . . msk(θn)

∀i = 1, . . . , n m(θi) = [ms1 ⊕ms2 ⊕ . . .⊕msn ](θi) =
0
0

CM(.)

CM(X)
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1. Introduction

Θ = {θ1, . . . , θn}, n ≥ 2

θ1 θ2 . . . θn

Source 1 ms1(θ1) ms1(θ2) . . . ms1(θn)
Source 2 ms2(θ1) ms2(θ2) . . . ms2(θn)
...

...
...

...
...

Source k msk(θ1) msk(θ2) . . . msk(θn)

CM(.)

CM(X)

c(X) = conjunctive normal form of X

Ex: If X = (A ∪B) ∩ [C ∩ (A ∪ C)]
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The DSmT approach for information

fusion and some open problems

Jean Dezert a,1 and Florentin Smarandache b

aONERA, 92320 Châtillon, France
bDept. of Math., Univ. of New Mexico, USA

Abstract. This paper introduces the recent theory of plausible and paradoxical

reasoning, known as DSmT (Dezert-Smarandache Theory) in the literature, which

deals with imprecise, uncertain and potentially highly conflicting sources of infor-

mation. Recent publications have shown the interest and the potential ability of

DSmT to solve fusion problems where Dempster-Shafer Theory (DST) provides

counter-intuitive results, especially when conflict between sources becomes high

and information becomes vague and imprecise. This short paper presents the foun-

dations of DSmT, its main rules of combination including the most recent ones and

introduce briefly some open challenging problems in fusion.

Keywords. Information fusion, Dezert-Smarandache theory, DSmT, Plausible

reasoning

1. Introduction

Θ = {θ1, . . . , θn}, n ≥ 2

θ1 θ2 . . . θn

Source 1 ms1(θ1) ms1(θ2) . . . ms1(θn)
Source 2 ms2(θ1) ms2(θ2) . . . ms2(θn)
...

...
...

...
...

Source k msk(θ1) msk(θ2) . . . msk(θn)

CM(.)

CM(X)

c(X) = conjunctive normal form of X

Ex: If X = (A ∪B) ∩ [C ∩ (A ∪ C)]
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1. Introduction

Θ = {θ1, . . . , θn}, n ≥ 2

θ1 θ2 . . . θn

Source 1 ms1(θ1) ms1(θ2) . . . ms1(θn)
Source 2 ms2(θ1) ms2(θ2) . . . ms2(θn)
...

...
...

...
...

Source k msk(θ1) msk(θ2) . . . msk(θn)

∀i = 1, . . . , n m(θi) = [ms1 ⊕ms2 ⊕ . . .⊕msn ](θi) =
0
0

Zadeh’s class

θ1 θ2 . . . θi . . . θn

Source 1 ms1(θ1) ms1(θ2) . . . �1,i . . . ms1(θn)
Source 2 ms2(θ1) ms2(θ2) . . . �2,i . . . ms2(θn)
...

...
...

...
...

...
...

Source k msk(θ1) msk(θ2) . . . �k,i . . . msk(θn)

1Email addresses: jean.dezert@onera.fr, smarand@unm.edu.m(θi) = [ms1 ⊕ms2 ⊕ . . .⊕msn ](θi) = 1

CM(.)

CM(X)

c(X) = conjunctive normal form of X

Ex: If X = (A ∪B) ∩ [C ∩ (A ∪ C)]
then c(X) = (A ∪B) ∩ C

∅ � {∅,∅M} = {∅, set of propositions forced to be empty inM}

∅M = set of propositions forced to be empty inM

Θ = {θ1, θ2, θ3}⇒

In general, 0 ≤ Bel(A) ≤ Pl(A) ≤ 1

∀A �= Θ,mv(A) = 0 andmv(Θ) = 1

(m(.) ≡ P (.))

k12 =
�

X,Y ∈2Θ

X∩Y =∅

m1(X)m2(Y )

✫✪
✬✩

✫✪
✬✩

✫✪
✬✩❅❘

θ1
�✠

θ2

❅■θ3

12
123

3
13 23

21

1. If there exists a column of small 
positive masses for say for element i

2. If all other columns ! i include at 
least a zero

(DS) provides a counter-intuitive 
result because it is independent of 
values of column i and can reflect the 
minority opinion

Class #2 : Generalization of 
Zadeh’s example
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Infinite classes of counter-examples for (DS)
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Abstract – In this paper we propose five versions of a Proportional Conflict Redistribution rule (PCR) for information fusion together

with several examples. From PCR1 to PCR2, PCR3, PCR4, PCR5 one increases the complexity of the rules and also the exactitude of

the redistribution of conflicting masses. PCR4 is an improvement of minC and Dempster’s rules. PCR1 restricted from the hyper-power

set to the power set and without degenerate cases gives the same result as the Weighted Average Operator (WAO) proposed recentlty

by Josang, Daniel and Vannoorenberghe but does not satisfy the neutrality property of vacuous belief assignment. that’s why improved

PCR rules are proposed in this paper. The PCR rules redistribute the conflicting mass, after the conjunctive rule has been applied,

proportionally with some functions depending on the masses assigned to their corresponding columns in the mass matrix. There are

infinitely many ways these functions (weighting factors) can be chosen depending on the complexity one wants to deal with in specific

applications and fusion systems. Any fusion combination rule is at some degree ad-hoc.

Keywords: Conjunctive rule, Partial and Total conflicts, WO, WAO, Dempsters rule, Yagers rule, TBM, Dubois-Prades rule, Dezert-

Smarandache classic and hybrid rules, PCR rules.

ACM Classification: I.2.4.

1 Introduction

Let’s considerΘ = {θ1, θ2, θ3, θ4}, two independent experts, and the mass matrix:

θ1 θ2 θ3 θ4 θ3 ∪ θ4

m1(.) 0.99 0 0 0 0.01
m2(.) 0 0.98 0 0 0.02

If one applies Dempster’s rule, one gets

m(θ3 ∪ θ4) =
(0.01 · 0.02)

(0 + 0 + 0 + 0 + 0.01 · 0.02)
= 1

(total ignorance), which doesn’t bring any information to the fusion. This example looks similar to Zadeh’s example, but

is different because it is referring to uncertainty (not to contradictory) result. Using the DSm classical rule: m(θ1 ∩ θ2) =
0.9702,m(θ1 ∩ (θ3 ∪ θ4)) = 0.0198,m(θ2 ∩ (θ3 ∪ θ4)) = 0.0098,m(θ3 ∪ θ4) = 0.0002. Suppose now one finds out that
all intersections are empty (i.e. one adopts Shafer’s model). Using the hybrid DSm rule one gets: mh(θ1 ∪ θ2) = 0.9702,
mh(θ1 ∪ θ3 ∪ θ4) = 0.0198,mh(θ2 ∪ θ3 ∪ θ4) = 0.0098,mh(θ3 ∪ θ4) = 0.0002.

• Règle non définie quand k12 = 1 (sources en totale contradiction)

• Résultats contre-intuitifs si le conflit k12 tend vers 1

• mauvaise fiabilité des sources

• les sources fournissent leur avis uniquement par rapport à leur propre expérience et avec leur propre interprétation
(subjectivité) des hypothèses.

m1(θ1) = 1 − e1 m1(θ2) = 0 m1(θ3) = e1

m2(θ1) = 0 m1(θ2) = 1 − e2 m2(θ3) = e2

Θ = {θ1 = (M)éningite, θ2 = (C)ontusion, θ3 = (T)umeur}
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1. Introduction

Θ = {θ1, . . . , θn}, n ≥ 2

θ1 θ2 . . . θn

Source 1 ms1(θ1) ms1(θ2) . . . ms1(θn)
Source 2 ms2(θ1) ms2(θ2) . . . ms2(θn)
...

...
...

...
...

Source k msk(θ1) msk(θ2) . . . msk(θn)

CM(.)

CM(X)

c(X) = conjunctive normal form of X

Ex: If X = (A ∪B) ∩ [C ∩ (A ∪ C)]
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1. Introduction

θ1 . . . θn u1 . . . up

Source 1 ms1(θ1) . . . ms1(θn) ms1(u1) . . . ms1(up)
Source 2 ms2(θ1) . . . ms2(θn) ms2(u1) . . . ms2(up)
...

...
...

...
...

...
...

Source k msk(θ1) . . . msk(θn) msk(u1) . . . msk(up)

Θ = {θ1, . . . , θn}, n ≥ 2

θ1 θ2 . . . θn

Source 1 ms1(θ1) ms1(θ2) . . . ms1(θn)
Source 2 ms2(θ1) ms2(θ2) . . . ms2(θn)
...

...
...

...
...

Source k msk(θ1) msk(θ2) . . . msk(θn)

∀i = 1, . . . , n m(θi) = [ms1 ⊕ms2 ⊕ . . .⊕msn ](θi) =
0
0

Zadeh’s class
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1. Introduction

θ1 . . . θn u1 . . . up

Source 1 ms1(θ1) . . . ms1(θn) ms1(u1) . . . ms1(up)
Source 2 ms2(θ1) . . . ms2(θn) ms2(u1) . . . ms2(up)
...

...
...

...
...

...
...

Source k msk(θ1) . . . msk(θn) msk(u1) . . . msk(up)

um,m = 1, . . . , p are disjunctions of elements θi, (i ∈ {1, . . . , n} of the frame Θ.

Θ = {θ1, . . . , θn}, n ≥ 2

θ1 θ2 . . . θn

Source 1 ms1(θ1) ms1(θ2) . . . ms1(θn)
Source 2 ms2(θ1) ms2(θ2) . . . ms2(θn)
...

...
...

...
...

Source k msk(θ1) msk(θ2) . . . msk(θn)

∀i = 1, . . . , n m(θi) = [ms1 ⊕ms2 ⊕ . . .⊕msn ](θi) =
0
0
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1. If there is at least one zero in every column θ1, θ2, ... θn

2. If there exists one column ui which contains non zero
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1. Introduction

θ1 . . . θn u1 . . . up

Source 1 ms1(θ1) . . . ms1(θn) ms1(u1) . . . ms1(up)
Source 2 ms2(θ1) . . . ms2(θn) ms2(u1) . . . ms2(up)
...

...
...

...
...

...
...

Source k msk(θ1) . . . msk(θn) msk(u1) . . . msk(up)

um,m = 1, . . . , p are disjunctions of elements θi, (i ∈ {1, . . . , n} of the frame Θ.

m(ui) = [ms1 ⊕ms2 ⊕ . . .⊕msn ](ui) = 1

Θ = {θ1, . . . , θn}, n ≥ 2

θ1 θ2 . . . θn

Source 1 ms1(θ1) ms1(θ2) . . . ms1(θn)
Source 2 ms2(θ1) ms2(θ2) . . . ms2(θn)
...

...
...

...
...

Source k msk(θ1) msk(θ2) . . . msk(θn)
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(DS) result

Then independent of the positive 
values involved in ui !!!

Class #3 : Smarandache (extension of Zadeh’s class to non Bayesian case)

Example:
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How to circumvent troubles with DS rule ?

How to prevent troubles in fusion beforehand ?Main question:

Classical solutions

Switch to a new paragdim to deal with the fusion of vague, uncertain, imprecise, highly conflicting 
quantitative and qualitative information fusion for static or dynamic problematics.

Proposal (detailed in part 2)

Apply some heuristic/ad hoc thresholding techniques on the level of the conflict 
to accept (or reject) the fusion result. How to choose the threshold ?

Apply discounting techniques on sources. How to be sure that no problem will 
occur with DS rule after discounting ? How to discount sources when no 
statistical data are available ?

Mix the two previous «solutions». How and justification ?

Use other alternative rules. Which one ? Why ?



Main alternatives to DS rule

Assumption:  Shafer!s model

m∪(∅) = 0 and ∀A #= ∅, m∪(A) =
∑

X,Y ∈2Θ

X∪Y =A

m1(X)m2(Y )

mY (∅) = 0 and ∀A #= ∅, A #= ΘmY (A) =
∑

X,Y ∈2Θ

X∩Y =A

m1(X)m2(Y ) and mY (Θ) = m1(Θ)m2(Θ)+
∑

X,Y ∈2Θ

X∩Y =∅

m1(X)m2(Y )



















mY (∅) = 0

mY (A) =
∑

X,Y ∈2Θ

X∩Y =A

m1(X)m2(Y ) ∀A ∈ 2Θ, A #= ∅,A #= Θ

mY (Θ) = m1(Θ)m2(Θ) +
∑

X,Y ∈2Θ

X∩Y =∅

m1(X)m2(Y ) when A = Θ

2 Foundations of the DST and DSmT

2.1 The DST and the Shafer’s model

The Shafer’s model, denoted hereM0(Θ), on which is based the Dempster-Shafer Theory, assumes an exhaustive and
exclusive frame of discernment of the problem under consideration Θ = {θ1, θ2, . . . , θn}. The model requires actually
that an ultimate refinement of the problem is possible so that θi can always be well precisely defined/identified in such

a way that we are sure that they are exclusive and exhaustive. From this model, a basic belief assignment (bba) mi(.) :
2Θ → [0, 1] such thatmi(∅) = 0 and

∑

A∈2Θ mi(A) = 1 associated to a given body of evidence Bi is defined, where 2Θ

is the power set ofΘ, i.e. the set of all subsets ofΘ. Within DST, the fusion (combination) of two independent sources of
evidence B1 and B2 is obtained through the Dempster’s rule of combination [9] : [m1 ⊕ m2](∅) = 0 and ∀B #= ∅ ∈ 2Θ:

[m1 ⊕ m2](B) =

∑

X∩Y =B m1(X)m2(Y )

1 −
∑

X∩Y =∅ m1(X)m2(Y )
(1)

The notation
∑

X∩Y =B represents the sum over all X, Y ∈ 2Θ such that X ∩ Y = B. The Dempster’s sum
m(.) ! [m1⊕m2](.) is considered as a basic belief assignment if and only if the denominator in equation (1) is non-zero.
The term k12 !

∑

X∩Y =∅ m1(X)m2(Y ) is called degree of conflict between the sources B1 and B2. When k12 = 1, the
Dempster’s summ(.) does not exist and the bodies of evidences B1 and B2 are said to be in full contradiction. This rule

of combination can be extended easily for the combination of n > 2 independent sources of evidence. The DST, although
very attractive because of its solid mathematical ground, presents however several weaknesses and limitations because of

the Shafer’s model itself (which does not necessary hold in some fusion problems involving continuous and ill-defined

concepts), the justification of the Dempster’s rule of combination frequently subject to criticisms, but mainly because

of counter-intuitive results given by the Dempster’s rule when the conflict between sources becomes important. Several

classes of infinite counter-examples to the Dempster’s rule can be found in [13]. To overcome these limitations, Jean Dez-

ert and Florentin Smarandache propose a new mathematical theory based on other models (free or hybrid DSm models)

with new reliable rules of combinations able to deal with any kind of sources ( imprecises, uncertain and paradoxist, i.e.

highly conflicting). This is presented in next subsections.

2.2 The DSmT based on the free DSmModel

The foundations of the DSmT (Dezert-Smarandache Theory) is to abandon the Shafer’s model (i.e. the exclusivity con-

straint between θi of Θ) just because for some fusion problems it is impossible to define/characterize the problem in

terms of well-defined/precise and exclusive elements. The free DSm model, denotedMf (Θ), on which is based DSmT
allows us to deal with imprecise/vague notions and concepts between elements of the frame of discernmentΘ. The DSmT
includes the possibility to deal with evidences arising from different sources of information which don’t have access to

absolute interpretation of the elements Θ under consideration.

2.2.1 Notion of hyper-power set DΘ

From this very simple idea and from any frame Θ, a new space DΘ = {α0, . . . , αd(n)−1} (free Boolean pre-algebra
generated by Θ and operators ∩ and ∪), called hyper-power set is defined [5] as follows:

1. ∅, θ1, . . . , θn ∈ DΘ

2. ∀A ∈ DΘ, B ∈ DΘ, (A ∪ B) ∈ DΘ, (A ∩ B) ∈ DΘ

Yager!s rule: [Yager 1983] (Y)

Assumption:  Open-world 

Smets! rule: [Smets 1994] It is the non-normalized version of Dempster’s rule (keep 
conflicting mass on empty set at credal level when combining).

Dubois & Prade!s (hybrid) rule:

m∪(∅) = 0 and ∀A #= ∅, m∪(A) =
∑

X,Y ∈2Θ

X∪Y =A

m1(X)m2(Y )

mY (∅) = 0 and ∀A #= ∅, A #= ΘmY (A) =
∑

X,Y ∈2Θ

X∩Y =A

m1(X)m2(Y ) and mY (Θ) = m1(Θ)m2(Θ)+
∑

X,Y ∈2Θ

X∩Y =∅

m1(X)m2(Y )




















mY (∅) = 0

mY (A) =
∑

X,Y ∈2Θ

X∩Y =A

m1(X)m2(Y ) ∀A ∈ 2Θ, A #= ∅,A #= Θ

mY (Θ) = m1(Θ)m2(Θ) +
∑

X,Y ∈2Θ

X∩Y =∅

m1(X)m2(Y ) when A = Θ













mDP (∅) = 0

mDP (A) =
∑

X,Y ∈2Θ

X∩Y =A
X∩Y %=∅

m1(X)m2(Y ) +
∑

X,Y ∈2Θ

X∪Y =A
X∩Y =∅

m1(X)m2(Y ) ∀A #= ∅

2 Foundations of the DST and DSmT

2.1 The DST and the Shafer’s model

The Shafer’s model, denoted hereM0(Θ), on which is based the Dempster-Shafer Theory, assumes an exhaustive and
exclusive frame of discernment of the problem under consideration Θ = {θ1, θ2, . . . , θn}. The model requires actually
that an ultimate refinement of the problem is possible so that θi can always be well precisely defined/identified in such

a way that we are sure that they are exclusive and exhaustive. From this model, a basic belief assignment (bba) mi(.) :
2Θ → [0, 1] such thatmi(∅) = 0 and

∑

A∈2Θ mi(A) = 1 associated to a given body of evidence Bi is defined, where 2Θ

is the power set ofΘ, i.e. the set of all subsets ofΘ. Within DST, the fusion (combination) of two independent sources of
evidence B1 and B2 is obtained through the Dempster’s rule of combination [9] : [m1 ⊕ m2](∅) = 0 and ∀B #= ∅ ∈ 2Θ:

[m1 ⊕ m2](B) =

∑

X∩Y =B m1(X)m2(Y )

1 −
∑

X∩Y =∅ m1(X)m2(Y )
(1)

The notation
∑

X∩Y =B represents the sum over all X, Y ∈ 2Θ such that X ∩ Y = B. The Dempster’s sum
m(.) ! [m1⊕m2](.) is considered as a basic belief assignment if and only if the denominator in equation (1) is non-zero.
The term k12 !

∑

X∩Y =∅ m1(X)m2(Y ) is called degree of conflict between the sources B1 and B2. When k12 = 1, the
Dempster’s summ(.) does not exist and the bodies of evidences B1 and B2 are said to be in full contradiction. This rule

of combination can be extended easily for the combination of n > 2 independent sources of evidence. The DST, although
very attractive because of its solid mathematical ground, presents however several weaknesses and limitations because of

the Shafer’s model itself (which does not necessary hold in some fusion problems involving continuous and ill-defined

concepts), the justification of the Dempster’s rule of combination frequently subject to criticisms, but mainly because

of counter-intuitive results given by the Dempster’s rule when the conflict between sources becomes important. Several

classes of infinite counter-examples to the Dempster’s rule can be found in [13]. To overcome these limitations, Jean Dez-

ert and Florentin Smarandache propose a new mathematical theory based on other models (free or hybrid DSm models)

with new reliable rules of combinations able to deal with any kind of sources ( imprecises, uncertain and paradoxist, i.e.

highly conflicting). This is presented in next subsections.

2.2 The DSmT based on the free DSmModel

The foundations of the DSmT (Dezert-Smarandache Theory) is to abandon the Shafer’s model (i.e. the exclusivity con-

straint between θi of Θ) just because for some fusion problems it is impossible to define/characterize the problem in

terms of well-defined/precise and exclusive elements. The free DSm model, denotedMf (Θ), on which is based DSmT
allows us to deal with imprecise/vague notions and concepts between elements of the frame of discernmentΘ. The DSmT
includes the possibility to deal with evidences arising from different sources of information which don’t have access to

absolute interpretation of the elements Θ under consideration.

[Dubois & Prade 1988] 

(DP)

Adaptive Combination Rule (ACR):   [Florea 2005] 

A weighted balance between conjunctive and disjunctive rules depending on the total conflict.

Disjunctive rule: mDisj(A) =
�

B,C∈2Θ

B∪C=A

m1(B)m2(C)

14
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Unified formulation of the rules

2.6 The disjunctive rule

The disjunctive rule of combination [2, 3, 14] is a commu-

tative and associative rule proposed by Dubois & Prade in

1986 and denoted here by the index ∪. m∪(.) is defined
∀X ∈ 2Θ bym∪(∅) = 0 and ∀(X %= ∅) ∈ 2Θ by

m∪(X) =
∑

X1,X2∈2Θ

X1∪X2=X

m1(X1)m2(X2)

The core of the belief function given by m∪ equals the

union of the cores of Bel1 and Bel2. This rule reflects the

disjunctive consensus and is usually preferred when one

knows that one of the sources B1 or B2 is mistaken but

without knowing which one among B1 and B2. Because

we assume equi-reliability of sources in this paper, this rule

will not be discussed in the sequel.

2.7 Unification of the rules (weighted operator)

In the framework of Dempster-Shafer Theory (DST), an

unified formula has been proposed recently by Lefèvre,

Colot and Vanoorenberghe in [7] to embed all the existing

(and potentially forthcoming) combination rules (including

the PCR1 combination rule presented in the next section)

involving conjunctive consensus in the same general mech-

anism of construction. We recently discovered that actu-

ally such unification formula had been already proposed 10

years before by Inagaki [5] as reported in [9]. This formula-

tion is known as the Weighted Operator (WO) in literature

[6], but since these two approaches have been developed

independently by Inagaki and Lefèvre et al., it seems more

judicious to denote it as ILCV formula instead to refer to its

authors when necessary (ILCV beeing the acronym stand-

ing for Inagaki-Lefèvre-Colot-Vannoorenberghe). The WO

(ILCV unified fusion rule) is based on two steps.

• Step 1: Computation of the total conflicting mass
based on the conjunctive consensus

k12 !
∑

X1,X2∈2Θ

X1∩X2=∅

m1(X1)m2(X2) (7)

• Step 2: This step consists in the reallocation (convex
combination) of the conflicting masses on (X %= ∅) ⊆
Θ with some given coefficients wm(X) ∈ [0, 1] such
that

∑

X⊆Θ wm(X) = 1 according to

m(∅) = wm(∅) · k12

and ∀(X %= ∅) ∈ 2Θ

m(X) = [
∑

X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2)] + wm(X)k12

(8)

This WO can be easily generalized for the combination

of N ≥ 2 independent and equi-reliable sources of infor-
mation as well for step 2 by substituting k12 by

k12...N !
∑

X1,...,XN∈2Θ

X1∩...∩XN=∅

∏

i=1,N

mi(Xi)

and for step 2 by deriving for all (X %= ∅) ∈ 2Θ the mass

m(X) by

m(X) = [
∑

X1,...,XN∈2Θ

X1∩...∩XN =X

∏

i=1,N

mi(Xi)] + wm(X)k12...N

The particular choice of the set of coefficientswm(.) pro-
vides a particular rule of combination. Actually this nice

and important general formulation shows there exists an in-

finite number of possible rules of combination. Some rules

are then justified or criticized with respect to the other ones

mainly on their ability to, or not to, preserve the associa-

tivity and commutativity properties of the combination. It

can be easily shown in [7] that such general procedure pro-

vides all existing rules involving conjunctive consensus de-

veloped in the literature based on Shafer’s model. We will

show later how the PCR1 rule of combination can also be

expressed as a special case of the WO.

2.8 The weighted average operator (WAO)

This operator has been recently proposed by Josang, Daniel

and Vannoorenberghe in [6]. It is a particular case of WO

where the weighting coefficients wm(A) are chosen as fol-
lows: wm(∅) = 0 and ∀A ∈ 2Θ \ {∅},

wm(A) =
1

N

N
∑

i=1

mi(A)

whereN is the number of independent sources to combine.

2.9 The hybrid DSm rule

The hybrid DSm rule of combination is a new powerful rule

of combination emerged from the recent theory of plausible

and paradoxist reasoning developed by Dezert and Smaran-

dache, known as DSmT in literature. The foundations of

DSmT are different from the DST foundations and DSmT

covers potentially a wider class of applications than DST

especially for dealing with highly conflicting static or dy-

namic fusion problems. Due to space limitations, we will

not go further into a detailed presentation of DSmT here.

A deep presentation of DSmT can be found in [11]. The

DSmT deals properly with the granularity of information

and intrinsic vague/fuzzy nature of elements of the frameΘ
to manipulate. The basic idea of DSmT is to define belief

assignments on hyper-power set DΘ (i.e. free Dedekind’s

lattice) and to integrate all integrity constraints (exclusiv-

ity and/or non-existential constraints) of the model, say

M(Θ), fitting with the problem into the rule of combina-

tion. This rule, known as hybrid DSm rule works for any

model (including the Shafer’s model) and for any level of

conflicting information. Mathematically, the hybrid DSm

3

2.6 The disjunctive rule

The disjunctive rule of combination [2, 3, 14] is a commu-

tative and associative rule proposed by Dubois & Prade in

1986 and denoted here by the index ∪. m∪(.) is defined
∀X ∈ 2Θ bym∪(∅) = 0 and ∀(X %= ∅) ∈ 2Θ by

m∪(X) =
∑

X1,X2∈2Θ

X1∪X2=X

m1(X1)m2(X2)

The core of the belief function given by m∪ equals the

union of the cores of Bel1 and Bel2. This rule reflects the

disjunctive consensus and is usually preferred when one

knows that one of the sources B1 or B2 is mistaken but

without knowing which one among B1 and B2. Because

we assume equi-reliability of sources in this paper, this rule

will not be discussed in the sequel.

2.7 Unification of the rules (weighted operator)

In the framework of Dempster-Shafer Theory (DST), an

unified formula has been proposed recently by Lefèvre,

Colot and Vanoorenberghe in [7] to embed all the existing

(and potentially forthcoming) combination rules (including

the PCR1 combination rule presented in the next section)

involving conjunctive consensus in the same general mech-

anism of construction. We recently discovered that actu-

ally such unification formula had been already proposed 10

years before by Inagaki [5] as reported in [9]. This formula-

tion is known as the Weighted Operator (WO) in literature

[6], but since these two approaches have been developed

independently by Inagaki and Lefèvre et al., it seems more

judicious to denote it as ILCV formula instead to refer to its

authors when necessary (ILCV beeing the acronym stand-

ing for Inagaki-Lefèvre-Colot-Vannoorenberghe). The WO

(ILCV unified fusion rule) is based on two steps.

• Step 1: Computation of the total conflicting mass
based on the conjunctive consensus

k12 !
∑

X1,X2∈2Θ

X1∩X2=∅

m1(X1)m2(X2) (7)

• Step 2: This step consists in the reallocation (convex
combination) of the conflicting masses on (X %= ∅) ⊆
Θ with some given coefficients wm(X) ∈ [0, 1] such
that

∑

X⊆Θ wm(X) = 1 according to

m(∅) = wm(∅) · k12

and ∀(X %= ∅) ∈ 2Θ

m(X) = [
∑

X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2)] + wm(X)k12

(8)

This WO can be easily generalized for the combination

of N ≥ 2 independent and equi-reliable sources of infor-
mation as well for step 2 by substituting k12 by

k12...N !
∑

X1,...,XN∈2Θ

X1∩...∩XN=∅

∏

i=1,N

mi(Xi)

and for step 2 by deriving for all (X %= ∅) ∈ 2Θ the mass

m(X) by

m(X) = [
∑

X1,...,XN∈2Θ

X1∩...∩XN =X

∏

i=1,N

mi(Xi)] + wm(X)k12...N

The particular choice of the set of coefficientswm(.) pro-
vides a particular rule of combination. Actually this nice

and important general formulation shows there exists an in-

finite number of possible rules of combination. Some rules

are then justified or criticized with respect to the other ones

mainly on their ability to, or not to, preserve the associa-

tivity and commutativity properties of the combination. It

can be easily shown in [7] that such general procedure pro-

vides all existing rules involving conjunctive consensus de-

veloped in the literature based on Shafer’s model. We will

show later how the PCR1 rule of combination can also be

expressed as a special case of the WO.

2.8 The weighted average operator (WAO)

This operator has been recently proposed by Josang, Daniel

and Vannoorenberghe in [6]. It is a particular case of WO

where the weighting coefficients wm(A) are chosen as fol-
lows: wm(∅) = 0 and ∀A ∈ 2Θ \ {∅},

wm(A) =
1

N

N
∑

i=1

mi(A)

whereN is the number of independent sources to combine.

2.9 The hybrid DSm rule

The hybrid DSm rule of combination is a new powerful rule

of combination emerged from the recent theory of plausible

and paradoxist reasoning developed by Dezert and Smaran-

dache, known as DSmT in literature. The foundations of

DSmT are different from the DST foundations and DSmT

covers potentially a wider class of applications than DST

especially for dealing with highly conflicting static or dy-

namic fusion problems. Due to space limitations, we will

not go further into a detailed presentation of DSmT here.

A deep presentation of DSmT can be found in [11]. The

DSmT deals properly with the granularity of information

and intrinsic vague/fuzzy nature of elements of the frameΘ
to manipulate. The basic idea of DSmT is to define belief

assignments on hyper-power set DΘ (i.e. free Dedekind’s

lattice) and to integrate all integrity constraints (exclusiv-

ity and/or non-existential constraints) of the model, say

M(Θ), fitting with the problem into the rule of combina-

tion. This rule, known as hybrid DSm rule works for any

model (including the Shafer’s model) and for any level of

conflicting information. Mathematically, the hybrid DSm

3
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1 Introduction
∑

X∈2Θ

wm(X) = 1 et wm(X) ∈ [0, 1]

1. ∅, θ1, . . . , θn ∈ DΘ.

2. Si A, B ∈ DΘ, alors A ∩ B ∈ DΘ et A ∪ B ∈ DΘ.

3. Aucun autre élément appartient à DΘ, sauf ceux obtenus par 1 ou 2.

d(n) = |DΘ| suit la séquence de Dedekind. DΘ est clos par ∩ et ∪ mais n’est pas une algèbre Booléenne.

[m1 ⊕ . . . ⊕ ms ⊕ mv](X) &= [m1 ⊕ . . . ⊕ ms](X)

m12(θ1) = 0.2 · 0.1 + 0.2 · 0.3 + 0.1 · 0.5 = 0.13

Let’s considerΘ = {θ1, θ2, θ3, θ4}, two independent experts, and the mass matrix:

θ1 θ2 θ3 θ4 θ3 ∪ θ4

m1(.) 0.99 0 0 0 0.01
m2(.) 0 0.98 0 0 0.02

If one applies Dempster’s rule, one gets

m(θ3 ∪ θ4) =
(0.01 · 0.02)

(0 + 0 + 0 + 0 + 0.01 · 0.02)
= 1

(total ignorance), which doesn’t bring any information to the fusion. This example looks similar to Zadeh’s example, but

is different because it is referring to uncertainty (not to contradictory) result. Using the DSm classical rule: m(θ1 ∩ θ2) =
0.9702,m(θ1 ∩ (θ3 ∪ θ4)) = 0.0198,m(θ2 ∩ (θ3 ∪ θ4)) = 0.0098,m(θ3 ∪ θ4) = 0.0002. Suppose now one finds out that
all intersections are empty (i.e. one adopts Shafer’s model). Using the hybrid DSm rule one gets: mh(θ1 ∪ θ2) = 0.9702,
mh(θ1 ∪ θ3 ∪ θ4) = 0.0198,mh(θ2 ∪ θ3 ∪ θ4) = 0.0098,mh(θ3 ∪ θ4) = 0.0002.

1

Step1 : Derivation of the TOTAL conflict

Step2 : Redistribution of the total conflict with given set of weights

(GWO)

General Weighted Operator (GWO)

There is an infinity of fusion rules !!!

The GWO formalism includes most of known fusion operators based on the 

conjunctive consensus (Dempster, Smets, Yager, etc) depending on the choice 

of weighting factors.



Reliability Discounting of sources

16

Discounting sources

This approach makes sense (and has to be used) if one has a good estimation of reliability 

factor of each source (based on statistical experiment AND ground truth).
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mation. Recent publications have shown the interest and the potential ability of

DSmT to solve fusion problems where Dempster-Shafer Theory (DST) provides
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introduce briefly some open challenging problems in fusion.

Keywords. Information fusion, Dezert-Smarandache theory, DSmT, Plausible

reasoning

1. Introduction

�
m(A)
m(Θ)

→
�

m�(A) = α · m(A) ∀A �= Θ
m�(Θ) = (1− α) + α · m(Θ)

θ1 . . . θn u1 . . . up

Source 1 ms1(θ1) . . . ms1(θn) ms1(u1) . . . ms1(up)
Source 2 ms2(θ1) . . . ms2(θn) ms2(u1) . . . ms2(up)
...

...
...

...
...

...
...

Source k msk(θ1) . . . msk(θn) msk(u1) . . . msk(up)

um,m = 1, . . . , p are disjunctions of elements θi, (i ∈ {1, . . . , n} of the frame Θ.

m(ui) = [ms1 ⊕ms2 ⊕ . . .⊕msn ](ui) = 1

Θ = {θ1, . . . , θn}, n ≥ 2
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Fundamentally, discounting do not solve the inherent problem of (DS); it!s just a mean to 
increase the mass of belief on the total ignorance.

Remark :

We are not sure of discounting factors (most of the time we don!t have these factors at 

all !!!). Discounting in such cases appears only as an ad-hoc engineering trick to prevent 

troubles with (DS) ...

A sophisticated method exists [Denoeux et al. 2005,2006] where discounting factor 
depends on subsets.

Discounting = conjunctive fusion on {" x {Rel, notRel}} and the marginalization on " [Haenni 2005]

Consider an unreliable source providing the bba m(.) and having a known reli-
ability factor α ∈ [0, 1].

Discounted bba

Reliability Discounting  ≠ Importance Discounting      (see end of Part 2)
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Fusion Spaces

Frame of the problem

Fusion spaces : Power sets, Hyper-power set (Dedekind!s lattice) and Super-power sets
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Abstract – This paper presents in detail the generalized pig-

nistic transformation (GPT) succinctly developed in the Dezert-

Smarandache Theory (DSmT) framework as a tool for decision

process. The GPT allows to provide a subjective probability mea-

sure from any generalized basic belief assignment given by any

corpus of evidence. We mainly focus our presentation on the 3D

case and provide the complete result obtained by the GPT and its

validation drawn from the probability theory.

Keywords: Dezert-Smarandache Theory (DSmT), Dempster-

Shafer Theory,pignistic transformation, subjective probability,
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cardinality, hybrid model, data fusion, decision-making, conflict,

processing.

1 Introduction

In the recent theory of plausible and paradoxical reason-

ing (DSmT) developed by Dezert and Smarandache [2, 10],

a new generalized pignistic transformation has been pro-

posed to construct a subjective probability measure P{.}
from any generalized basic belief assignmentm(.) defined
over the hyper-power set DΘ. In reference [2], a simple

example of such generalized pignistic transformation has

been presented only for the case n = |Θ| = 2. In this
paper, we present the complete derivation of this pignistic

transformation for the case n = |Θ| = 3 and we generalize
the result. Before introducing the GPT, it is however nec-

essary to briefly present the DSmT [1, 2, 3, 4, 5, 10] with

respect to the Dempster-Shafer Theory (DST) [9].

2 Foundations of the DST and DSmT

2.1 The DST and the Shafer’s model

The Shafer’s model, denoted here M0(Θ), on which is
based the Dempster-Shafer Theory, assumes an exhaustive

and exclusive frame of discernment of the problem under

consideration Θ = {θ1, θ2, . . . , θn}. The model requires
actually that an ultimate refinement of the problem is pos-

sible so that θi can always be well precisely defined/iden-

tified in such a way that we are sure that they are exclu-

sive and exhaustive. From this model, a basic belief as-

signment (bba) mi(.) : 2Θ → [0, 1] such that mi(∅) = 0

∗Partial support by the COST action 274 TARSKI acknowl-

edged.

and
∑

A∈2Θ mi(A) = 1 associated to a given body of evi-
dence Bi is defined, where 2Θ is the power set ofΘ, i.e. the
set of all subsets of Θ. Within DST, the fusion (combina-
tion) of two independent sources of evidence B1 and B2 is

obtained through the Dempster’s rule of combination [9] :

[m1 ⊕ m2](∅) = 0 and ∀B %= ∅ ∈ 2Θ:

[m1 ⊕ m2](B) =

∑

X∩Y =B m1(X)m2(Y )

1 −
∑

X∩Y =∅ m1(X)m2(Y )
(1)

The notation
∑

X∩Y =B represents the sum over all

X, Y ∈ 2Θ such that X ∩ Y = B. The Dempster’s sum
m(.) ! [m1⊕m2](.) is considered as a basic belief assign-
ment if and only if the denominator in equation (1) is non-

zero. The term k12 !
∑

X∩Y =∅ m1(X)m2(Y ) is called
degree of conflict between the sources B1 and B2. When

k12 = 1, the Dempster’s sum m(.) does not exist and the
bodies of evidences B1 and B2 are said to be in full con-

tradiction. This rule of combination can be extended eas-

ily for the combination of n > 2 independent sources of
evidence. The DST, although very attractive because of its

solid mathematical ground, presents however several weak-

nesses and limitations because of the Shafer’s model itself

(which does not necessary hold in some fusion problems in-

volving continuous and ill-defined concepts), the justifica-

tion of the Dempster’s rule of combination frequently sub-

ject to criticisms, but mainly because of counter-intuitive

results given by the Dempster’s rule when the conflict be-

tween sources becomes important. Several classes of infi-

nite counter-examples to the Dempster’s rule can be found

in [13]. To overcome these limitations, Jean Dezert and

Florentin Smarandache propose a new mathematical theory

based on other models (free or hybrid DSm models) with

new reliable rules of combinations able to deal with any

kind of sources ( imprecises, uncertain and paradoxist, i.e.

highly conflicting). This is presented in next subsections.

2.2 The DSmT based on the free DSmModel

The foundations of the DSmT (Dezert-Smarandache The-

ory) is to abandon the Shafer’s model (i.e. the exclusivity

constraint between θi of Θ) just because for some fusion
problems it is impossible to define/characterize the problem

in terms of well-defined/precise and exclusive elements.

The free DSm model, denotedMf (Θ), on which is based

Finite set of exhaustive elements 
(discrete/continuous/fuzzy/relative concepts)

|2Θref = SΘ � (Θ,∪,∩, c(.))| > |DΘ = (Θ,∪,∩)| > |2Θ = (Θ,∪)|

GΘ represents the generic notation either for 2Θ, SΘ or DΘ including eventually integrity constraints.

A ∩B A B A ∪B
m(.) 0.4 0.2 0.1 0.3

Table I
QUANTITATIVE INPUTS FOR EXAMPLE 5

A B C A ∪B A ∪ C B ∪ C A ∪B ∪ C
m(.) 0.35 0.25 0.02 0.20 0.07 0.05 0.06

Table II
QUANTITATIVE INPUTS FOR EXAMPLE 5

A B C A ∪B A ∪ C B ∪ C A ∪B ∪ C
m(.) 0.10 0 0.20 0.30 0.10 0 0.30

Table III
QUANTITATIVE INPUTS FOR EXAMPLE 5

We consider the hybrid DSm model in which all intersections of elements of Θ are empty, but A ∩ B. In this case, GΘ

reduces to 9 elements {∅, A∩B, A, B,C, A∪B, A∪C, B ∪C, A∪B ∪C}. The input masses of focal elements are given by
m(A ∩B) = 0.20, m(A) = 0.10, m(C) = 0.20, m(A ∪B) = 0.30, m(A ∪ C) = 0.10, and m(A ∪B ∪ C) = 0.10. In order
to apply Sudano’s and Cuzzolin’s mappings, we need to work on the refined frame Θref with Shafer’s model as depicted on
Figure 1 and masses given in the Table XV.

A ∩B ≡ D� A ≡ A� ∪D� C ≡ C�

m(.) 0.2 0.1 0.2

Table IV
QUANTITATIVE INPUTS ON THE REFINED FRAME FOR EXAMPLE 8

A ∪B ≡ A� ∪B� ∪D� A ∪ C ≡ A� ∪ C� ∪D� A ∪B ∪ C ≡ A� ∪B� ∪ C� ∪D�

m(.) 0.3 0.1 0.1

Table V
QUANTITATIVE INPUTS ON THE REFINED FRAME FOR EXAMPLE 8

One sees from the Table XVI that DSmP�→0 provides the best results in term of PIC metric. The refined frame has been
defined as: Θref = {A� � A \ (A ∩B), B� � B \ (A ∩B), C � � C, D� � A ∩B} according to Figure 1.

DSmP�(A) =
m(A) + � · C(A)
m(A) + � · C(A)

· m(A) +
0

m(B) + � · C(B)
· m(B) +

m(A) + � · C(A)
m(A) + m(B) + � · C(A ∪B)

· m(A ∪ B) (1)

DSmP�(B) =
0

m(A) + � · C(A)
· m(A) +

m(B) + � · C(B)
m(B) + � · C(B)

· m(B) +
m(B) + � · C(B)

m(A) + m(B) + � · C(A ∪B)
· m(A ∪ B) (2)

DSmP�(A∪B) =
m(A) + � · C(A)
m(A) + � · C(A)

·m(A) +
m(B) + � · C(B)
m(B) + � · C(B)

·m(B) +
m(A) + m(B) + � · C(A ∪B)
m(A) + m(B) + � · C(A ∪B)

·m(A∪B) (3)

Since we use Shafer’s model, C(A) = C(B) = 1 and C(A ∪B) = 2,

the previous expressions reduce to

Super-power set = power set of the refined frame
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Abstract – This paper presents in detail the generalized pig-

nistic transformation (GPT) succinctly developed in the Dezert-

Smarandache Theory (DSmT) framework as a tool for decision

process. The GPT allows to provide a subjective probability mea-

sure from any generalized basic belief assignment given by any

corpus of evidence. We mainly focus our presentation on the 3D

case and provide the complete result obtained by the GPT and its

validation drawn from the probability theory.
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1 Introduction

In the recent theory of plausible and paradoxical reason-

ing (DSmT) developed by Dezert and Smarandache [2, 10],

a new generalized pignistic transformation has been pro-

posed to construct a subjective probability measure P{.}
from any generalized basic belief assignmentm(.) defined
over the hyper-power set DΘ. In reference [2], a simple

example of such generalized pignistic transformation has

been presented only for the case n = |Θ| = 2. In this
paper, we present the complete derivation of this pignistic

transformation for the case n = |Θ| = 3 and we generalize
the result. Before introducing the GPT, it is however nec-

essary to briefly present the DSmT [1, 2, 3, 4, 5, 10] with

respect to the Dempster-Shafer Theory (DST) [9].

2 Foundations of the DST and DSmT

2.1 The DST and the Shafer’s model

The Shafer’s model, denoted here M0(Θ), on which is
based the Dempster-Shafer Theory, assumes an exhaustive

and exclusive frame of discernment of the problem under

consideration Θ = {θ1, θ2, . . . , θn}. The model requires
actually that an ultimate refinement of the problem is pos-

sible so that θi can always be well precisely defined/iden-

tified in such a way that we are sure that they are exclu-

sive and exhaustive. From this model, a basic belief as-

signment (bba) mi(.) : 2Θ → [0, 1] such that mi(∅) = 0

∗Partial support by the COST action 274 TARSKI acknowl-

edged.

and
∑

A∈2Θ mi(A) = 1 associated to a given body of evi-
dence Bi is defined, where 2Θ is the power set ofΘ, i.e. the
set of all subsets of Θ. Within DST, the fusion (combina-
tion) of two independent sources of evidence B1 and B2 is

obtained through the Dempster’s rule of combination [9] :

[m1 ⊕ m2](∅) = 0 and ∀B %= ∅ ∈ 2Θ:

[m1 ⊕ m2](B) =

∑

X∩Y =B m1(X)m2(Y )

1 −
∑

X∩Y =∅ m1(X)m2(Y )
(1)

The notation
∑

X∩Y =B represents the sum over all

X, Y ∈ 2Θ such that X ∩ Y = B. The Dempster’s sum
m(.) ! [m1⊕m2](.) is considered as a basic belief assign-
ment if and only if the denominator in equation (1) is non-

zero. The term k12 !
∑

X∩Y =∅ m1(X)m2(Y ) is called
degree of conflict between the sources B1 and B2. When

k12 = 1, the Dempster’s sum m(.) does not exist and the
bodies of evidences B1 and B2 are said to be in full con-

tradiction. This rule of combination can be extended eas-

ily for the combination of n > 2 independent sources of
evidence. The DST, although very attractive because of its

solid mathematical ground, presents however several weak-

nesses and limitations because of the Shafer’s model itself

(which does not necessary hold in some fusion problems in-

volving continuous and ill-defined concepts), the justifica-

tion of the Dempster’s rule of combination frequently sub-

ject to criticisms, but mainly because of counter-intuitive

results given by the Dempster’s rule when the conflict be-

tween sources becomes important. Several classes of infi-

nite counter-examples to the Dempster’s rule can be found

in [13]. To overcome these limitations, Jean Dezert and

Florentin Smarandache propose a new mathematical theory

based on other models (free or hybrid DSm models) with

new reliable rules of combinations able to deal with any

kind of sources ( imprecises, uncertain and paradoxist, i.e.

highly conflicting). This is presented in next subsections.

2.2 The DSmT based on the free DSmModel

The foundations of the DSmT (Dezert-Smarandache The-

ory) is to abandon the Shafer’s model (i.e. the exclusivity

constraint between θi of Θ) just because for some fusion
problems it is impossible to define/characterize the problem

in terms of well-defined/precise and exclusive elements.

The free DSm model, denotedMf (Θ), on which is based

DSmT allows us to deal with imprecise/vague notions and

concepts between elements of the frame of discernment Θ.
The DSmT includes the possibility to deal with evidences

arising from different sources of information which don’t

have access to absolute interpretation of the elementsΘ un-

der consideration.

2.2.1 Notion of hyper-power set DΘ

From this very simple idea and from any frame Θ, a new
space DΘ = {α0, . . . , αd(n)−1} (free Boolean pre-algebra
generated byΘ and operators∩ and ∪), called hyper-power
set is defined [5] as follows:

1. ∅, θ1, . . . , θn ∈ DΘ

2. ∀A ∈ DΘ, B ∈ DΘ, (A ∪ B) ∈ DΘ, (A ∩ B) ∈ DΘ

3. No other elements belong to DΘ, except those, ob-

tained by using rules 1 or 2.

The generation of hyper-power set DΘ is related with the

famous Dedekind’s problem on enumerating the set of

monotone Boolean functions. The cardinality d(n) of DΘ

follows the Dedekind sequence. It can be shown, see [4],

that all elements αi ofDΘ can then be obtained by the very

simple linear equation [4]

dn = Dn · un (2)

where dn ≡ [α0 ≡ ∅, α1, . . . , αd(n)−1]
′ is the vector of

elements of DΘ, un is the proper Smarandache’s codifi-

cation vector [4] and Dn a particular binary matrix build

recursively by the algorithm proposed in [4]. The final re-

sult dn is obtained from the previous matrix product after

identifying (+, ·)with (∪,∩) operators, 0 ·xwith ∅ and 1 ·x
with x). Dn is actually a binary matrix corresponding to all

possible isotone Boolean functions.

2.2.2 Classic DSm rule of combination

By adopting the free DSm model and from any general

frame of discernment Θ, one then defines a map mi(.) :
DΘ → [0, 1], associated to a given source of evidence Bi

such that mi(∅) = 0 and
∑

A∈DΘ mi(A) = 1. This ap-
proach allows us to model any source which supports para-

doxical (or intrinsic conflicting) information. From this

very simple free DSm model Mf (Θ), the classical DSm
rule of combinationm(.) ! [m1 ⊕ . . . ⊕ mk](.) of k ≥ 2
intrinsic conflicting and/or uncertain independent sources

of information is defined by [1]

mMf (Θ)(A) =
∑

X1,...,Xk∈DΘ

X1∩...∩Xk=A

k
∏

i=1

mi(Xi) (3)

and mMf (Θ)(∅) = 0 by definition. This rule, dealing

with uncertain and/or paradoxical/conflicting information is

commutative and associative and requires no normalization

procedure.

2.3 Extension of the DSmT to hybrid models

2.3.1 Notion of hybrid model

The adoption of the free DSm model (and the classic DSm

rule) versus the Shafer’s model (with the Dempster’s rule)

can also be subject to criticisms since not all fusion prob-

lems correspond to the free DSm model (neither to the

Shafer’s model). These two models can be viewed actu-

ally as the two opposite/extreme and specific models on

which are based the DSmT and the DST. In general, the

models for characterizing practical fusion problems do not

coincide neither with the Shafer’s model nor with the free

DSm model. They have an hybrid nature (only some θi

are truly exclusive).Very recently, F. Smarandache and J.

Dezert have extended the framework of the DSmT and the

previous DSm rule of combination for solving a wider class

of fusion problems in which neither free DSm or Shafer’s

models fully hold. This large class of problems corresponds

to problems characterized by any hybrid DSm model. A

hybrid DSm model is defined from the free DSm model

Mf(Θ) by introducing some integrity constraints on some
elements A ∈ DΘ, if there are some certain facts in ac-

cordance with the exact nature of the model related to the

problem under consideration [12]. An integrity constraint

on A ∈ DΘ consists in forcing A to be empty through the

modelM, denoted as A
M
≡ ∅. There are several possible

kinds of integrity constraints introduced in any free DSm

model:

• Exclusivity constraints: when some conjunctions of el-

ements of Θ are truly impossible, for example when

θi ∩ . . . ∩ θk
M
≡ ∅.

• Non-existential constraints: when some disjunctions

of elements of Θ are truly impossible, for example

when θi ∪ . . .∪ θk
M
≡ ∅. The degenerated hybrid DSm

modelM∅, defined by constraint according to the to-

tal ignorance: It ! θ1∪θ2∪ . . .∪θn
M
≡ ∅, is excluded

from consideration, because it is meaningless.

• Hybrid constraints: like for example (θi∩θj)∪θk
M
≡ ∅

and any other hybrid proposition/element of DΘ in-

volving both ∩ and ∪ operators such that at least one
element θk is subset of the constrained proposition.

The introduction of a given integrity constraint

A
M
≡ ∅ ∈ DΘ implies the set of inner constraints

B
M
≡ ∅ for all B ⊂ A. The introduction of two in-

tegrity constraints on A, B ∈ DΘ implies the constraint

(A ∪ B) ∈ DΘ ≡ ∅ and this implies the emptiness of all
C ∈ DΘ such that C ⊂ (A ∪ B).

The Shafer’s model, denotedM0(Θ), can be considered
as the most constrained hybrid DSm model including all

possible exclusivity constraintswithout non-existential con-

straint, since all elements in the frame are forced to be mu-

tually exclusive.

Hyper-power set reduces to classical power set for the Shafer!s model (when all elements are exclusive)

Example for n=3
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1. ∅, θ1, . . . , θn ∈ DΘ.

2. If A, B ∈ DΘ, then A ∩ B ∈ DΘ and A ∪ B ∈ DΘ.

3. No other elements belong to DΘ, except those obtained by using rules 1 or 2.

The dual (obtained by switching ∪ and ∩ in expressions) of DΘ is itself. There are elements in DΘ

which are self-dual (dual to themselves), for example α8 for the case when n = 3 in the example below.

The cardinality of DΘ is majored by 22n

when the cardinality of Θ equals n, i.e. |Θ| = n. The generation

of hyper-power set DΘ is closely related with the famous Dedekind problem [8, 7] on enumerating the set

of isotone Boolean functions. The generation of the hyper-power set is presented in chapter 2. Since for

any given finite set Θ, |DΘ| ≥ |2Θ| we call DΘ the hyper-power set of Θ.

Example of the first hyper-power sets DΘ

• For the degenerate case (n = 0) where Θ = {}, one has DΘ = {α0 ! ∅} and |DΘ| = 1.

• When Θ = {θ1}, one has DΘ = {α0 ! ∅, α1 ! θ1} and |DΘ| = 2.

• When Θ = {θ1, θ2}, one has DΘ = {α0, α1, . . . , α4} and |DΘ| = 5 with α0 ! ∅, α1 ! θ1 ∩ θ2,

α2 ! θ1, α3 ! θ2 and α4 ! θ1 ∪ θ2.

• When Θ = {θ1, θ2, θ3}, one has DΘ = {α0, α1, . . . , α18} and |DΘ| = 19 with

α0 ! ∅

α1 ! θ1 ∩ θ2 ∩ θ3 α10 ! θ2

α2 ! θ1 ∩ θ2 α11 ! θ3

α3 ! θ1 ∩ θ3 α12 ! (θ1 ∩ θ2) ∪ θ3

α4 ! θ2 ∩ θ3 α13 ! (θ1 ∩ θ3) ∪ θ2

α5 ! (θ1 ∪ θ2) ∩ θ3 α14 ! (θ2 ∩ θ3) ∪ θ1

α6 ! (θ1 ∪ θ3) ∩ θ2 α15 ! θ1 ∪ θ2

α7 ! (θ2 ∪ θ3) ∩ θ1 α16 ! θ1 ∪ θ3

α8 ! (θ1 ∩ θ2) ∪ (θ1 ∩ θ3) ∪ (θ2 ∩ θ3) α17 ! θ2 ∪ θ3

α9 ! θ1 α18 ! θ1 ∪ θ2 ∪ θ3

Note that the complement Ā of any proposition A (except for ∅ and for the total ignorance It !

θ1 ∪ θ2 ∪ . . . ∪ θn), is not involved within DSmT because of the refutation of the third excluded middle.

In other words, ∀A ∈ DΘ with A '= ∅ or A '= It, Ā '∈ DΘ. Thus (DΘ,∩,∪) does not define a Boolean al-

gebra. The cardinality of hyper-power set DΘ for n ≥ 1 follows the sequence of Dedekind’s numbers [35],

i.e. 1,2,5,19,167,7580,7828353,... (see next chapter for details).
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Note that the complement Ā of any proposition A (except for ∅ and for the total ignorance It !

θ1 ∪ θ2 ∪ . . . ∪ θn), is not involved within DSmT because of the refutation of the third excluded middle.
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any given finite set Θ, |DΘ| ≥ |2Θ| we call DΘ the hyper-power set of Θ.

Example of the first hyper-power sets DΘ

• For the degenerate case (n = 0) where Θ = {}, one has DΘ = {α0 ! ∅} and |DΘ| = 1.

• When Θ = {θ1}, one has DΘ = {α0 ! ∅, α1 ! θ1} and |DΘ| = 2.

• When Θ = {θ1, θ2}, one has DΘ = {α0, α1, . . . , α4} and |DΘ| = 5 with α0 ! ∅, α1 ! θ1 ∩ θ2,

α2 ! θ1, α3 ! θ2 and α4 ! θ1 ∪ θ2.
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In other words, ∀A ∈ DΘ with A '= ∅ or A '= It, Ā '∈ DΘ. Thus (DΘ,∩,∪) does not define a Boolean al-

gebra. The cardinality of hyper-power set DΘ for n ≥ 1 follows the sequence of Dedekind’s numbers [35],

i.e. 1,2,5,19,167,7580,7828353,... (see next chapter for details).

d(n=3)=19

The cardinality of hyper-power sets follows Dedekind’s numbers sequence when the size of the frame 

increases.
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In other words, ∀A ∈ DΘ with A '= ∅ or A '= It, Ā '∈ DΘ. Thus (DΘ,∩,∪) does not define a Boolean al-

gebra. The cardinality of hyper-power set DΘ for n ≥ 1 follows the sequence of Dedekind’s numbers [35],
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Θ = {θ1, θ2, θ3}



DSmT basics : DSm Models

Free DSm model 
Elements of the frame are vague and potentially 
overlapping. Free = no constraint on elements. 
Useful to manipulate continuous concepts having 
relative interpretation (where ultimate refinement is 
inaccessible)

Hybrid DSm model 
Some elements of the frame can be exclusive 
and/or non existing specially for dynamic fusion 
applications. Hybrid model means introduction of 
integrity constraints into the free DSm model. 

The granularity of the model of the frame characterizes the intrinsic nature  (discrete/
continuous,precise/vague,absolute/relative, etc) of the concepts involved in the fusion 
process. 

Parts have vague boundaries

Special hybrid model: Shaferʼs model
All exhaustive elements of the frame are known to 
be truly exclusive (i.e. a refinement is accessible)

Parts have precise boundaries

Constraints are represented by the characteristic non-emptiness 
function Φ(A) for all A in hyper-power set: Φ(A)=1 if A non-empty 
or 0 otherwise.
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Cadre de discernement généralisé Θ

On supprime la contrainte d’exclusivité sur les θi ∈ Θ

• Chaque θi est une notion vague non précisément définissable objectivement

⇒ aucun raffinement de Θ en Θraf n’est possible.

• Exemple 1 (cas n = 3) : Θ = {θ1 = (R), θ2 = (V ), θ3 = (B)}

Les limites (traits noirs) entre θ1, θ2 et θ3 ne peuvent être précisément

définies - perception différente des couleurs pour chaque individu
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Generalized basic belief assignment (gbba)

Generalized belief function Generalized plausibility function

Question: How to combine efficiently belief functions generated by 

several sources of evidence ?

1.1. INTRODUCTION 5

with a set of s ≥ 1 non-totally ignorant sources doesn’t change the result of the combination of
the s sources because the full ignorant source doesn’t bring any new specific evidence on any
problems under consideration. This condition is thus perfectly reasonable and legitimate. The
condition 3 is mathematically represented as follows: for all possible s ≥ 1 non-totally ignorant
sources and for any X ∈ 2Θ (or for any X ∈ DΘ when working in the DSmT framework), the
fusion operator ⊕ must satisfy

[m1 ⊕ . . . ⊕ ms ⊕ mv](X) = [m1 ⊕ . . . ⊕ ms](X) (1.3)

The associativity property, while very attractive and generally useful for sequential imple-
mentation is not actually a crucial property that a combination rule must satisfy if one looks
for the best coherence of the result. The search for an optimal solution requires to process all
bba’s or gbba’s altogether. Naturally, if several different rules of combination satisfy conditions
1-3 and provide similar performances, the simplest rule endowing associativity will be preferen-
tially chosen (from engineering point of view). Up to now and unfortunately, no combination
rule available in literature satisfy incontrovertibly the three first primordial conditions. Only
three fusion rules based on the conjunctive operator are known associative: Dempster’s rule in
DST, Smets’ rule (conjunctive consensus based on the open-world assumption), and the DSm
classic rule on free DSm model. The disjunctive rule is associative and satisfy properties 1 and 2
only. All alternative rules developed in literature until now don’t endow properties 1-3 and the
associativity property. Although, some rules such as Yager’s, Dubois & Prade’s, DSm hybrid,
WAO, minC, PCR rules, which are not associative become quasi-associative if one stores the
result of the conjunctive rule at each time when a new bba arises in the combination process
(see section 1.14 for details).

This chapter extends a previous paper on Proportional Conflict Redistribution Rule no 1
(PCR1) detailed in [20, 21] in order to overcome its inherent limitation (i.e. the neutral impact
of VBA - condition 3 - is not fulfilled by PCR1). In the DSm hybrid rule of combination [18],
the transfer of partial conflicts (taking into account all integrity constraints of the model) is
done directly onto the most specific sets including the partial conflicts but without proportional
redistribution. In this chapter, we propose to improve this rule by introducing a more effective
proportional conflict redistribution to get a more efficient and precise rule of combination PCR5.

The main steps in applying all the PCR rules of combination (i.e. fusion) are as follows:

• Step 1: use the conjunctive rule,

• Step 2: compute the conflicting masses (partial and/or total),

• Step 3: redistribute the conflicting masses to non-empty sets.

The way the redistribution is done makes the distinction between all existing rules available
in literature in the DST and DSmT frameworks (to the knowledge of the authors) and the
PCR rules, and also the distinction among the different PCR versions themselves. One also
studies the impact of the vacuous belief assignment (VBA) on PCR rules and one makes a short
discussion on the degree of the fusion rules’ ad-hoc-ity.

Before presenting the PCR rules, and after a brief reminder on the notion of total and
partial conflicts, we browse the main rules of combination proposed in the literature in the

m(.) : GΘ → [0, 1] m(∅) = 0
�

A∈GΘ

m(A) = 1with and

where GΘ is the fusion space (i.e. 2Θ, DΘ, or SΘ = 2Θrefined)

Bel(A) =
�

B⊆A
B∈GΘ

m(B) Pl(A) =
�

B∩A �=∅
B∈GΘ

m(B)
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done directly onto the most specific sets including the partial conflicts but without proportional
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• Step 3: redistribute the conflicting masses to non-empty sets.
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Generalized bba (example)

• GΘ as the power set 2Θ and therefore:

m(A) + m(B) + m(A ∪B) = 1

• GΘ as the hyper-power set DΘ and therefore:

m(A) + m(B) + m(A ∪B) + m(A ∩B) = 1

• GΘ as the super-power set SΘ and therefore:

m(A) + m(B) + m(A ∪B) + m(A ∩B)
+ m(c(A)) + m(c(B)) + m(c(A) ∪ c(B)) = 1

Let’s consider the simple frame Θ = {A, B}, then depending on the model we
choose for GΘ, one will deal with:

• GΘ as Θ (Bayesian bba):

m(A) + m(B) = 1
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Fusion based on belief functions

Intermediate level
(DSmC) 

Sources level
(+ discounting)

Fusion level
(DSmH/PCR5)

Decision level

Integrity level
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Abstract - In this paper we consider and analyze the behav-
ior of two temporal/sequential attribute data fusion rules

real-time Generalized Data Association - Multi Target Track-
ing systems (GDA-MTT) and provides an important result on the
behavior of PCR5 with respect to Dempster’s rule. The MatLab
source code is also provided in the paper.
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1 Introduction
m1(.) or qm1(.)

mk(.) or qmk(.)

quantitative bba

qualitative bba

In BCR17, m(A) = 0.2 is transferred to A ∩ B since

A ∩B ⊂ A and m(A ∩B) > 0.

mBCR17(B|B ∪ C) = 0.17

mBCR17(C|B ∪ C) = 0.24

mBCR17(B ∪ C|B ∪ C) = 0.12

mBCR17(A ∩B|B ∪ C) = 0.47

The main purpose of information fusion is to produce

reasonably aggregated, refined and/or complete granule

of data obtained from a single or multiple sources with

consequent reasoning process, consisting in using evidence

to choose the best hypothesis, supported by it. Data
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Association (DA) with its main goal to partitioning ob-

servations into available tracks becomes a key function of

any surveillance system. An issue to improve track main-

tenance performances of modern Multi Target Trackers

(MTT) [1, 2], is to incorporate Generalized Data
1

Asso-

ciation (GDA) in tracking algorithms [13]. At each time

step, GDA consists in associating current (attribute and

kinematics) measurements with predicted measurements

(attributes and kinematics) for each target. GDA can be

actually decomposed into two parts [13]: Attribute-based

Data Association (ADA) and Kinematics-based Data

Association (KDA). Once ADA is obtained, the estimation

of the attribute/type of each target must be updated using a

proper and an efficient fusion rule. This process is called

attribute tracking and consists in combining information

collected over time from one (or more sensors) to refine

the knowledge about the possible changes of the attributes

of the targets. We consider here the possibility that the

attributes tracked by the system can change over time, like

the color of a chameleon moving in a variable environment.

In some military applications, target attribute can change

since for example it can be declared as neutral at a given

scan and can become a foe several scans later; or like in

the example considered in this paper, a tracker can become

mistaken when tracking several closely-spaced targets and

thus could eventually track sequentially different targets

and thus observes a true sequence of different types of

targets. In such case, although the attribute of each target

is invariant over time, at the attribute-tracking level the

type of the target committed to the (hidden unresolved)

track varies with time and must be tracked efficiently

to help to discriminate how many different targets are

hidden in the same unresolved track. Our motivation for

attribute fusion is inspired from the necessity to ascertain

the targets’ types, information, that in consequence has an

important implication to enhance the tracking performance.

Combination rules are special types of the aggregation

methods. To be useful, one system has to provide a way to

1
Data being kinematics and attribute.
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Source s1

m1(.) : DΘ → [0, 1]

!

mk(.) : DΘ → [0, 1]
Source sk

!!

(Conjunctive consensus on hyper-power set DΘ)

Classic DSm rule based on free modelMf (Θ)

!

Introduction of integrity constraints intoDΘ

Hybrid modelM(Θ)

!

Hybrid DSm rule for hybrid modelM(Θ)

or if one wants to be more precise, use PCR5.

!

Decision-making

model in general, since for a wide class of fusion problems the hypotheses one has to deal with can have different intrinsic

nature1 and also appear only vague and imprecise in such a way that precise refinement is just impossible to obtain in reality so

that the exclusive elements θi cannot be properly identified and defined. Many problems involving fuzzy/vague continuous and

relative2 concepts described in natural language with different semantic contents and having no absolute interpretation enter in

this category. DSmT starts with the notion of free DSm model and considers Θ only as a frame of exhaustive elements which

can potentially overlap and have different intrinsic semantic natures and which also can change with time with new information

and evidences received on the model itself. DSmT offers a flexibility on the structure of the model one has to deal with. When

the free DSm model holds, the conjunctive consensus is performed. If the free model does not fit the reality because it is

known that some subsets of Θ contain elements truly exclusive but also possibly truly non existing at all at a given time (in

dynamic3 fusion), new fusion rules must be performed to take into account these integrity constraints. The constraints can

be explicitly introduced into the free DSm model to fit it adequately with our current knowledge of the reality; we actually

construct a hybrid DSm model on which the combination will be efficiently performed. Shafer’s model, which is the basis

of DST, corresponds to a very specific hybrid DSm (and homogeneous) model including all possible exclusivity constraints.

DSmT has been developed to work with any kind of model, to combine imprecise, uncertain and potentially high conflicting

sources for static and dynamic information fusion. DSmT refutes the idea that sources provide their beliefs with the same

absolute interpretation of elements of Θ; what is considered as good for somebody can be considered as bad for somebody
else. This paper is an extended version of [2, 3, 15]. After a short presentation of hyper-power set (i.e. Dedekind’s lattice),

we present the different models of the DSmT and the Classic (DSmC) and Hybrid DSm (DSmH) rules of combinations. We

will show how these rules can be directly and easily extended for the combination of imprecise beliefs. Then we present the

most exact proportional conflict redistribution rule (PCR) which proposes a more subtle transfer of the conflicting masses than

DSmH. DSmH and PCR are mathematically well defined and work both with any models and whatever the value the degree of

conflict can take and do not provide counter-intuitive results. A detailed comparison of the different rules of combination with

several examples are provided in the companion paper [5]. The last part of this paper is devoted to the Zadeh’s example which

has been periodically the source of many debates over the years. During nineties this example has been forgotten or occulted by

a part of the community working with belief functions and Dempster’s rule for information fusion. We consider this example

as a very fundamental one since it has been the source of many interesting works since its publication (new alternative rules by

Yager, Dubois & Prade, etc and Smets’ works). Therefore we reexamine it in our DSmT framework and show how our new

DSmH and PCR rules can solve it more efficiently than Dempster’s rule. Advances and first applications of DSmT are detailed

in [11].

1By example, in some target tracking and classification applications, one has to deal both with imprecise and uncertain information like radar-cross section,

as well as Doppler/velocity measurements
2The notion of relativity comes from the own interpretation of the elements of the frame Θ by each sources of evidences involved in the fusion process.
3i.e. when the frame Θ and/or the modelM is changing with time.
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any surveillance system. An issue to improve track main-

tenance performances of modern Multi Target Trackers
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(MTT) [1, 2], is to incorporate Generalized Data
1

Asso-

ciation (GDA) in tracking algorithms [13]. At each time

step, GDA consists in associating current (attribute and

kinematics) measurements with predicted measurements

(attributes and kinematics) for each target. GDA can be

actually decomposed into two parts [13]: Attribute-based

Data Association (ADA) and Kinematics-based Data

Association (KDA). Once ADA is obtained, the estimation

of the attribute/type of each target must be updated using a

proper and an efficient fusion rule. This process is called

attribute tracking and consists in combining information

collected over time from one (or more sensors) to refine

the knowledge about the possible changes of the attributes

of the targets. We consider here the possibility that the

attributes tracked by the system can change over time, like

the color of a chameleon moving in a variable environment.

In some military applications, target attribute can change

since for example it can be declared as neutral at a given

scan and can become a foe several scans later; or like in

the example considered in this paper, a tracker can become

mistaken when tracking several closely-spaced targets and

thus could eventually track sequentially different targets

and thus observes a true sequence of different types of

targets. In such case, although the attribute of each target

is invariant over time, at the attribute-tracking level the

type of the target committed to the (hidden unresolved)

track varies with time and must be tracked efficiently

to help to discriminate how many different targets are

hidden in the same unresolved track. Our motivation for

attribute fusion is inspired from the necessity to ascertain

the targets’ types, information, that in consequence has an

important implication to enhance the tracking performance.

Combination rules are special types of the aggregation

methods. To be useful, one system has to provide a way to

capture, analyze and utilize through the fusion process the

new available data (evidence) in order to update the current

state of knowledge about the problem under consideration.

1
Data being kinematics and attribute.
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1 Introduction
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the example considered in this paper, a tracker can become

mistaken when tracking several closely-spaced targets and

thus could eventually track sequentially different targets

and thus observes a true sequence of different types of

targets. In such case, although the attribute of each target

is invariant over time, at the attribute-tracking level the

type of the target committed to the (hidden unresolved)

track varies with time and must be tracked efficiently

to help to discriminate how many different targets are

hidden in the same unresolved track. Our motivation for

attribute fusion is inspired from the necessity to ascertain

the targets’ types, information, that in consequence has an

important implication to enhance the tracking performance.

Combination rules are special types of the aggregation

methods. To be useful, one system has to provide a way to

capture, analyze and utilize through the fusion process the

new available data (evidence) in order to update the current

state of knowledge about the problem under consideration.
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Static scheme (all sources are combined altogether)



DSm Hybrid rule of combination (DSmH)
For any model, the fusion of k independent equally (otherwise discounting techniques are applied 
first)  reliable sources is done by

No division is required, DSmH ≠ Dempsterʼs rule

(DSmH)

SinceDΘ is closed under ∪ and ∩ set operators, DSmC guarantees thatm(.) is a proper
generalized belief assignment, i.e.m(.) : DΘ → [0, 1]. DSmC is commutative and asso-
ciative and can always be used for the fusion of sources involving fuzzy concepts when-

ever the free DSm modelMf (Θ) holds. This rule can be directly and easily extended
for the combination of k > 2 independent sources [8].

5. Hybrid DSm fusion rule

WhenMf (Θ) does not hold (some integrity constraints exist), one deals with a proper
DSm hybrid modelM(Θ) �= Mf (Θ).The first general rule working on any model has
been called DSm hybrid rule (DSmH) in [8]. More sophisticated rules based on differnt

proportional conflict redistributions have recently been proposed [9] and only the most

efficient one is presented in section 7. DSmH for k ≥ 2 sources is defined for allA ∈ DΘ

as :

mM(Θ)(A) � φ(A) ·
�
S1(A) + S2(A) + S3(A)

�
(4)

where φ(A) is the characteristic non-emptiness function of a set A, i.e. φ(A) = 1 if
A /∈ ∅ and φ(A) = 0 otherwise, where ∅ � {∅M, ∅}. ∅M is the set of all elements of

DΘ which have been forced to be empty through the constraints of the modelM and ∅
is the classical/universal empty set. S1(A) ≡ mMf (θ)(A), S2(A), S3(A) are defined by

S1(A) �
�

X1,X2,...,Xk∈DΘ

(X1∩X2∩...∩Xk)=A

k�

i=1

mi(Xi) (5)

S2(A) �
�

X1,X2,...,Xk∈∅
[U=A]∨[(U∈∅)∧(A=It)]

k�

i=1

mi(Xi) (6)

S3(A) �
�

X1,X2,...,Xk∈DΘ

u(c(X1∩X2∩...∩Xk))=A
(X1∩X2∩...∩Xk)∈∅

k�

i=1

mi(Xi) (7)

with U � u(X1) ∪ . . . ∪ u(Xk) where u(X) is the union of all θi that compose X ,
It � θ1∪ . . .∪ θn is the total ignorance, and c(X) is the conjunctive normal form6 ofX .

6In Boolean algebra the conjunctive normal form is a conjunction of disjunctions, in its simplest form, which

is unique; in this paper we consider each disjunction formed by a singleton or by a union of singletons; for

example:A∩B∩ (C ∪D) is a conjunctive normal form; also,X = (A∪B)∩C ∩ (A∪C) is a conjunction
of disjunctions, but it is not in its simplest form, then its conjunctive normal form is c(X) = (A ∪ B) ∩ C
since C ∩ (A ∪ C) = C. The conjunctive normal form is introduced here in order to improve the original

formula given in [8] for preserving the neutral impact of the vacuous belief mass m(Θ) = 1 within complex
hybrid models.
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S1(A) corresponds to DSmC rule for k independent sources based onMf (Θ); S2(A)
represents the mass of all relatively and absolutely empty sets which is transferred to

the total or relative ignorances associated with non existential constraints (if any, like in

some dynamic problems); S3(A) transfers the sum of relatively empty sets directly onto
the canonical disjunctive form of non-empty sets. DSmH generalizes DSmC and is not

equivalent to Dempster’s rule. It works for any models (the free DSm model, Shafer’s

model or any other hybrid models) when manipulating precise generalized (or eventually

classical) basic belief functions.

c(X) = conjunctive normal form of X

Ex: If X = (A ∪B) ∩ [C ∩ (A ∪ C)]
then c(X) = (A ∪B) ∩ C

∅ � {∅,∅M} = {∅, set of propositions forced to be empty inM}

∅M = set of propositions forced to be empty inM

6. Fusion of imprecise beliefs

Since it difficult to have sources/human experts providing precise beliefs, a more flexible

theory dealing with imprecise information is necessary. So we extended DSmT for deal-

ing with admissible imprecise generalized basic belief mI(.) defined as real subunitary
intervals of [0, 1], or even more general as real subunitary sets (not necessarily intervals).
These sets can be unions of (closed, open, or half-open/half-closed) intervals and/or

scalars all in [0, 1]. An imprecise belief assignment mI(.) over DΘ is said admissible if

and only if there exists for every X ∈ DΘ at least one real number m(X) ∈ mI(X)
such that

�
X∈DΘ m(X) = 1. The following simple operators on sets (addition � and

multiplication �) are necessary [8] for the fusion of imprecise beliefs:

X1 � X2 � {x | x = x1 + x2, x1 ∈ X1, x2 ∈ X2}

X1 � X2 � {x | x = x1 · x2, x1 ∈ X1, x2 ∈ X2}

From these operators, one generalizes DSmC from scalars to sets as follows [8] (Chap.

6): ∀A �= ∅ ∈ DΘ,

mI
Mf (Θ)(A) =

�

X1,X2,...,Xk∈DΘ

(X1∩X2∩...∩Xk)=A

�

i=1,...,k

mI
i (Xi) (8)

where
X

and
Y

represent the summation, and respectively product, of sets. The

DSmH fusion of imprecise beliefs takes a form similar to (4), except that mM(Θ)(A),
S1(A), S2(A) and S3(A) have to be replaced bymI

M(Θ)(A), SI
1 (A), SI

2 (A) and SI
3 (A)
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hybrid rule means 
conjunctive mixed 
with disjunctive

 All propositions involved in formulas are expressed in their canonical form (i.e. disjunctive 
normal form, also known as disjunction of conjunctions in Boolean algebra, which is unique). 
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1.2.8 The hybrid DSm rule

The hybrid DSm rule of combination is the first general rule of combination developed in the
DSmT framework [18] which can work on any DSm models (including Shafer’s model) and for
any level of conflicting information. The hybrid DSm rule can deal with the potential dynamicity
of the frame and its model as well. The DSmT deals properly with the granularity of information
and intrinsic vague/fuzzy nature of elements of the frame Θ to manipulate. The basic idea of
DSmT is to define belief assignments on hyper-power set DΘ (i.e. free Dedekind’s lattice) and to
integrate all integrity constraints (exclusivity and/or non-existential constraints) of the model,
say M(Θ), fitting with the problem into the rule of combination. Mathematically, the hybrid
DSm rule of combination of s ≥ 2 independent sources of evidence is defined as follows (see
chap. 4 in [18]) for all X ∈ DΘ,

mM(Θ)(X) ! φ(X)
[
S1(X) + S2(X) + S3(X)

]
(1.12)

where all sets involved in formulas are in canonical form4, and where φ(X) is the characteristic
non-emptiness function of a set X, i.e. φ(X) = 1 if X /∈ ∅ and φ(X) = 0 otherwise, where
∅ ! {∅M, ∅}. ∅M is the set of all elements of DΘ which have been forced to be empty through
the constraints of the model M and ∅ is the classical/universal empty set. S1(X), S2(X) and
S3(X) are defined by

S1(X) !
∑

X1,X2,...,Xs∈DΘ

X1∩X2∩...∩Xs=X

s∏

i=1

mi(Xi) (1.13)

S2(X) !
∑

X1,X2,...,Xs∈∅
[U=X]∨[(U∈∅)∧(X=It)]

s∏

i=1

mi(Xi) (1.14)

S3(A) !
∑

X1,X2,...,Xs∈DΘ

X1∪X2∪...∪Xs=A
X1∩X2∩...∩Xs∈∅

s∏

i=1

mi(Xi) (1.15)

with U ! u(X1) ∪ u(X2) ∪ . . . ∪ u(Xs) where u(X) is the union of all θi that compose X and
It ! θ1 ∪ θ2 ∪ . . . ∪ θn is the total ignorance. S1(A) corresponds to the classic DSm rule for
k independent sources based on the free DSm model Mf (Θ); S2(A) represents the mass of all
relatively and absolutely empty sets which is transferred to the total or relative ignorances asso-
ciated with non existential constraints (if any, like in some dynamic problems); S3(A) transfers
the sum of relatively empty sets directly onto the (canonical) disjunctive form of non-empty
sets5. The hybrid DSm rule generalizes the classic DSm rule of combination and is not equiva-
lent to Dempster’s rule. It works for any DSm models (the free DSm model, Shafer’s model or
any other hybrid models) when manipulating precise generalized (or eventually classical) basic

4The canonical form of a set is its easiest (or standard) form. We herein use the disjunctive normal form
(which is a disjunction of conjunctions). In Boolean logic (and equivalently in the classical set theory) every
statement of sentential calculus can be reduced to its disjunctive normal form. Of course the canonical form
depends on the model.

5We have voluntarily removed the canonicity function c(.) in expression of S3(.) with respect to some formulas
in earlier publications because such notation appears actually totally useless since all sets involved in formulas
must be expressed in canonical form.
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lent to Dempster’s rule. It works for any DSm models (the free DSm model, Shafer’s model or
any other hybrid models) when manipulating precise generalized (or eventually classical) basic

4The canonical form of a set is its easiest (or standard) form. We herein use the disjunctive normal form
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any level of conflicting information. The hybrid DSm rule can deal with the potential dynamicity
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say M(Θ), fitting with the problem into the rule of combination. Mathematically, the hybrid
DSm rule of combination of s ≥ 2 independent sources of evidence is defined as follows (see
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Special case : (DSmH) reduces to classic DSm rule (i.e. DSmC) when the  free DSm-
model is used, i.e. only S1(X) is kept in (DSmH) formula.

(DSmC)
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Example of dynamic fusion (testimony problem)

m∪(∅) = 0 and ∀A #= ∅, m∪(A) =
∑

X,Y ∈2Θ

X∪Y =A

m1(X)m2(Y )

mY (∅) = 0 and ∀A #= ∅, A #= ΘmY (A) =
∑

X,Y ∈2Θ

X∩Y =A

m1(X)m2(Y ) and mY (Θ) = m1(Θ)m2(Θ)+
∑

X,Y ∈2Θ

X∩Y =∅

m1(X)m2(Y )




















mY (∅) = 0

mY (A) =
∑

X,Y ∈2Θ

X∩Y =A

m1(X)m2(Y ) ∀A ∈ 2Θ, A #= ∅,A #= Θ

mY (Θ) = m1(Θ)m2(Θ) +
∑

X,Y ∈2Θ

X∩Y =∅

m1(X)m2(Y ) when A = Θ













mDP (∅) = 0

mDP (A) =
∑

X,Y ∈2Θ

X∩Y =A
X∩Y %=∅

m1(X)m2(Y ) +
∑

X,Y ∈2Θ

X∪Y =A
X∩Y =∅

m1(X)m2(Y ) ∀A #= ∅
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mS(∅) ≡ k12 =
∑

X,Y ∈2Θ

X∩Y =∅

m1(X)m2(Y )

mS(A) =
∑

X,Y ∈2Θ

X∩Y =A

m1(X)m2(Y ) ∀A #= ∅

k12 = m1(θ1)m2(θ2) + m2(θ1)m1(θ2) = 0.38

m(∅) = 0 m(θ1) =
0.38

1 − 0.38
= 0.613 m(θ2) =

0.22

1 − 0.38
= 0.355 m(θ1 ∪ θ2) =

0.02

1 − 0.38
= 0.032

m(∅) = 0 m(θ1) = 0.38 m(θ2) = 0.22 m(θ1 ∪ θ2) = 0.02 + 0.38 = 0.40

m(∅) = 0 m(θ1 ∩ θ2) = 0.38 m(θ1) = 0.38 m(θ2) = 0.22 m(θ1 ∪ θ2) = 0.02

m(∅) = 0

m(θ′2) = m′
1(θ

′
1 ∪ θ′2)m

′
2(θ

′
2 ∪ θ′3) + m′

2(θ
′
1 ∪ θ′2)m

′
1(θ

′
2 ∪ θ′3) = 0.38

m(θ′1 ∪ θ′2) = m′
1(θ

′
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′
2(θ

′
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1(θ
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1(θ

′
2 ∪ θ′3)m

′
2(θ

′
2 ∪ θ′3) + m′

1(θ
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1(θ

′
1 ∪ θ′2 ∪ θ′3)m

′
2(θ

′
1 ∪ θ′2 ∪ θ′3) = 0.02

1.1 Example 1

Let’s consider the testimony fusion problem1 with the frame

Θ(tl) ! {θ1 ≡ young, θ2 ≡ old, θ3 ≡ white hairs}

with the following two basic belief assignments

{

m1(θ1) = 0.5 m1(θ3) = 0.5

m2(θ2) = 0.5 m2(θ3) = 0.5

1This problem has been proposed to the authors in a private communication by L. Cholvy in 2002.
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Reports

By applying the classical DSm fusion rule, one then gets

mMf (Θ(tl))(θ1 ∩ θ2) = 0.25 mMf (Θ(tl))(θ1 ∩ θ3) = 0.25 mMf (Θ(tl))(θ2 ∩ θ3) = 0.25 mMf (Θ(tl))(θ3) = 0.25

Suppose now that at time tl+1, one knows that young people don’t have white hairs (i.e θ1 ∩ θ3 ≡ ∅). How can we update
the previous fusion result with this new information on the model of the problem? We solve it with the hybrid DSm rule,

which transfers the mass of the empty sets (imposed by the constraints on the new modelM available at time tl+1) to

the non-empty sets of DΘ, going on the track of the DSm classic rule. Using the hybrid DSm rule with the constraint

θ1 ∩ θ3 ≡ ∅, one then gets:

mM(θ1 ∩ θ2) = 0.25 mM(θ2 ∩ θ3) = 0.25 mM(θ3) = 0.25

and the massmM(θ1 ∩θ3) = 0, because θ1 ∩θ3 = {young}∩{white hairs}
M
≡ ∅ and its previous massmMf (Θ(tl))(θ1 ∩

θ3) = 0.25 is transferred tomM(θ1 ∪ θ3) = 0.25 by the hybrid DSm rule.

2 Foundations of the DST and DSmT

2.1 The DST and the Shafer’s model

The Shafer’s model, denoted hereM0(Θ), on which is based the Dempster-Shafer Theory, assumes an exhaustive and
exclusive frame of discernment of the problem under consideration Θ = {θ1, θ2, . . . , θn}. The model requires actually
that an ultimate refinement of the problem is possible so that θi can always be well precisely defined/identified in such

a way that we are sure that they are exclusive and exhaustive. From this model, a basic belief assignment (bba) mi(.) :
2Θ → [0, 1] such thatmi(∅) = 0 and

∑

A∈2Θ mi(A) = 1 associated to a given body of evidence Bi is defined, where 2Θ

is the power set ofΘ, i.e. the set of all subsets ofΘ. Within DST, the fusion (combination) of two independent sources of
evidence B1 and B2 is obtained through the Dempster’s rule of combination [9] : [m1 ⊕ m2](∅) = 0 and ∀B (= ∅ ∈ 2Θ:

[m1 ⊕ m2](B) =

∑

X∩Y =B m1(X)m2(Y )

1 −
∑

X∩Y =∅ m1(X)m2(Y )
(1)

The notation
∑

X∩Y =B represents the sum over all X, Y ∈ 2Θ such that X ∩ Y = B. The Dempster’s sum
m(.) ! [m1⊕m2](.) is considered as a basic belief assignment if and only if the denominator in equation (1) is non-zero.
The term k12 !

∑

X∩Y =∅ m1(X)m2(Y ) is called degree of conflict between the sources B1 and B2. When k12 = 1, the
Dempster’s summ(.) does not exist and the bodies of evidences B1 and B2 are said to be in full contradiction. This rule

of combination can be extended easily for the combination of n > 2 independent sources of evidence. The DST, although
very attractive because of its solid mathematical ground, presents however several weaknesses and limitations because of

the Shafer’s model itself (which does not necessary hold in some fusion problems involving continuous and ill-defined

concepts), the justification of the Dempster’s rule of combination frequently subject to criticisms, but mainly because

of counter-intuitive results given by the Dempster’s rule when the conflict between sources becomes important. Several

classes of infinite counter-examples to the Dempster’s rule can be found in [13]. To overcome these limitations, Jean Dez-

ert and Florentin Smarandache propose a new mathematical theory based on other models (free or hybrid DSm models)

with new reliable rules of combinations able to deal with any kind of sources ( imprecises, uncertain and paradoxist, i.e.

highly conflicting). This is presented in next subsections.

2.2 The DSmT based on the free DSmModel

The foundations of the DSmT (Dezert-Smarandache Theory) is to abandon the Shafer’s model (i.e. the exclusivity con-

straint between θi of Θ) just because for some fusion problems it is impossible to define/characterize the problem in

terms of well-defined/precise and exclusive elements. The free DSm model, denotedMf (Θ), on which is based DSmT
allows us to deal with imprecise/vague notions and concepts between elements of the frame of discernmentΘ. The DSmT
includes the possibility to deal with evidences arising from different sources of information which don’t have access to

absolute interpretation of the elements Θ under consideration.

2.2.1 Notion of hyper-power set DΘ

From this very simple idea and from any frame Θ, a new space DΘ = {α0, . . . , αd(n)−1} (free Boolean pre-algebra
generated by Θ and operators ∩ and ∪), called hyper-power set is defined [5] as follows:

1. ∅, θ1, . . . , θn ∈ DΘ

2. ∀A ∈ DΘ, B ∈ DΘ, (A ∪ B) ∈ DΘ, (A ∩ B) ∈ DΘ

3. No other elements belong to DΘ, except those, obtained by using rules 1 or 2.

If one learns later that young people don!t have white 

hairs, one introduces this integrity constraint in the 

model, i.e. 

By applying the classical DSm fusion rule, one then gets

mMf (Θ(tl))(θ1 ∩ θ2) = 0.25 mMf (Θ(tl))(θ1 ∩ θ3) = 0.25 mMf (Θ(tl))(θ2 ∩ θ3) = 0.25 mMf (Θ(tl))(θ3) = 0.25

Suppose now that at time tl+1, one knows that young people don’t have white hairs (i.e θ1 ∩ θ3 ≡ ∅). How can we update
the previous fusion result with this new information on the model of the problem? We solve it with the hybrid DSm rule,

which transfers the mass of the empty sets (imposed by the constraints on the new modelM available at time tl+1) to

the non-empty sets of DΘ, going on the track of the DSm classic rule. Using the hybrid DSm rule with the constraint

θ1 ∩ θ3 ≡ ∅, one then gets:

mM(θ1 ∩ θ2) = 0.25 mM(θ2 ∩ θ3) = 0.25 mM(θ3) = 0.25

and the massmM(θ1 ∩ θ3) = 0, because

θ1 ∩ θ3 = {young} ∩ {white hairs}
M
≡ ∅
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M
= 0

and its previous massmMf (Θ(tl))(θ1 ∩ θ3) = 0.25 is transferred tomM(θ1 ∪ θ3) = 0.25 by the hybrid DSm rule.

2 Foundations of the DST and DSmT

2.1 The DST and the Shafer’s model

The Shafer’s model, denoted hereM0(Θ), on which is based the Dempster-Shafer Theory, assumes an exhaustive and
exclusive frame of discernment of the problem under consideration Θ = {θ1, θ2, . . . , θn}. The model requires actually
that an ultimate refinement of the problem is possible so that θi can always be well precisely defined/identified in such
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terms of well-defined/precise and exclusive elements. The free DSm model, denotedMf (Θ), on which is based DSmT
allows us to deal with imprecise/vague notions and concepts between elements of the frame of discernmentΘ. The DSmT
includes the possibility to deal with evidences arising from different sources of information which don’t have access to

absolute interpretation of the elements Θ under consideration.

By applying the classical DSm fusion rule, one then gets

mMf (Θ(tl))(θ1 ∩ θ2) = 0.25 mMf (Θ(tl))(θ1 ∩ θ3) = 0.25 mMf (Θ(tl))(θ2 ∩ θ3) = 0.25 mMf (Θ(tl))(θ3) = 0.25

mMf (Θ(tl))(θ3) = 0.25 mMf (Θ(tl))(θ1 ∩ θ2) = 0.25 mMf (Θ(tl))(θ2 ∩ θ3) = 0.25 mMf (Θ(tl))(θ1 ∩ θ3) = 0.25

θ1 ∩ θ3 = {young} ∩ {white hairs}
M
≡ ∅

Φ(θ1 ∩ θ3)
M
= 0

and its previous massmMf (Θ(tl))(θ1 ∩ θ3) = 0.25 is transferred tomM(θ1 ∪ θ3) = 0.25 by the hybrid DSm rule.

mM(Θ(tl+1))(θ3) = 0.25 mM(Θ(tl+1))(θ1∩θ2) = 0.25 mM(Θ(tl+1))(θ2∩θ3) = 0.25 mM(Θ(tl+1))(θ1∪θ3) = 0.25

2 Foundations of the DST and DSmT

2.1 The DST and the Shafer’s model

The Shafer’s model, denoted hereM0(Θ), on which is based the Dempster-Shafer Theory, assumes an exhaustive and
exclusive frame of discernment of the problem under consideration Θ = {θ1, θ2, . . . , θn}. The model requires actually
that an ultimate refinement of the problem is possible so that θi can always be well precisely defined/identified in such

a way that we are sure that they are exclusive and exhaustive. From this model, a basic belief assignment (bba) mi(.) :
2Θ → [0, 1] such thatmi(∅) = 0 and

∑

A∈2Θ mi(A) = 1 associated to a given body of evidence Bi is defined, where 2Θ

is the power set ofΘ, i.e. the set of all subsets ofΘ. Within DST, the fusion (combination) of two independent sources of
evidence B1 and B2 is obtained through the Dempster’s rule of combination [9] : [m1 ⊕ m2](∅) = 0 and ∀B (= ∅ ∈ 2Θ:

[m1 ⊕ m2](B) =

∑

X∩Y =B m1(X)m2(Y )

1 −
∑

X∩Y =∅ m1(X)m2(Y )
(1)

The notation
∑

X∩Y =B represents the sum over all X, Y ∈ 2Θ such that X ∩ Y = B. The Dempster’s sum
m(.) ! [m1⊕m2](.) is considered as a basic belief assignment if and only if the denominator in equation (1) is non-zero.
The term k12 !

∑

X∩Y =∅ m1(X)m2(Y ) is called degree of conflict between the sources B1 and B2. When k12 = 1, the
Dempster’s summ(.) does not exist and the bodies of evidences B1 and B2 are said to be in full contradiction. This rule

of combination can be extended easily for the combination of n > 2 independent sources of evidence. The DST, although
very attractive because of its solid mathematical ground, presents however several weaknesses and limitations because of

the Shafer’s model itself (which does not necessary hold in some fusion problems involving continuous and ill-defined

concepts), the justification of the Dempster’s rule of combination frequently subject to criticisms, but mainly because

of counter-intuitive results given by the Dempster’s rule when the conflict between sources becomes important. Several

classes of infinite counter-examples to the Dempster’s rule can be found in [13]. To overcome these limitations, Jean Dez-

ert and Florentin Smarandache propose a new mathematical theory based on other models (free or hybrid DSm models)

with new reliable rules of combinations able to deal with any kind of sources ( imprecises, uncertain and paradoxist, i.e.

highly conflicting). This is presented in next subsections.

2.2 The DSmT based on the free DSmModel

The foundations of the DSmT (Dezert-Smarandache Theory) is to abandon the Shafer’s model (i.e. the exclusivity con-

straint between θi of Θ) just because for some fusion problems it is impossible to define/characterize the problem in

terms of well-defined/precise and exclusive elements. The free DSm model, denotedMf (Θ), on which is based DSmT
allows us to deal with imprecise/vague notions and concepts between elements of the frame of discernmentΘ. The DSmT
includes the possibility to deal with evidences arising from different sources of information which don’t have access to

absolute interpretation of the elements Θ under consideration.

Static Fusion :

Dynamic Fusion:

The frame and its model do not change with time

The frame and/or its model change with time

✫✪
✬✩

✫✪
✬✩

✫✪
✬✩❅❘

Young

�✠
Old

✛ white hairs

✫✪
✬✩
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Example in Zadeh’s class

Inputs

When  0 < e
1
 < 1 and 0 < e

2
 < 1, Dempster!s rule provides in this case same result whatever the values of e

1
 

and e
2
 are !!! Dempster!s rule is mathematically not defined when e

1
= e

2
= 0. 

It provides only a coherent and trivial solution when e
1
= e

2
= 1.
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5.3.2 Generalization with Θ = {θ1, θ2, θ3}

Let’s consider 0 < ε1, ε2 < 1 be two very tiny positive numbers (close to zero), the frame of discernment

be Θ = {θ1, θ2, θ3}, have two experts (independent sources of evidence s1 and s2) giving the belief masses

m1(θ1) = 1 − ε1 m1(θ2) = 0 m1(θ3) = ε1

m2(θ1) = 0 m2(θ2) = 1 − ε2 m2(θ3) = ε2

From now on, we prefer to use matrices to describe the masses, i.e.



1 − ε1 0 ε1

0 1 − ε2 ε2





• Using Dempster’s rule of combination, one gets

m(θ3) =
(ε1ε2)

(1 − ε1) · 0 + 0 · (1 − ε2) + ε1ε2
= 1

which is absurd (or at least counter-intuitive). Note that whatever positive values for ε1, ε2 are,

Dempster’s rule of combination provides always the same result (one) which is abnormal. The only

acceptable and correct result obtained by Dempster’s rule is really obtained only in the trivial case

when ε1 = ε2 = 1, i.e. when both sources agree in θ3 with certainty which is obvious.

• Using the DSm rule of combination based on free-DSm model, one gets m(θ3) = ε1ε2, m(θ1 ∩ θ2) =

(1 − ε1)(1 − ε2), m(θ1 ∩ θ3) = (1 − ε1)ε2, m(θ2 ∩ θ3) = (1 − ε2)ε1 and the others are zero which

appears more reliable/trustable.

• Going back to Shafer’s model and using the hybrid DSm rule of combination, one gets m(θ3) = ε1ε2,

m(θ1 ∪ θ2) = (1 − ε1)(1 − ε2), m(θ1 ∪ θ3) = (1 − ε1)ε2, m(θ2 ∪ θ3) = (1 − ε2)ε1 and the others are

zero.

Note that in the special case when ε1 = ε2 = 1/2, one has

m1(θ1) = 1/2 m1(θ2) = 0 m1(θ3) = 1/2 and m2(θ1) = 0 m2(θ2) = 1/2 m2(θ3) = 1/2

Dempster’s rule of combinations still yields m(θ3) = 1 while the hybrid DSm rule based on the same

Shafer’s model yields now m(θ3) = 1/4, m(θ1 ∪ θ2) = 1/4, m(θ1 ∪ θ3) = 1/4, m(θ2 ∪ θ3) = 1/4 which is

normal.

5.3.3 Generalization with Θ = {θ1, θ2, θ3, θ4}

Let’s consider 0 < ε1, ε2, ε3 < 1 be three very tiny positive numbers, the frame of discernment be

Θ = {θ1, θ2, θ3, θ4}, have two experts giving the mass matrix



1 − ε1 − ε2 0 ε1 ε2

0 1 − ε3 0 ε3





(this is our hybrid modelM one wants to deal with), then one uses the hybrid DSm rule for sets:

mI
M(θ1 ∩ θ2) = 0

and

mI
M(θ1 ∪ θ2) = (0.16, 0.58]

, the others imprecise masses are not changed. In other words, one gets now with hybrid DSm rule applied to imprecise

beliefs:

A ∈ DΘ mI
M(A) = [mI

1 ⊕ mI
2](A)

θ1 [0.04, 0.10]∪ [0.12, 0.15]
θ2 [0, 0.40]∪ [0.42, 0.48]

θ1 ∩ θ2
M
≡ ∅ 0

θ1 ∪ θ2 (0.16, 0.58]

m(θ3) = ε1ε2 m(θ1 ∩ θ2) = (1 − ε1)(1 − ε2) m(θ1 ∩ θ3) = (1 − ε1)ε2 m(θ2 ∩ θ3) = (1 − ε2)ε1

m(θ3) = ε1ε2 m(θ1 ∪ θ2) = (1 − ε1)(1 − ε2) m(θ1 ∪ θ3) = (1 − ε1)ε2 m(θ2 ∪ θ3) = (1 − ε2)ε1

m(θ3) = e1e2 m(θ1 ∩ θ2) = (1 − e1)(1 − e2) m(θ1 ∩ θ3) = (1 − e1)e2 m(θ2 ∩ θ3) = (1 − e2)e1

m(θ3) = e1e2 m(θ1 ∪ θ2) = (1 − e1)(1 − e2) m(θ1 ∪ θ3) = (1 − e1)e2 m(θ2 ∪ θ3) = (1 − e2)e1

m(θ3) =
e1e2

(1 − e1) · 0 + 0 · (1 − e2) + e1e2
= 1

2 Foundations of the DST and DSmT

2.1 The DST and the Shafer’s model

The Shafer’s model, denoted hereM0(Θ), on which is based the Dempster-Shafer Theory, assumes an exhaustive and
exclusive frame of discernment of the problem under consideration Θ = {θ1, θ2, . . . , θn}. The model requires actually
that an ultimate refinement of the problem is possible so that θi can always be well precisely defined/identified in such

a way that we are sure that they are exclusive and exhaustive. From this model, a basic belief assignment (bba) mi(.) :
2Θ → [0, 1] such thatmi(∅) = 0 and

∑

A∈2Θ mi(A) = 1 associated to a given body of evidence Bi is defined, where 2Θ

is the power set ofΘ, i.e. the set of all subsets ofΘ. Within DST, the fusion (combination) of two independent sources of
evidence B1 and B2 is obtained through the Dempster’s rule of combination [9] : [m1 ⊕ m2](∅) = 0 and ∀B *= ∅ ∈ 2Θ:

[m1 ⊕ m2](B) =

∑

X∩Y =B m1(X)m2(Y )

1 −
∑

X∩Y =∅ m1(X)m2(Y )
(1)

The notation
∑

X∩Y =B represents the sum over all X, Y ∈ 2Θ such that X ∩ Y = B. The Dempster’s sum
m(.) ! [m1⊕m2](.) is considered as a basic belief assignment if and only if the denominator in equation (1) is non-zero.
The term k12 !

∑

X∩Y =∅ m1(X)m2(Y ) is called degree of conflict between the sources B1 and B2. When k12 = 1, the
Dempster’s summ(.) does not exist and the bodies of evidences B1 and B2 are said to be in full contradiction. This rule

of combination can be extended easily for the combination of n > 2 independent sources of evidence. The DST, although
very attractive because of its solid mathematical ground, presents however several weaknesses and limitations because of

the Shafer’s model itself (which does not necessary hold in some fusion problems involving continuous and ill-defined

concepts), the justification of the Dempster’s rule of combination frequently subject to criticisms, but mainly because

of counter-intuitive results given by the Dempster’s rule when the conflict between sources becomes important. Several

classes of infinite counter-examples to the Dempster’s rule can be found in [13]. To overcome these limitations, Jean Dez-

ert and Florentin Smarandache propose a new mathematical theory based on other models (free or hybrid DSm models)

with new reliable rules of combinations able to deal with any kind of sources ( imprecises, uncertain and paradoxist, i.e.

highly conflicting). This is presented in next subsections.

If one adopts Shafer!s model and DSmH rule

(this is our hybrid modelM one wants to deal with), then one uses the hybrid DSm rule for sets:

mI
M(θ1 ∩ θ2) = 0

and

mI
M(θ1 ∪ θ2) = (0.16, 0.58]

, the others imprecise masses are not changed. In other words, one gets now with hybrid DSm rule applied to imprecise

beliefs:

A ∈ DΘ mI
M(A) = [mI

1 ⊕ mI
2](A)

θ1 [0.04, 0.10]∪ [0.12, 0.15]
θ2 [0, 0.40]∪ [0.42, 0.48]

θ1 ∩ θ2
M
≡ ∅ 0

θ1 ∪ θ2 (0.16, 0.58]

m(θ3) = ε1ε2 m(θ1 ∩ θ2) = (1 − ε1)(1 − ε2) m(θ1 ∩ θ3) = (1 − ε1)ε2 m(θ2 ∩ θ3) = (1 − ε2)ε1

m(θ3) = ε1ε2 m(θ1 ∪ θ2) = (1 − ε1)(1 − ε2) m(θ1 ∪ θ3) = (1 − ε1)ε2 m(θ2 ∪ θ3) = (1 − ε2)ε1

m(θ3) = e1e2 m(θ1 ∩ θ2) = (1 − e1)(1 − e2) m(θ1 ∩ θ3) = (1 − e1)e2 m(θ2 ∩ θ3) = (1 − e2)e1

m(θ3) = e1e2 m(θ1 ∪ θ2) = (1 − e1)(1 − e2) m(θ1 ∪ θ3) = (1 − e1)e2 m(θ2 ∪ θ3) = (1 − e2)e1

2 Foundations of the DST and DSmT

2.1 The DST and the Shafer’s model

The Shafer’s model, denoted hereM0(Θ), on which is based the Dempster-Shafer Theory, assumes an exhaustive and
exclusive frame of discernment of the problem under consideration Θ = {θ1, θ2, . . . , θn}. The model requires actually
that an ultimate refinement of the problem is possible so that θi can always be well precisely defined/identified in such

a way that we are sure that they are exclusive and exhaustive. From this model, a basic belief assignment (bba) mi(.) :
2Θ → [0, 1] such thatmi(∅) = 0 and

∑

A∈2Θ mi(A) = 1 associated to a given body of evidence Bi is defined, where 2Θ

is the power set ofΘ, i.e. the set of all subsets ofΘ. Within DST, the fusion (combination) of two independent sources of
evidence B1 and B2 is obtained through the Dempster’s rule of combination [9] : [m1 ⊕ m2](∅) = 0 and ∀B *= ∅ ∈ 2Θ:

[m1 ⊕ m2](B) =

∑

X∩Y =B m1(X)m2(Y )

1 −
∑

X∩Y =∅ m1(X)m2(Y )
(1)

The notation
∑

X∩Y =B represents the sum over all X, Y ∈ 2Θ such that X ∩ Y = B. The Dempster’s sum
m(.) ! [m1⊕m2](.) is considered as a basic belief assignment if and only if the denominator in equation (1) is non-zero.
The term k12 !

∑

X∩Y =∅ m1(X)m2(Y ) is called degree of conflict between the sources B1 and B2. When k12 = 1, the
Dempster’s summ(.) does not exist and the bodies of evidences B1 and B2 are said to be in full contradiction. This rule

of combination can be extended easily for the combination of n > 2 independent sources of evidence. The DST, although
very attractive because of its solid mathematical ground, presents however several weaknesses and limitations because of

the Shafer’s model itself (which does not necessary hold in some fusion problems involving continuous and ill-defined

concepts), the justification of the Dempster’s rule of combination frequently subject to criticisms, but mainly because

of counter-intuitive results given by the Dempster’s rule when the conflict between sources becomes important. Several

classes of infinite counter-examples to the Dempster’s rule can be found in [13]. To overcome these limitations, Jean Dez-

ert and Florentin Smarandache propose a new mathematical theory based on other models (free or hybrid DSm models)

with new reliable rules of combinations able to deal with any kind of sources ( imprecises, uncertain and paradoxist, i.e.

highly conflicting). This is presented in next subsections.

(DSmH) provides a more consistent result which depends on e
1 

and e
2
.  

e
1 

and e
2 

can take any values in [0,1].

If one adopts Shafer!s model

(this is our hybrid modelM one wants to deal with), then one uses the hybrid DSm rule for sets:

mI
M(θ1 ∩ θ2) = 0

and

mI
M(θ1 ∪ θ2) = (0.16, 0.58]

, the others imprecise masses are not changed. In other words, one gets now with hybrid DSm rule applied to imprecise

beliefs:

A ∈ DΘ mI
M(A) = [mI

1 ⊕ mI
2](A)

θ1 [0.04, 0.10]∪ [0.12, 0.15]
θ2 [0, 0.40]∪ [0.42, 0.48]

θ1 ∩ θ2
M
≡ ∅ 0

θ1 ∪ θ2 (0.16, 0.58]

m(θ3) = ε1ε2 m(θ1 ∩ θ2) = (1 − ε1)(1 − ε2) m(θ1 ∩ θ3) = (1 − ε1)ε2 m(θ2 ∩ θ3) = (1 − ε2)ε1

m(θ3) = ε1ε2 m(θ1 ∪ θ2) = (1 − ε1)(1 − ε2) m(θ1 ∪ θ3) = (1 − ε1)ε2 m(θ2 ∪ θ3) = (1 − ε2)ε1

m(θ3) = e1e2 m(θ1 ∩ θ2) = (1 − e1)(1 − e2) m(θ1 ∩ θ3) = (1 − e1)e2 m(θ2 ∩ θ3) = (1 − e2)e1

m(θ3) = e1e2 m(θ1 ∪ θ2) = (1 − e1)(1 − e2) m(θ1 ∪ θ3) = (1 − e1)e2 m(θ2 ∪ θ3) = (1 − e2)e1

2 Foundations of the DST and DSmT

2.1 The DST and the Shafer’s model

The Shafer’s model, denoted hereM0(Θ), on which is based the Dempster-Shafer Theory, assumes an exhaustive and
exclusive frame of discernment of the problem under consideration Θ = {θ1, θ2, . . . , θn}. The model requires actually
that an ultimate refinement of the problem is possible so that θi can always be well precisely defined/identified in such

a way that we are sure that they are exclusive and exhaustive. From this model, a basic belief assignment (bba) mi(.) :
2Θ → [0, 1] such thatmi(∅) = 0 and

∑

A∈2Θ mi(A) = 1 associated to a given body of evidence Bi is defined, where 2Θ

is the power set ofΘ, i.e. the set of all subsets ofΘ. Within DST, the fusion (combination) of two independent sources of
evidence B1 and B2 is obtained through the Dempster’s rule of combination [9] : [m1 ⊕ m2](∅) = 0 and ∀B *= ∅ ∈ 2Θ:

[m1 ⊕ m2](B) =

∑

X∩Y =B m1(X)m2(Y )

1 −
∑

X∩Y =∅ m1(X)m2(Y )
(1)

The notation
∑

X∩Y =B represents the sum over all X, Y ∈ 2Θ such that X ∩ Y = B. The Dempster’s sum
m(.) ! [m1⊕m2](.) is considered as a basic belief assignment if and only if the denominator in equation (1) is non-zero.
The term k12 !

∑

X∩Y =∅ m1(X)m2(Y ) is called degree of conflict between the sources B1 and B2. When k12 = 1, the
Dempster’s summ(.) does not exist and the bodies of evidences B1 and B2 are said to be in full contradiction. This rule

of combination can be extended easily for the combination of n > 2 independent sources of evidence. The DST, although
very attractive because of its solid mathematical ground, presents however several weaknesses and limitations because of

the Shafer’s model itself (which does not necessary hold in some fusion problems involving continuous and ill-defined

concepts), the justification of the Dempster’s rule of combination frequently subject to criticisms, but mainly because

of counter-intuitive results given by the Dempster’s rule when the conflict between sources becomes important. Several

classes of infinite counter-examples to the Dempster’s rule can be found in [13]. To overcome these limitations, Jean Dez-

ert and Florentin Smarandache propose a new mathematical theory based on other models (free or hybrid DSm models)

with new reliable rules of combinations able to deal with any kind of sources ( imprecises, uncertain and paradoxist, i.e.

highly conflicting). This is presented in next subsections.

If one adopts free DSm model and DSmC rule

PCR5 versus Bayes’ formula
for combining probability densities

(working notes V3)

1 Principles of estimation

m1(θ1) = 1 − e1 m1(θ2) = 0 m1(θ3) = e1

m2(θ1) = 0 m2(θ2) = 1 − e2 m2(θ3) = e2

Let’s consider x an hidden/unknown (scalar or vector-valued) quantity called parameter1 and some obser-
vation z of x. This means that z is a function (not necessarily known) of x, i.e. z = h(x). An estimator is a
function of z which transforms the observation z into an estimate x̂(z) of x in some sense. Closer x̂(z) is to
x for a given distance measure, better is the estimator. For notation convenience, we will use x̂ instead x̂(z)
when no confusion is possible. According [?], an optimal estimator is a computational algorithm that processes
observations to yield an estimate of a variable of interest that minimizes a certain error criterion. In tracking
applications, the parameter x is usually time-varying and it corresponds to the state of a dynamic system under
interest. The estimation process uses knowledge or modeling about the evolution the state of the dynamic
system and the probabilistic characterization of the random factors and the prior information. The estimation
error x̃ corresponding to x̂ is

x̃ ! x − x̂

Models for estimation of x [?]:

• Bayesian approach: The unknown parameter x to estimate from observation is considered as a random
variable with a given prior density function p(x). With this model, a realization of x according to p(x) is
assumed to have occured and this value stays constant during the observation process. We would like for
each measurement to have an estimate that converges in some sense to the corresponding realization of
x, and this should hold for all x.

1For simplicity, we assume x being time invariant.

1Same conclusion is drawn for examples in Smarandache!s class.
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5.3.2 Generalization with Θ = {θ1, θ2, θ3}

Let’s consider 0 < ε1, ε2 < 1 be two very tiny positive numbers (close to zero), the frame of discernment

be Θ = {θ1, θ2, θ3}, have two experts (independent sources of evidence s1 and s2) giving the belief masses

m1(θ1) = 1 − ε1 m1(θ2) = 0 m1(θ3) = ε1

m2(θ1) = 0 m2(θ2) = 1 − ε2 m2(θ3) = ε2

From now on, we prefer to use matrices to describe the masses, i.e.



1 − ε1 0 ε1

0 1 − ε2 ε2





• Using Dempster’s rule of combination, one gets

m(θ3) =
(ε1ε2)

(1 − ε1) · 0 + 0 · (1 − ε2) + ε1ε2
= 1

which is absurd (or at least counter-intuitive). Note that whatever positive values for ε1, ε2 are,

Dempster’s rule of combination provides always the same result (one) which is abnormal. The only

acceptable and correct result obtained by Dempster’s rule is really obtained only in the trivial case

when ε1 = ε2 = 1, i.e. when both sources agree in θ3 with certainty which is obvious.

• Using the DSm rule of combination based on free-DSm model, one gets m(θ3) = ε1ε2, m(θ1 ∩ θ2) =

(1 − ε1)(1 − ε2), m(θ1 ∩ θ3) = (1 − ε1)ε2, m(θ2 ∩ θ3) = (1 − ε2)ε1 and the others are zero which

appears more reliable/trustable.

• Going back to Shafer’s model and using the hybrid DSm rule of combination, one gets m(θ3) = ε1ε2,

m(θ1 ∪ θ2) = (1 − ε1)(1 − ε2), m(θ1 ∪ θ3) = (1 − ε1)ε2, m(θ2 ∪ θ3) = (1 − ε2)ε1 and the others are

zero.

Note that in the special case when ε1 = ε2 = 1/2, one has

m1(θ1) = 1/2 m1(θ2) = 0 m1(θ3) = 1/2 and m2(θ1) = 0 m2(θ2) = 1/2 m2(θ3) = 1/2

Dempster’s rule of combinations still yields m(θ3) = 1 while the hybrid DSm rule based on the same

Shafer’s model yields now m(θ3) = 1/4, m(θ1 ∪ θ2) = 1/4, m(θ1 ∪ θ3) = 1/4, m(θ2 ∪ θ3) = 1/4 which is

normal.

5.3.3 Generalization with Θ = {θ1, θ2, θ3, θ4}

Let’s consider 0 < ε1, ε2, ε3 < 1 be three very tiny positive numbers, the frame of discernment be

Θ = {θ1, θ2, θ3, θ4}, have two experts giving the mass matrix



1 − ε1 − ε2 0 ε1 ε2

0 1 − ε3 0 ε3





Frame

Shafer!s model

(DS) is not robust

A small variation of " induces a big 

variation of (DS) result

(DSmH) is more robust

A small variation of " induces a small 

variation of (DSmH) result.

m(θi) = [ms1 ⊕ms2 ⊕ . . .⊕msn ](θi) = 1
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5.3.2 Generalization with Θ = {θ1, θ2, θ3}

Let’s consider 0 < ε1, ε2 < 1 be two very tiny positive numbers (close to zero), the frame of discernment

be Θ = {θ1, θ2, θ3}, have two experts (independent sources of evidence s1 and s2) giving the belief masses

m1(θ1) = 1 − ε1 m1(θ2) = 0 m1(θ3) = ε1

m2(θ1) = 0 m2(θ2) = 1 − ε2 m2(θ3) = ε2

From now on, we prefer to use matrices to describe the masses, i.e.



1 − ε1 0 ε1

0 1 − ε2 ε2





• Using Dempster’s rule of combination, one gets

m(θ3) =
(ε1ε2)

(1 − ε1) · 0 + 0 · (1 − ε2) + ε1ε2
= 1

which is absurd (or at least counter-intuitive). Note that whatever positive values for ε1, ε2 are,

Dempster’s rule of combination provides always the same result (one) which is abnormal. The only

acceptable and correct result obtained by Dempster’s rule is really obtained only in the trivial case

when ε1 = ε2 = 1, i.e. when both sources agree in θ3 with certainty which is obvious.

• Using the DSm rule of combination based on free-DSm model, one gets m(θ3) = ε1ε2, m(θ1 ∩ θ2) =

(1 − ε1)(1 − ε2), m(θ1 ∩ θ3) = (1 − ε1)ε2, m(θ2 ∩ θ3) = (1 − ε2)ε1 and the others are zero which

appears more reliable/trustable.

• Going back to Shafer’s model and using the hybrid DSm rule of combination, one gets m(θ3) = ε1ε2,

m(θ1 ∪ θ2) = (1 − ε1)(1 − ε2), m(θ1 ∪ θ3) = (1 − ε1)ε2, m(θ2 ∪ θ3) = (1 − ε2)ε1 and the others are

zero.

Note that in the special case when ε1 = ε2 = 1/2, one has

m1(θ1) = 1/2 m1(θ2) = 0 m1(θ3) = 1/2 and m2(θ1) = 0 m2(θ2) = 1/2 m2(θ3) = 1/2

Dempster’s rule of combinations still yields m(θ3) = 1 while the hybrid DSm rule based on the same

Shafer’s model yields now m(θ3) = 1/4, m(θ1 ∪ θ2) = 1/4, m(θ1 ∪ θ3) = 1/4, m(θ2 ∪ θ3) = 1/4 which is

normal.
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variation of (DSmH) result.
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Other masses are zero.

Counter-intuitive result

DSmT still provides a coherent result

(this is our hybrid modelM one wants to deal with), then one uses the hybrid DSm rule for sets:

mI
M(θ1 ∩ θ2) = 0

and

mI
M(θ1 ∪ θ2) = (0.16, 0.58]

, the others imprecise masses are not changed. In other words, one gets now with hybrid DSm rule applied to imprecise

beliefs:

A ∈ DΘ mI
M(A) = [mI

1 ⊕ mI
2](A)

θ1 [0.04, 0.10]∪ [0.12, 0.15]
θ2 [0, 0.40]∪ [0.42, 0.48]

θ1 ∩ θ2
M
≡ ∅ 0

θ1 ∪ θ2 (0.16, 0.58]

m(θ3) = ε1ε2 m(θ1 ∩ θ2) = (1 − ε1)(1 − ε2) m(θ1 ∩ θ3) = (1 − ε1)ε2 m(θ2 ∩ θ3) = (1 − ε2)ε1

m(θ3) = ε1ε2 m(θ1 ∪ θ2) = (1 − ε1)(1 − ε2) m(θ1 ∪ θ3) = (1 − ε1)ε2 m(θ2 ∪ θ3) = (1 − ε2)ε1

m(θ3) = e1e2 m(θ1 ∩ θ2) = (1 − e1)(1 − e2) m(θ1 ∩ θ3) = (1 − e1)e2 m(θ2 ∩ θ3) = (1 − e2)e1

m(θ3) = e1e2 m(θ1 ∪ θ2) = (1 − e1)(1 − e2) m(θ1 ∪ θ3) = (1 − e1)e2 m(θ2 ∪ θ3) = (1 − e2)e1

m(θ3) =
e1e2

(1 − e1) · 0 + 0 · (1 − e2) + e1e2
= 1

Θ = {θ1, θ2, θ3, θ4}

m1(θ1) = 0.99 m1(θ3 ∪ θ4) = 0.01

m2(θ2) = 0.98 m2(θ3 ∪ θ4) = 0.02

2 Foundations of the DST and DSmT

2.1 The DST and the Shafer’s model

The Shafer’s model, denoted hereM0(Θ), on which is based the Dempster-Shafer Theory, assumes an exhaustive and
exclusive frame of discernment of the problem under consideration Θ = {θ1, θ2, . . . , θn}. The model requires actually
that an ultimate refinement of the problem is possible so that θi can always be well precisely defined/identified in such

a way that we are sure that they are exclusive and exhaustive. From this model, a basic belief assignment (bba) mi(.) :
2Θ → [0, 1] such thatmi(∅) = 0 and

∑

A∈2Θ mi(A) = 1 associated to a given body of evidence Bi is defined, where 2Θ

is the power set ofΘ, i.e. the set of all subsets ofΘ. Within DST, the fusion (combination) of two independent sources of
evidence B1 and B2 is obtained through the Dempster’s rule of combination [9] : [m1 ⊕ m2](∅) = 0 and ∀B *= ∅ ∈ 2Θ:

[m1 ⊕ m2](B) =

∑

X∩Y =B m1(X)m2(Y )

1 −
∑

X∩Y =∅ m1(X)m2(Y )
(1)

The notation
∑

X∩Y =B represents the sum over all X, Y ∈ 2Θ such that X ∩ Y = B. The Dempster’s sum
m(.) ! [m1⊕m2](.) is considered as a basic belief assignment if and only if the denominator in equation (1) is non-zero.
The term k12 !

∑

X∩Y =∅ m1(X)m2(Y ) is called degree of conflict between the sources B1 and B2. When k12 = 1, the
Dempster’s summ(.) does not exist and the bodies of evidences B1 and B2 are said to be in full contradiction. This rule

of combination can be extended easily for the combination of n > 2 independent sources of evidence. The DST, although
very attractive because of its solid mathematical ground, presents however several weaknesses and limitations because of
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= 1

Θ = {θ1, θ2, θ3, θ4}

m1(θ1) = 0.99 m1(θ3 ∪ θ4) = 0.01

m2(θ2) = 0.98 m2(θ3 ∪ θ4) = 0.02

2 Foundations of the DST and DSmT

2.1 The DST and the Shafer’s model

The Shafer’s model, denoted hereM0(Θ), on which is based the Dempster-Shafer Theory, assumes an exhaustive and
exclusive frame of discernment of the problem under consideration Θ = {θ1, θ2, . . . , θn}. The model requires actually
that an ultimate refinement of the problem is possible so that θi can always be well precisely defined/identified in such

a way that we are sure that they are exclusive and exhaustive. From this model, a basic belief assignment (bba) mi(.) :
2Θ → [0, 1] such thatmi(∅) = 0 and

∑

A∈2Θ mi(A) = 1 associated to a given body of evidence Bi is defined, where 2Θ

is the power set ofΘ, i.e. the set of all subsets ofΘ. Within DST, the fusion (combination) of two independent sources of
evidence B1 and B2 is obtained through the Dempster’s rule of combination [9] : [m1 ⊕ m2](∅) = 0 and ∀B *= ∅ ∈ 2Θ:

[m1 ⊕ m2](B) =

∑

X∩Y =B m1(X)m2(Y )

1 −
∑

X∩Y =∅ m1(X)m2(Y )
(1)

The notation
∑

X∩Y =B represents the sum over all X, Y ∈ 2Θ such that X ∩ Y = B. The Dempster’s sum
m(.) ! [m1⊕m2](.) is considered as a basic belief assignment if and only if the denominator in equation (1) is non-zero.
The term k12 !

∑

X∩Y =∅ m1(X)m2(Y ) is called degree of conflict between the sources B1 and B2. When k12 = 1, the
Dempster’s summ(.) does not exist and the bodies of evidences B1 and B2 are said to be in full contradiction. This rule

of combination can be extended easily for the combination of n > 2 independent sources of evidence. The DST, although
very attractive because of its solid mathematical ground, presents however several weaknesses and limitations because of

116 CHAPTER 5. COUNTER-EXAMPLES TO DEMPSTER’S RULE OF COMBINATION

5.4.1 Example with Θ = {θ1, θ2, θ3, θ4}

Let’s consider Θ = {θ1, θ2, θ3, θ4}, two independent experts, and the mass matrix:

θ1 θ2 θ3 θ4 θ3 ∪ θ4

m1(.) 0.99 0 0 0 0.01

m2(.) 0 0.98 0 0 0.02

If one applies Dempster’s rule, one gets

m(θ3 ∪ θ4) =
(0.01 · 0.02)

(0 + 0 + 0 + 0 + 0.01 · 0.02)
= 1

(total ignorance), which doesn’t bring any information to the fusion. This example looks similar to

Zadeh’s example, but is different because it is referring to uncertainty (not to contradictory) result.

Using the DSm classical rule: m(θ1 ∩θ2) = 0.9702, m(θ1∩ (θ3 ∪θ4)) = 0.0198, m(θ2 ∩ (θ3 ∪θ4)) = 0.0098,

m(θ3 ∪ θ4) = 0.0002. Suppose now one finds out that all intersections are empty (i.e. one adopts

Shafer’s model). Using the hybrid DSm rule one gets: mh(θ1 ∪ θ2) = 0.9702, mh(θ1 ∪ θ3 ∪ θ4) = 0.0198,

mh(θ2 ∪ θ3 ∪ θ4) = 0.0098, mh(θ3 ∪ θ4) = 0.0002.

5.4.2 Example with Θ = {θ1, θ2, θ3, θ4, θ5}

Let’s consider Θ = {θ1, θ2, θ3, θ4, , θ5}, three independent experts, and the mass matrix:

θ1 θ2 θ3 θ4 θ5 θ4 ∪ θ5

m1(.) 0.99 0 0 0 0 0.01

m2(.) 0 0.98 0.01 0 0 0.01

m3(.) 0.01 0.01 0.97 0 0 0.01

• If one applies Dempster’s rule, one gets

m(θ4 ∪ θ5) =
(0.01 · 0.01 · 0.01)

(0 + 0 + 0 + 0 + 0.01 · 0.01 · 0.01)
= 1

(total ignorance), which doesn’t bring any information to the fusion.

• Using the DSm classical rule one gets:

m(θ1 ∩ θ2) = 0.99 · 0.98 · 0.01 + 0.99 · 0.98 · 0.01 = 0.019404

m(θ1 ∩ θ3) = 0.99 · 0.01 · 0.01 + 0.99 · 0.01 · 0.97 = 0.009702

m(θ1 ∩ θ2 ∩ θ3) = 0.99 · 0.98 · 0.97 + 0.99 · 0.01 · 0.01 = 0.941193

m(θ1 ∩ θ3 ∩ (θ4 ∪ θ5)) = 0.99 · 0.01 · 0.01 + 0.99 · 0.01 · 0.97 + 0.01 · 0.01 · 0.01 = 0.009703

m(θ1 ∩ (θ4 ∪ θ5)) = 0.99 · 0.01 · 0.01 + 0.99 · 0.01 · 0.01 + 0.01 · 0.01 · 0.01 = 0.000199

m((θ4 ∪ θ5) ∩ θ2 ∩ θ1) = 0.01 · 0.98 · 0.01 + 0.99 · 0.01 · 0.01 + 0.99 · 0.98 · 0.01 = 0.009899

(this is our hybrid modelM one wants to deal with), then one uses the hybrid DSm rule for sets:

mI
M(θ1 ∩ θ2) = 0

and

mI
M(θ1 ∪ θ2) = (0.16, 0.58]

, the others imprecise masses are not changed. In other words, one gets now with hybrid DSm rule applied to imprecise

beliefs:

A ∈ DΘ mI
M(A) = [mI

1 ⊕ mI
2](A)

θ1 [0.04, 0.10]∪ [0.12, 0.15]
θ2 [0, 0.40]∪ [0.42, 0.48]

θ1 ∩ θ2
M
≡ ∅ 0

θ1 ∪ θ2 (0.16, 0.58]

m(θ3) = ε1ε2 m(θ1 ∩ θ2) = (1 − ε1)(1 − ε2) m(θ1 ∩ θ3) = (1 − ε1)ε2 m(θ2 ∩ θ3) = (1 − ε2)ε1

m(θ3) = ε1ε2 m(θ1 ∪ θ2) = (1 − ε1)(1 − ε2) m(θ1 ∪ θ3) = (1 − ε1)ε2 m(θ2 ∪ θ3) = (1 − ε2)ε1

m(θ3) = e1e2 m(θ1 ∩ θ2) = (1 − e1)(1 − e2) m(θ1 ∩ θ3) = (1 − e1)e2 m(θ2 ∩ θ3) = (1 − e2)e1

m(θ3) = e1e2 m(θ1 ∪ θ2) = (1 − e1)(1 − e2) m(θ1 ∪ θ3) = (1 − e1)e2 m(θ2 ∪ θ3) = (1 − e2)e1

m(θ3) =
e1e2

(1 − e1) · 0 + 0 · (1 − e2) + e1e2
= 1

Θ = {θ1, θ2, θ3, θ4}

m1(θ1) = 0.99 m1(θ3 ∪ θ4) = 0.01

m2(θ2) = 0.98 m2(θ3 ∪ θ4) = 0.02

Using the DSm classical rule:

m(θ1 ∩ θ2) = 0.9702 m(θ1 ∩ (θ3 ∪ θ4)) = 0.0198 m(θ2 ∩ (θ3 ∪ θ4)) = 0.0098 m(θ3 ∪ θ4) = 0.0002

m(θ1 ∪ θ2) = 0.9702 m(θ1 ∪ θ3 ∪ θ4) = 0.0198 m(θ2 ∪ θ3 ∪ θ4) = 0.0098 m(θ3 ∪ θ4) = 0.0002

2 Foundations of the DST and DSmT

2.1 The DST and the Shafer’s model

The Shafer’s model, denoted hereM0(Θ), on which is based the Dempster-Shafer Theory, assumes an exhaustive and
exclusive frame of discernment of the problem under consideration Θ = {θ1, θ2, . . . , θn}. The model requires actually
that an ultimate refinement of the problem is possible so that θi can always be well precisely defined/identified in such

a way that we are sure that they are exclusive and exhaustive. From this model, a basic belief assignment (bba) mi(.) :
2Θ → [0, 1] such thatmi(∅) = 0 and

∑

A∈2Θ mi(A) = 1 associated to a given body of evidence Bi is defined, where 2Θ

is the power set ofΘ, i.e. the set of all subsets ofΘ. Within DST, the fusion (combination) of two independent sources of
evidence B1 and B2 is obtained through the Dempster’s rule of combination [?] : [m1 ⊕ m2](∅) = 0 and ∀B *= ∅ ∈ 2Θ:

[m1 ⊕ m2](B) =

∑

X∩Y =B m1(X)m2(Y )

1 −
∑

X∩Y =∅ m1(X)m2(Y )
(1)

(this is our hybrid modelM one wants to deal with), then one uses the hybrid DSm rule for sets:

mI
M(θ1 ∩ θ2) = 0

and

mI
M(θ1 ∪ θ2) = (0.16, 0.58]

, the others imprecise masses are not changed. In other words, one gets now with hybrid DSm rule applied to imprecise

beliefs:

A ∈ DΘ mI
M(A) = [mI

1 ⊕ mI
2](A)

θ1 [0.04, 0.10]∪ [0.12, 0.15]
θ2 [0, 0.40]∪ [0.42, 0.48]

θ1 ∩ θ2
M
≡ ∅ 0

θ1 ∪ θ2 (0.16, 0.58]

m(θ3) = ε1ε2 m(θ1 ∩ θ2) = (1 − ε1)(1 − ε2) m(θ1 ∩ θ3) = (1 − ε1)ε2 m(θ2 ∩ θ3) = (1 − ε2)ε1

m(θ3) = ε1ε2 m(θ1 ∪ θ2) = (1 − ε1)(1 − ε2) m(θ1 ∪ θ3) = (1 − ε1)ε2 m(θ2 ∪ θ3) = (1 − ε2)ε1

m(θ3) = e1e2 m(θ1 ∩ θ2) = (1 − e1)(1 − e2) m(θ1 ∩ θ3) = (1 − e1)e2 m(θ2 ∩ θ3) = (1 − e2)e1

m(θ3) = e1e2 m(θ1 ∪ θ2) = (1 − e1)(1 − e2) m(θ1 ∪ θ3) = (1 − e1)e2 m(θ2 ∪ θ3) = (1 − e2)e1

m(θ3) =
e1e2

(1 − e1) · 0 + 0 · (1 − e2) + e1e2
= 1

Θ = {θ1, θ2, θ3, θ4}

m1(θ1) = 0.99 m1(θ3 ∪ θ4) = 0.01

m2(θ2) = 0.98 m2(θ3 ∪ θ4) = 0.02

Using the DSm classical rule:

m(θ1 ∩ θ2) = 0.9702 m(θ1 ∩ (θ3 ∪ θ4)) = 0.0198 m(θ2 ∩ (θ3 ∪ θ4)) = 0.0098 m(θ3 ∪ θ4) = 0.0002

m(θ1 ∪ θ2) = 0.9702 m(θ1 ∪ θ3 ∪ θ4) = 0.0198 m(θ2 ∪ θ3 ∪ θ4) = 0.0098 m(θ3 ∪ θ4) = 0.0002

2 Foundations of the DST and DSmT

2.1 The DST and the Shafer’s model

The Shafer’s model, denoted hereM0(Θ), on which is based the Dempster-Shafer Theory, assumes an exhaustive and
exclusive frame of discernment of the problem under consideration Θ = {θ1, θ2, . . . , θn}. The model requires actually
that an ultimate refinement of the problem is possible so that θi can always be well precisely defined/identified in such

a way that we are sure that they are exclusive and exhaustive. From this model, a basic belief assignment (bba) mi(.) :
2Θ → [0, 1] such thatmi(∅) = 0 and

∑

A∈2Θ mi(A) = 1 associated to a given body of evidence Bi is defined, where 2Θ

is the power set ofΘ, i.e. the set of all subsets ofΘ. Within DST, the fusion (combination) of two independent sources of
evidence B1 and B2 is obtained through the Dempster’s rule of combination [?] : [m1 ⊕ m2](∅) = 0 and ∀B *= ∅ ∈ 2Θ:

[m1 ⊕ m2](B) =

∑

X∩Y =B m1(X)m2(Y )

1 −
∑

X∩Y =∅ m1(X)m2(Y )
(1)

If one adopts Shafer!s model

If one adopts Shafer!s model

If one adopts free DSm model

(DSmC)

(DSmH)

(DS)
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Testinomy example (dynamic case)
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5.3.2 Generalization with Θ = {θ1, θ2, θ3}

Let’s consider 0 < ε1, ε2 < 1 be two very tiny positive numbers (close to zero), the frame of discernment

be Θ = {θ1, θ2, θ3}, have two experts (independent sources of evidence s1 and s2) giving the belief masses

m1(θ1) = 1 − ε1 m1(θ2) = 0 m1(θ3) = ε1

m2(θ1) = 0 m2(θ2) = 1 − ε2 m2(θ3) = ε2

From now on, we prefer to use matrices to describe the masses, i.e.



1 − ε1 0 ε1

0 1 − ε2 ε2





• Using Dempster’s rule of combination, one gets

m(θ3) =
(ε1ε2)

(1 − ε1) · 0 + 0 · (1 − ε2) + ε1ε2
= 1

which is absurd (or at least counter-intuitive). Note that whatever positive values for ε1, ε2 are,

Dempster’s rule of combination provides always the same result (one) which is abnormal. The only

acceptable and correct result obtained by Dempster’s rule is really obtained only in the trivial case

when ε1 = ε2 = 1, i.e. when both sources agree in θ3 with certainty which is obvious.

• Using the DSm rule of combination based on free-DSm model, one gets m(θ3) = ε1ε2, m(θ1 ∩ θ2) =

(1 − ε1)(1 − ε2), m(θ1 ∩ θ3) = (1 − ε1)ε2, m(θ2 ∩ θ3) = (1 − ε2)ε1 and the others are zero which

appears more reliable/trustable.

• Going back to Shafer’s model and using the hybrid DSm rule of combination, one gets m(θ3) = ε1ε2,

m(θ1 ∪ θ2) = (1 − ε1)(1 − ε2), m(θ1 ∪ θ3) = (1 − ε1)ε2, m(θ2 ∪ θ3) = (1 − ε2)ε1 and the others are

zero.

Note that in the special case when ε1 = ε2 = 1/2, one has

m1(θ1) = 1/2 m1(θ2) = 0 m1(θ3) = 1/2 and m2(θ1) = 0 m2(θ2) = 1/2 m2(θ3) = 1/2

Dempster’s rule of combinations still yields m(θ3) = 1 while the hybrid DSm rule based on the same

Shafer’s model yields now m(θ3) = 1/4, m(θ1 ∪ θ2) = 1/4, m(θ1 ∪ θ3) = 1/4, m(θ2 ∪ θ3) = 1/4 which is

normal.

5.3.3 Generalization with Θ = {θ1, θ2, θ3, θ4}

Let’s consider 0 < ε1, ε2, ε3 < 1 be three very tiny positive numbers, the frame of discernment be

Θ = {θ1, θ2, θ3, θ4}, have two experts giving the mass matrix



1 − ε1 − ε2 0 ε1 ε2

0 1 − ε3 0 ε3





set of a priori exclusive and 

exhaustive suspects

original 

witnesses 

reports

New info arrives: The third suspect provides a strong alibi
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1.4 Comparison of different rules of combinations

1.4.1 First example

In this section, we compare the results provided by the most common rules of combinations on the

following very simple numerical example where only 2 independent sources (a priori assumed equally

reliable) are involved and providing their belief initially on the 3D frame Θ = {θ1, θ2, θ3}. It is assumed

in this example that Shafer’s model holds and thus the belief assignments m1(.) and m2(.) do not commit

belief to internal conflicting information. m1(.) and m2(.) are chosen as follows:

m1(θ1) = 0.1 m1(θ2) = 0.4 m1(θ3) = 0.2 m1(θ1 ∪ θ2) = 0.1

m2(θ1) = 0.5 m2(θ2) = 0.1 m2(θ3) = 0.3 m2(θ1 ∪ θ2) = 0.1

These belief masses are usually represented in the form of a belief mass matrix M given by

M =




0.1 0.4 0.2 0.3

0.5 0.1 0.3 0.1



 (1.28)

where index i for the rows corresponds to the index of the source no. i and the indexes j for columns

of M correspond to a given choice for enumerating the focal elements of all sources. In this particular

example, index j = 1 corresponds to θ1, j = 2 corresponds to θ2, j = 3 corresponds to θ3 and j = 4

corresponds to θ1 ∪ θ2.

Now let’s imagine that one finds out that θ3 is actually truly empty because some extra and certain

knowledge on θ3 is received by the fusion center. As example, θ1, θ2 and θ3 may correspond to three

suspects (potential murders) in a police investigation, m1(.) and m2(.) corresponds to two reports of

independent witnesses, but it turns out that finally θ3 has provided a strong alibi to the criminal police

investigator once arrested by the policemen. This situation corresponds to set up a hybrid model M with

the constraint θ3
M
= ∅ (see chapter 4 for a detailed presentation on hybrid models).

Let’s examine the result of the fusion in such situation obtained by the Smets’, Yager’s, Dubois &

Prade’s and hybrid DSm rules of combinations. First note that, based on the free DSm model, one would

get by applying the classic DSm rule (denoted here by index DSmc) the following fusion result

mDSmc(θ1) = 0.21 mDSmc(θ2) = 0.11 mDSmc(θ3) = 0.06 mDSmc(θ1 ∪ θ2) = 0.03

mDSmc(θ1 ∩ θ2) = 0.21 mDSmc(θ1 ∩ θ3) = 0.13 mDSmc(θ2 ∩ θ3) = 0.14

mDSmc(θ3 ∩ (θ1 ∪ θ2)) = 0.11

(non existential/integrity constraint)

The conflicting mass to transfer is then

m(θ1) = 0.21 m(θ2) = 0.11 m(θ3) = 0.06 m(θ1 ∪ θ2) = 0.03

m(θ1 ∩ θ2) = 0.21 m(θ1 ∩ θ3) = 0.13 m(θ2 ∩ θ3) = 0.14 m(θ3 ∩ (θ1 ∪ θ2)) = 0.11

m(θ3) = 0.06 m(θ1) = 0.21 m(θ2) = 0.11 m(θ1 ∪ θ2) = 0.03

m(θ2 ∩ θ3) = 0.14 m(θ1 ∩ θ2) = 0.21 m(θ1 ∩ θ3) = 0.13 m(θ3 ∩ (θ1 ∪ θ2)) = 0.11

m(∅) = 0 m(θ1) = 0.34 m(θ2) = 0.25 m(θ1 ∪ θ2) = 0.41

2 Foundations of the DST and DSmT

2.1 The DST and the Shafer’s model

The Shafer’s model, denoted hereM0(Θ), on which is based the Dempster-Shafer Theory, assumes an exhaustive and
exclusive frame of discernment of the problem under consideration Θ = {θ1, θ2, . . . , θn}. The model requires actually
that an ultimate refinement of the problem is possible so that θi can always be well precisely defined/identified in such

a way that we are sure that they are exclusive and exhaustive. From this model, a basic belief assignment (bba) mi(.) :
2Θ → [0, 1] such thatmi(∅) = 0 and

∑

A∈2Θ mi(A) = 1 associated to a given body of evidence Bi is defined, where 2Θ

is the power set ofΘ, i.e. the set of all subsets ofΘ. Within DST, the fusion (combination) of two independent sources of
evidence B1 and B2 is obtained through the Dempster’s rule of combination [9] : [m1 ⊕ m2](∅) = 0 and ∀B '= ∅ ∈ 2Θ:

[m1 ⊕ m2](B) =

∑

X∩Y =B m1(X)m2(Y )

1 −
∑

X∩Y =∅ m1(X)m2(Y )
(1)

The notation
∑

X∩Y =B represents the sum over all X, Y ∈ 2Θ such that X ∩ Y = B. The Dempster’s sum
m(.) ! [m1⊕m2](.) is considered as a basic belief assignment if and only if the denominator in equation (1) is non-zero.
The term k12 !

∑

X∩Y =∅ m1(X)m2(Y ) is called degree of conflict between the sources B1 and B2. When k12 = 1, the
Dempster’s summ(.) does not exist and the bodies of evidences B1 and B2 are said to be in full contradiction. This rule

of combination can be extended easily for the combination of n > 2 independent sources of evidence. The DST, although
very attractive because of its solid mathematical ground, presents however several weaknesses and limitations because of

the Shafer’s model itself (which does not necessary hold in some fusion problems involving continuous and ill-defined

concepts), the justification of the Dempster’s rule of combination frequently subject to criticisms, but mainly because

of counter-intuitive results given by the Dempster’s rule when the conflict between sources becomes important. Several

classes of infinite counter-examples to the Dempster’s rule can be found in [13]. To overcome these limitations, Jean Dez-

ert and Florentin Smarandache propose a new mathematical theory based on other models (free or hybrid DSm models)

with new reliable rules of combinations able to deal with any kind of sources ( imprecises, uncertain and paradoxist, i.e.

highly conflicting). This is presented in next subsections.

2.2 The DSmT based on the free DSmModel

The foundations of the DSmT (Dezert-Smarandache Theory) is to abandon the Shafer’s model (i.e. the exclusivity con-

straint between θi of Θ) just because for some fusion problems it is impossible to define/characterize the problem in

terms of well-defined/precise and exclusive elements. The free DSm model, denotedMf (Θ), on which is based DSmT
allows us to deal with imprecise/vague notions and concepts between elements of the frame of discernmentΘ. The DSmT
includes the possibility to deal with evidences arising from different sources of information which don’t have access to

absolute interpretation of the elements Θ under consideration.

2.2.1 Notion of hyper-power set DΘ

From this very simple idea and from any frame Θ, a new space DΘ = {α0, . . . , αd(n)−1} (free Boolean pre-algebra
generated by Θ and operators ∩ and ∪), called hyper-power set is defined [5] as follows:

1. ∅, θ1, . . . , θn ∈ DΘ

2. ∀A ∈ DΘ, B ∈ DΘ, (A ∪ B) ∈ DΘ, (A ∩ B) ∈ DΘ

3. No other elements belong to DΘ, except those, obtained by using rules 1 or 2.

(this is our hybrid modelM one wants to deal with), then one uses the hybrid DSm rule for sets:

mI
M(θ1 ∩ θ2) = 0

and

mI
M(θ1 ∪ θ2) = (0.16, 0.58]

, the others imprecise masses are not changed. In other words, one gets now with hybrid DSm rule applied to imprecise

beliefs:

A ∈ DΘ mI
M(A) = [mI

1 ⊕ mI
2](A)

θ1 [0.04, 0.10]∪ [0.12, 0.15]
θ2 [0, 0.40]∪ [0.42, 0.48]

θ1 ∩ θ2
M
≡ ∅ 0

θ1 ∪ θ2 (0.16, 0.58]

m(θ3) = ε1ε2 m(θ1 ∩ θ2) = (1 − ε1)(1 − ε2) m(θ1 ∩ θ3) = (1 − ε1)ε2 m(θ2 ∩ θ3) = (1 − ε2)ε1

m(θ3) = ε1ε2 m(θ1 ∪ θ2) = (1 − ε1)(1 − ε2) m(θ1 ∪ θ3) = (1 − ε1)ε2 m(θ2 ∪ θ3) = (1 − ε2)ε1

m(θ3) = e1e2 m(θ1 ∩ θ2) = (1 − e1)(1 − e2) m(θ1 ∩ θ3) = (1 − e1)e2 m(θ2 ∩ θ3) = (1 − e2)e1

m(θ3) = e1e2 m(θ1 ∪ θ2) = (1 − e1)(1 − e2) m(θ1 ∪ θ3) = (1 − e1)e2 m(θ2 ∪ θ3) = (1 − e2)e1

m(θ3) =
e1e2

(1 − e1) · 0 + 0 · (1 − e2) + e1e2
= 1

Θ = {θ1, θ2, θ3, θ4}

m1(θ1) = 0.99 m1(θ3 ∪ θ4) = 0.01

m2(θ2) = 0.98 m2(θ3 ∪ θ4) = 0.02

Using the DSm classical rule:

m(θ1 ∩ θ2) = 0.9702 m(θ1 ∩ (θ3 ∪ θ4)) = 0.0198 m(θ2 ∩ (θ3 ∪ θ4)) = 0.0098 m(θ3 ∪ θ4) = 0.0002

m(θ1 ∪ θ2) = 0.9702 m(θ1 ∪ θ3 ∪ θ4) = 0.0198 m(θ2 ∪ θ3 ∪ θ4) = 0.0098 m(θ3 ∪ θ4) = 0.0002

Θ = {θ1, θ2, θ3}

m1(θ1) = 0.1 m1(θ2) = 0.4 m1(θ3) = 0.2 m1(θ1 ∪ θ2) = 0.1

m2(θ1) = 0.5 m2(θ2) = 0.1 m2(θ3) = 0.3 m2(θ1 ∪ θ2) = 0.1

(this is our hybrid modelM one wants to deal with), then one uses the hybrid DSm rule for sets:

mI
M(θ1 ∩ θ2) = 0

and

mI
M(θ1 ∪ θ2) = (0.16, 0.58]

, the others imprecise masses are not changed. In other words, one gets now with hybrid DSm rule applied to imprecise

beliefs:

A ∈ DΘ mI
M(A) = [mI

1 ⊕ mI
2](A)

θ1 [0.04, 0.10]∪ [0.12, 0.15]
θ2 [0, 0.40]∪ [0.42, 0.48]

θ1 ∩ θ2
M
≡ ∅ 0

θ1 ∪ θ2 (0.16, 0.58]

m(θ3) = ε1ε2 m(θ1 ∩ θ2) = (1 − ε1)(1 − ε2) m(θ1 ∩ θ3) = (1 − ε1)ε2 m(θ2 ∩ θ3) = (1 − ε2)ε1

m(θ3) = ε1ε2 m(θ1 ∪ θ2) = (1 − ε1)(1 − ε2) m(θ1 ∪ θ3) = (1 − ε1)ε2 m(θ2 ∪ θ3) = (1 − ε2)ε1

m(θ3) = e1e2 m(θ1 ∩ θ2) = (1 − e1)(1 − e2) m(θ1 ∩ θ3) = (1 − e1)e2 m(θ2 ∩ θ3) = (1 − e2)e1

m(θ3) = e1e2 m(θ1 ∪ θ2) = (1 − e1)(1 − e2) m(θ1 ∪ θ3) = (1 − e1)e2 m(θ2 ∪ θ3) = (1 − e2)e1

m(θ3) =
e1e2

(1 − e1) · 0 + 0 · (1 − e2) + e1e2
= 1

Θ = {θ1, θ2, θ3, θ4}

m1(θ1) = 0.99 m1(θ3 ∪ θ4) = 0.01

m2(θ2) = 0.98 m2(θ3 ∪ θ4) = 0.02

Using the DSm classical rule:

m(θ1 ∩ θ2) = 0.9702 m(θ1 ∩ (θ3 ∪ θ4)) = 0.0198 m(θ2 ∩ (θ3 ∪ θ4)) = 0.0098 m(θ3 ∪ θ4) = 0.0002

m(θ1 ∪ θ2) = 0.9702 m(θ1 ∪ θ3 ∪ θ4) = 0.0198 m(θ2 ∪ θ3 ∪ θ4) = 0.0098 m(θ3 ∪ θ4) = 0.0002

Θ = {θ1, θ2, θ3}

m1(θ1) = 0.1 m1(θ2) = 0.4 m1(θ3) = 0.2 m1(θ1 ∪ θ2) = 0.3

m2(θ1) = 0.5 m2(θ2) = 0.1 m2(θ3) = 0.3 m2(θ1 ∪ θ2) = 0.1

mDSmc(θ1) = 0.21 mDSmc(θ2) = 0.11 mDSmc(θ3) = 0.06 mDSmc(θ1 ∪ θ2) = 0.03

mDSmc(θ1 ∩ θ2) = 0.21 mDSmc(θ1 ∩ θ3) = 0.13 mDSmc(θ2 ∩ θ3) = 0.14

mDSmc(θ3 ∩ (θ1 ∪ θ2)) = 0.11

(DSmC)

(DSmH)

(S)

m(θ1) = 0.21 m(θ2) = 0.11 m(θ3) = 0.06 m(θ1 ∪ θ2) = 0.03

m(θ1 ∩ θ2) = 0.21 m(θ1 ∩ θ3) = 0.13 m(θ2 ∩ θ3) = 0.14 m(θ3 ∩ (θ1 ∪ θ2)) = 0.11

m(θ3) = 0.06 m(θ1) = 0.21 m(θ2) = 0.11 m(θ1 ∪ θ2) = 0.03

m(θ2 ∩ θ3) = 0.14 m(θ1 ∩ θ2) = 0.21 m(θ1 ∩ θ3) = 0.13 m(θ3 ∩ (θ1 ∪ θ2)) = 0.11

m(∅) = 0 m(θ1) = 0.34 m(θ2) = 0.25 m(θ1 ∪ θ2) = 0.41

mS(∅) = 0.65 mS(θ1) = 0.21 mS(θ2) = 0.11 mS(θ1 ∪ θ2) = 0.03

mY (∅) = 0 mY (θ1) = 0.21 mY (θ2) = 0.11 mY (θ1 ∪ θ2) = 0.03 + k12 = 0.03 + 0.65 = 0.68

2 Foundations of the DST and DSmT

2.1 The DST and the Shafer’s model

The Shafer’s model, denoted hereM0(Θ), on which is based the Dempster-Shafer Theory, assumes an exhaustive and
exclusive frame of discernment of the problem under consideration Θ = {θ1, θ2, . . . , θn}. The model requires actually
that an ultimate refinement of the problem is possible so that θi can always be well precisely defined/identified in such

a way that we are sure that they are exclusive and exhaustive. From this model, a basic belief assignment (bba) mi(.) :
2Θ → [0, 1] such thatmi(∅) = 0 and

∑

A∈2Θ mi(A) = 1 associated to a given body of evidence Bi is defined, where 2Θ

is the power set ofΘ, i.e. the set of all subsets ofΘ. Within DST, the fusion (combination) of two independent sources of
evidence B1 and B2 is obtained through the Dempster’s rule of combination [9] : [m1 ⊕ m2](∅) = 0 and ∀B '= ∅ ∈ 2Θ:

[m1 ⊕ m2](B) =

∑

X∩Y =B m1(X)m2(Y )

1 −
∑

X∩Y =∅ m1(X)m2(Y )
(1)

The notation
∑

X∩Y =B represents the sum over all X, Y ∈ 2Θ such that X ∩ Y = B. The Dempster’s sum
m(.) ! [m1⊕m2](.) is considered as a basic belief assignment if and only if the denominator in equation (1) is non-zero.
The term k12 !

∑

X∩Y =∅ m1(X)m2(Y ) is called degree of conflict between the sources B1 and B2. When k12 = 1, the
Dempster’s summ(.) does not exist and the bodies of evidences B1 and B2 are said to be in full contradiction. This rule

of combination can be extended easily for the combination of n > 2 independent sources of evidence. The DST, although
very attractive because of its solid mathematical ground, presents however several weaknesses and limitations because of

the Shafer’s model itself (which does not necessary hold in some fusion problems involving continuous and ill-defined

concepts), the justification of the Dempster’s rule of combination frequently subject to criticisms, but mainly because

of counter-intuitive results given by the Dempster’s rule when the conflict between sources becomes important. Several

classes of infinite counter-examples to the Dempster’s rule can be found in [13]. To overcome these limitations, Jean Dez-

ert and Florentin Smarandache propose a new mathematical theory based on other models (free or hybrid DSm models)

with new reliable rules of combinations able to deal with any kind of sources ( imprecises, uncertain and paradoxist, i.e.

highly conflicting). This is presented in next subsections.

2.2 The DSmT based on the free DSmModel

The foundations of the DSmT (Dezert-Smarandache Theory) is to abandon the Shafer’s model (i.e. the exclusivity con-

straint between θi of Θ) just because for some fusion problems it is impossible to define/characterize the problem in

terms of well-defined/precise and exclusive elements. The free DSm model, denotedMf (Θ), on which is based DSmT
allows us to deal with imprecise/vague notions and concepts between elements of the frame of discernmentΘ. The DSmT
includes the possibility to deal with evidences arising from different sources of information which don’t have access to

absolute interpretation of the elements Θ under consideration.

(Y)

m(θ1) = 0.21 m(θ2) = 0.11 m(θ3) = 0.06 m(θ1 ∪ θ2) = 0.03

m(θ1 ∩ θ2) = 0.21 m(θ1 ∩ θ3) = 0.13 m(θ2 ∩ θ3) = 0.14 m(θ3 ∩ (θ1 ∪ θ2)) = 0.11

m(θ3) = 0.06 m(θ1) = 0.21 m(θ2) = 0.11 m(θ1 ∪ θ2) = 0.03

m(θ2 ∩ θ3) = 0.14 m(θ1 ∩ θ2) = 0.21 m(θ1 ∩ θ3) = 0.13 m(θ3 ∩ (θ1 ∪ θ2)) = 0.11

m(∅) = 0 m(θ1) = 0.34 m(θ2) = 0.25 m(θ1 ∪ θ2) = 0.41

mS(∅) = 0.65 mS(θ1) = 0.21 mS(θ2) = 0.11 mS(θ1 ∪ θ2) = 0.03

2 Foundations of the DST and DSmT

2.1 The DST and the Shafer’s model

The Shafer’s model, denoted hereM0(Θ), on which is based the Dempster-Shafer Theory, assumes an exhaustive and
exclusive frame of discernment of the problem under consideration Θ = {θ1, θ2, . . . , θn}. The model requires actually
that an ultimate refinement of the problem is possible so that θi can always be well precisely defined/identified in such

a way that we are sure that they are exclusive and exhaustive. From this model, a basic belief assignment (bba) mi(.) :
2Θ → [0, 1] such thatmi(∅) = 0 and

∑

A∈2Θ mi(A) = 1 associated to a given body of evidence Bi is defined, where 2Θ

is the power set ofΘ, i.e. the set of all subsets ofΘ. Within DST, the fusion (combination) of two independent sources of
evidence B1 and B2 is obtained through the Dempster’s rule of combination [9] : [m1 ⊕ m2](∅) = 0 and ∀B '= ∅ ∈ 2Θ:

[m1 ⊕ m2](B) =

∑

X∩Y =B m1(X)m2(Y )

1 −
∑

X∩Y =∅ m1(X)m2(Y )
(1)

The notation
∑

X∩Y =B represents the sum over all X, Y ∈ 2Θ such that X ∩ Y = B. The Dempster’s sum
m(.) ! [m1⊕m2](.) is considered as a basic belief assignment if and only if the denominator in equation (1) is non-zero.
The term k12 !

∑

X∩Y =∅ m1(X)m2(Y ) is called degree of conflict between the sources B1 and B2. When k12 = 1, the
Dempster’s summ(.) does not exist and the bodies of evidences B1 and B2 are said to be in full contradiction. This rule

of combination can be extended easily for the combination of n > 2 independent sources of evidence. The DST, although
very attractive because of its solid mathematical ground, presents however several weaknesses and limitations because of

the Shafer’s model itself (which does not necessary hold in some fusion problems involving continuous and ill-defined

concepts), the justification of the Dempster’s rule of combination frequently subject to criticisms, but mainly because

of counter-intuitive results given by the Dempster’s rule when the conflict between sources becomes important. Several

classes of infinite counter-examples to the Dempster’s rule can be found in [13]. To overcome these limitations, Jean Dez-

ert and Florentin Smarandache propose a new mathematical theory based on other models (free or hybrid DSm models)

with new reliable rules of combinations able to deal with any kind of sources ( imprecises, uncertain and paradoxist, i.e.

highly conflicting). This is presented in next subsections.

2.2 The DSmT based on the free DSmModel

The foundations of the DSmT (Dezert-Smarandache Theory) is to abandon the Shafer’s model (i.e. the exclusivity con-

straint between θi of Θ) just because for some fusion problems it is impossible to define/characterize the problem in

terms of well-defined/precise and exclusive elements. The free DSm model, denotedMf (Θ), on which is based DSmT
allows us to deal with imprecise/vague notions and concepts between elements of the frame of discernmentΘ. The DSmT
includes the possibility to deal with evidences arising from different sources of information which don’t have access to

absolute interpretation of the elements Θ under consideration.

2.2.1 Notion of hyper-power set DΘ

From this very simple idea and from any frame Θ, a new space DΘ = {α0, . . . , αd(n)−1} (free Boolean pre-algebra
generated by Θ and operators ∩ and ∪), called hyper-power set is defined [5] as follows:

1. ∅, θ1, . . . , θn ∈ DΘ

2. ∀A ∈ DΘ, B ∈ DΘ, (A ∪ B) ∈ DΘ, (A ∩ B) ∈ DΘ

Smets

Yager

22 CHAPTER 1. PRESENTATION OF DSMT

But because of the exclusivity constraints (imposed here by the use of Shafer’s model and by the

non-existential constraint θ3
M
= ∅), the total conflicting mass is actually given by

k12 = 0.06 + 0.21 + 0.13 + 0.14 + 0.11 = 0.65 (conflicting mass)

• If one applies the Disjunctive rule (1.6), one gets:

m∪(∅) = 0

m∪(θ1) = m1(θ1)m2(θ1) = 0.1 · 0.5 = 0.05

m∪(θ2) = m1(θ2)m2(θ2) = 0.4 · 0.1 = 0.04

m∪(θ3) = m1(θ3)m2(θ3) = 0.2 · 0.3 = 0.06

m∪(θ1 ∪ θ2) = [m1(θ1 ∪ θ2)m2(θ1 ∪ θ2)] + [m1(θ1)m2(θ2) + m2(θ1)m1(θ2)]

+ [m1(θ1)m2(θ1 ∪ θ2) + m2(θ1)m1(θ1 ∪ θ2)]

+ [m1(θ2)m2(θ1 ∪ θ2) + m2(θ2)m1(θ1 ∪ θ2)]

= [0.3 · 0.1] + [0.01 + 0.20] + [0.01 + 015] + [0.04 + 0.03]

= 0.03 + 0.21 + 0.16 + 0.007 = 0.47

m∪(θ1 ∪ θ3) = m1(θ1)m2(θ3) + m2(θ1)m1(θ3) = 0.03 + 0.10 = 0.13

m∪(θ2 ∪ θ3) = m1(θ2)m2(θ3) + m2(θ2)m1(θ3) = 0.12 + 0.02 = 0.14

m∪(θ1 ∪ θ2 ∪ θ2) = m1(θ3)m2(θ1 ∪ θ2) = 0.02 + 0.09 = 0.11

• If one applies the hybrid DSm rule (1.24) (denoted here by index DSmh) for 2 sources (k = 2),

one gets:

mDSmh(∅) = 0

mDSmh(θ1) = 0.21 + 0.13 = 0.34

mDSmh(θ2) = 0.11 + 0.14 = 0.25

mDSmh(θ1 ∪ θ2) = 0.03 + [0.2 · 0.1 + 0.3 · 0.3] + [0.1 · 0.1 + 0.5 · 0.4] + [0.2 · 0.3] = 0.41

• If one applies Smets’ rule (1.8), one gets:

mS(∅) = m(∅) = 0.65 (conflicting mass)

mS(θ1) = 0.21

mS(θ2) = 0.11

mS(θ1 ∪ θ2) = 0.03

(this is our hybrid modelM one wants to deal with), then one uses the hybrid DSm rule for sets:

mI
M(θ1 ∩ θ2) = 0

and

mI
M(θ1 ∪ θ2) = (0.16, 0.58]

, the others imprecise masses are not changed. In other words, one gets now with hybrid DSm rule applied to imprecise

beliefs:

A ∈ DΘ mI
M(A) = [mI

1 ⊕ mI
2](A)

θ1 [0.04, 0.10]∪ [0.12, 0.15]
θ2 [0, 0.40]∪ [0.42, 0.48]

θ1 ∩ θ2
M
≡ ∅ 0

θ1 ∪ θ2 (0.16, 0.58]

m(θ3) = ε1ε2 m(θ1 ∩ θ2) = (1 − ε1)(1 − ε2) m(θ1 ∩ θ3) = (1 − ε1)ε2 m(θ2 ∩ θ3) = (1 − ε2)ε1

m(θ3) = ε1ε2 m(θ1 ∪ θ2) = (1 − ε1)(1 − ε2) m(θ1 ∪ θ3) = (1 − ε1)ε2 m(θ2 ∪ θ3) = (1 − ε2)ε1

m(θ3) = e1e2 m(θ1 ∩ θ2) = (1 − e1)(1 − e2) m(θ1 ∩ θ3) = (1 − e1)e2 m(θ2 ∩ θ3) = (1 − e2)e1

m(θ3) = e1e2 m(θ1 ∪ θ2) = (1 − e1)(1 − e2) m(θ1 ∪ θ3) = (1 − e1)e2 m(θ2 ∪ θ3) = (1 − e2)e1

m(θ3) =
e1e2

(1 − e1) · 0 + 0 · (1 − e2) + e1e2
= 1

Θ = {θ1, θ2, θ3, θ4}

m1(θ1) = 0.99 m1(θ3 ∪ θ4) = 0.01

m2(θ2) = 0.98 m2(θ3 ∪ θ4) = 0.02

Using the DSm classical rule:

m(θ1 ∩ θ2) = 0.9702 m(θ1 ∩ (θ3 ∪ θ4)) = 0.0198 m(θ2 ∩ (θ3 ∪ θ4)) = 0.0098 m(θ3 ∪ θ4) = 0.0002

m(θ1 ∪ θ2) = 0.9702 m(θ1 ∪ θ3 ∪ θ4) = 0.0198 m(θ2 ∪ θ3 ∪ θ4) = 0.0098 m(θ3 ∪ θ4) = 0.0002

Θ = {θ1, θ2, θ3}

m1(θ1) = 0.1 m1(θ2) = 0.4 m1(θ3) = 0.2 m1(θ1 ∪ θ2) = 0.1

m2(θ1) = 0.5 m2(θ2) = 0.1 m2(θ3) = 0.3 m2(θ1 ∪ θ2) = 0.1

mDSmc(θ1) = 0.21 mDSmc(θ2) = 0.11 mDSmc(θ3) = 0.06 mDSmc(θ1 ∪ θ2) = 0.03

mDSmc(θ1 ∩ θ2) = 0.21 mDSmc(θ1 ∩ θ3) = 0.13 mDSmc(θ2 ∩ θ3) = 0.14

mDSmc(θ3 ∩ (θ1 ∪ θ2)) = 0.11

m(θ1) = 0.21 m(θ2) = 0.11 m(θ3) = 0.06 m(θ1 ∪ θ2) = 0.03

m(θ1 ∩ θ2) = 0.21 m(θ1 ∩ θ3) = 0.13 m(θ2 ∩ θ3) = 0.14 m(θ3 ∩ (θ1 ∪ θ2)) = 0.11

(this is our hybrid modelM one wants to deal with), then one uses the hybrid DSm rule for sets:

mI
M(θ1 ∩ θ2) = 0

and

mI
M(θ1 ∪ θ2) = (0.16, 0.58]

, the others imprecise masses are not changed. In other words, one gets now with hybrid DSm rule applied to imprecise

beliefs:

A ∈ DΘ mI
M(A) = [mI

1 ⊕ mI
2](A)

θ1 [0.04, 0.10]∪ [0.12, 0.15]
θ2 [0, 0.40]∪ [0.42, 0.48]

θ1 ∩ θ2
M
≡ ∅ 0

θ1 ∪ θ2 (0.16, 0.58]

m(θ3) = ε1ε2 m(θ1 ∩ θ2) = (1 − ε1)(1 − ε2) m(θ1 ∩ θ3) = (1 − ε1)ε2 m(θ2 ∩ θ3) = (1 − ε2)ε1

m(θ3) = ε1ε2 m(θ1 ∪ θ2) = (1 − ε1)(1 − ε2) m(θ1 ∪ θ3) = (1 − ε1)ε2 m(θ2 ∪ θ3) = (1 − ε2)ε1

m(θ3) = e1e2 m(θ1 ∩ θ2) = (1 − e1)(1 − e2) m(θ1 ∩ θ3) = (1 − e1)e2 m(θ2 ∩ θ3) = (1 − e2)e1

m(θ3) = e1e2 m(θ1 ∪ θ2) = (1 − e1)(1 − e2) m(θ1 ∪ θ3) = (1 − e1)e2 m(θ2 ∪ θ3) = (1 − e2)e1

m(θ3) =
e1e2

(1 − e1) · 0 + 0 · (1 − e2) + e1e2
= 1

Θ = {θ1, θ2, θ3, θ4}

m1(θ1) = 0.99 m1(θ3 ∪ θ4) = 0.01

m2(θ2) = 0.98 m2(θ3 ∪ θ4) = 0.02

Using the DSm classical rule:

m(θ1 ∩ θ2) = 0.9702 m(θ1 ∩ (θ3 ∪ θ4)) = 0.0198 m(θ2 ∩ (θ3 ∪ θ4)) = 0.0098 m(θ3 ∪ θ4) = 0.0002

m(θ1 ∪ θ2) = 0.9702 m(θ1 ∪ θ3 ∪ θ4) = 0.0198 m(θ2 ∪ θ3 ∪ θ4) = 0.0098 m(θ3 ∪ θ4) = 0.0002

Θ = {θ1, θ2, θ3}

m1(θ1) = 0.1 m1(θ2) = 0.4 m1(θ3) = 0.2 m1(θ1 ∪ θ2) = 0.1

m2(θ1) = 0.5 m2(θ2) = 0.1 m2(θ3) = 0.3 m2(θ1 ∪ θ2) = 0.1

mDSmc(θ1) = 0.21 mDSmc(θ2) = 0.11 mDSmc(θ3) = 0.06 mDSmc(θ1 ∪ θ2) = 0.03

mDSmc(θ1 ∩ θ2) = 0.21 mDSmc(θ1 ∩ θ3) = 0.13 mDSmc(θ2 ∩ θ3) = 0.14

mDSmc(θ3 ∩ (θ1 ∪ θ2)) = 0.11

m(θ1) = 0.21 m(θ2) = 0.11 m(θ3) = 0.06 m(θ1 ∪ θ2) = 0.03

m(θ1 ∩ θ2) = 0.21 m(θ1 ∩ θ3) = 0.13 m(θ2 ∩ θ3) = 0.14 m(θ3 ∩ (θ1 ∪ θ2)) = 0.11

(this is our hybrid modelM one wants to deal with), then one uses the hybrid DSm rule for sets:

mI
M(θ1 ∩ θ2) = 0

and

mI
M(θ1 ∪ θ2) = (0.16, 0.58]

, the others imprecise masses are not changed. In other words, one gets now with hybrid DSm rule applied to imprecise

beliefs:

A ∈ DΘ mI
M(A) = [mI

1 ⊕ mI
2](A)

θ1 [0.04, 0.10]∪ [0.12, 0.15]
θ2 [0, 0.40]∪ [0.42, 0.48]

θ1 ∩ θ2
M
≡ ∅ 0

θ1 ∪ θ2 (0.16, 0.58]

m(θ3) = ε1ε2 m(θ1 ∩ θ2) = (1 − ε1)(1 − ε2) m(θ1 ∩ θ3) = (1 − ε1)ε2 m(θ2 ∩ θ3) = (1 − ε2)ε1

m(θ3) = ε1ε2 m(θ1 ∪ θ2) = (1 − ε1)(1 − ε2) m(θ1 ∪ θ3) = (1 − ε1)ε2 m(θ2 ∪ θ3) = (1 − ε2)ε1

m(θ3) = e1e2 m(θ1 ∩ θ2) = (1 − e1)(1 − e2) m(θ1 ∩ θ3) = (1 − e1)e2 m(θ2 ∩ θ3) = (1 − e2)e1

m(θ3) = e1e2 m(θ1 ∪ θ2) = (1 − e1)(1 − e2) m(θ1 ∪ θ3) = (1 − e1)e2 m(θ2 ∪ θ3) = (1 − e2)e1

m(θ3) =
e1e2

(1 − e1) · 0 + 0 · (1 − e2) + e1e2
= 1

Θ = {θ1, θ2, θ3, θ4}

m1(θ1) = 0.99 m1(θ3 ∪ θ4) = 0.01

m2(θ2) = 0.98 m2(θ3 ∪ θ4) = 0.02

Using the DSm classical rule:

m(θ1 ∩ θ2) = 0.9702 m(θ1 ∩ (θ3 ∪ θ4)) = 0.0198 m(θ2 ∩ (θ3 ∪ θ4)) = 0.0098 m(θ3 ∪ θ4) = 0.0002

m(θ1 ∪ θ2) = 0.9702 m(θ1 ∪ θ3 ∪ θ4) = 0.0198 m(θ2 ∪ θ3 ∪ θ4) = 0.0098 m(θ3 ∪ θ4) = 0.0002

Θ = {θ1, θ2, θ3}

m1(θ1) = 0.1 m1(θ2) = 0.4 m1(θ3) = 0.2 m1(θ1 ∪ θ2) = 0.1

m2(θ1) = 0.5 m2(θ2) = 0.1 m2(θ3) = 0.3 m2(θ1 ∪ θ2) = 0.1

mDSmc(θ1) = 0.21 mDSmc(θ2) = 0.11 mDSmc(θ3) = 0.06 mDSmc(θ1 ∪ θ2) = 0.03

mDSmc(θ1 ∩ θ2) = 0.21 mDSmc(θ1 ∩ θ3) = 0.13 mDSmc(θ2 ∩ θ3) = 0.14

mDSmc(θ3 ∩ (θ1 ∪ θ2)) = 0.11

m(θ1) = 0.21 m(θ2) = 0.11 m(θ3) = 0.06 m(θ1 ∪ θ2) = 0.03

m(θ1 ∩ θ2) = 0.21 m(θ1 ∩ θ3) = 0.13 m(θ2 ∩ θ3) = 0.14 m(θ3 ∩ (θ1 ∪ θ2)) = 0.11

m(θ1) = 0.21 m(θ2) = 0.11 m(θ3) = 0.06 m(θ1 ∪ θ2) = 0.03

m(θ1 ∩ θ2) = 0.21 m(θ1 ∩ θ3) = 0.13 m(θ2 ∩ θ3) = 0.14 m(θ3 ∩ (θ1 ∪ θ2)) = 0.11

m(θ3) = 0.06 m(θ1) = 0.21 m(θ2) = 0.11 m(θ1 ∪ θ2) = 0.03

m(θ2 ∩ θ3) = 0.14 m(θ1 ∩ θ2) = 0.21 m(θ1 ∩ θ3) = 0.13 m(θ3 ∩ (θ1 ∪ θ2)) = 0.11

2 Foundations of the DST and DSmT

2.1 The DST and the Shafer’s model

The Shafer’s model, denoted hereM0(Θ), on which is based the Dempster-Shafer Theory, assumes an exhaustive and
exclusive frame of discernment of the problem under consideration Θ = {θ1, θ2, . . . , θn}. The model requires actually
that an ultimate refinement of the problem is possible so that θi can always be well precisely defined/identified in such

a way that we are sure that they are exclusive and exhaustive. From this model, a basic belief assignment (bba) mi(.) :
2Θ → [0, 1] such thatmi(∅) = 0 and

∑

A∈2Θ mi(A) = 1 associated to a given body of evidence Bi is defined, where 2Θ
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the Shafer’s model itself (which does not necessary hold in some fusion problems involving continuous and ill-defined

concepts), the justification of the Dempster’s rule of combination frequently subject to criticisms, but mainly because
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highly conflicting). This is presented in next subsections.

2.2 The DSmT based on the free DSmModel

The foundations of the DSmT (Dezert-Smarandache Theory) is to abandon the Shafer’s model (i.e. the exclusivity con-

straint between θi of Θ) just because for some fusion problems it is impossible to define/characterize the problem in

terms of well-defined/precise and exclusive elements. The free DSm model, denotedMf (Θ), on which is based DSmT
allows us to deal with imprecise/vague notions and concepts between elements of the frame of discernmentΘ. The DSmT
includes the possibility to deal with evidences arising from different sources of information which don’t have access to

absolute interpretation of the elements Θ under consideration.

2.2.1 Notion of hyper-power set DΘ

From this very simple idea and from any frame Θ, a new space DΘ = {α0, . . . , αd(n)−1} (free Boolean pre-algebra
generated by Θ and operators ∩ and ∪), called hyper-power set is defined [5] as follows:

1. ∅, θ1, . . . , θn ∈ DΘ

2. ∀A ∈ DΘ, B ∈ DΘ, (A ∪ B) ∈ DΘ, (A ∩ B) ∈ DΘ

3. No other elements belong to DΘ, except those, obtained by using rules 1 or 2.

The generation of hyper-power setDΘ is related with the famous Dedekind’s problem on enumerating the set of monotone

Boolean functions. The cardinality d(n) ofDΘ follows the Dedekind sequence. It can be shown, see [4], that all elements

αi ofDΘ can then be obtained by the very simple linear equation [4]

dn = Dn · un (2)

where dn ≡ [α0 ≡ ∅, α1, . . . , αd(n)−1]
′ is the vector of elements of DΘ, un is the proper Smarandache’s codification

vector [4] and Dn a particular binary matrix build recursively by the algorithm proposed in [4]. The final result dn is

obtained from the previousmatrix product after identifying (+, ·) with (∪,∩) operators, 0 ·x with ∅ and 1 ·x with x). Dn

is actually a binary matrix corresponding to all possible isotone Boolean functions.



30

Testinomy example (dynamic case)

Dubois & Prade!s  rule
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X∩Y =∅ m1(X)m2(Y ) is called degree of conflict between the sources B1 and B2. When k12 = 1, the
Dempster’s summ(.) does not exist and the bodies of evidences B1 and B2 are said to be in full contradiction. This rule

of combination can be extended easily for the combination of n > 2 independent sources of evidence. The DST, although
very attractive because of its solid mathematical ground, presents however several weaknesses and limitations because of

the Shafer’s model itself (which does not necessary hold in some fusion problems involving continuous and ill-defined

concepts), the justification of the Dempster’s rule of combination frequently subject to criticisms, but mainly because

of counter-intuitive results given by the Dempster’s rule when the conflict between sources becomes important. Several

classes of infinite counter-examples to the Dempster’s rule can be found in [13]. To overcome these limitations, Jean Dez-

ert and Florentin Smarandache propose a new mathematical theory based on other models (free or hybrid DSm models)

with new reliable rules of combinations able to deal with any kind of sources ( imprecises, uncertain and paradoxist, i.e.

highly conflicting). This is presented in next subsections.

2.2 The DSmT based on the free DSmModel

The foundations of the DSmT (Dezert-Smarandache Theory) is to abandon the Shafer’s model (i.e. the exclusivity con-

straint between θi of Θ) just because for some fusion problems it is impossible to define/characterize the problem in

terms of well-defined/precise and exclusive elements. The free DSm model, denotedMf (Θ), on which is based DSmT
allows us to deal with imprecise/vague notions and concepts between elements of the frame of discernmentΘ. The DSmT
includes the possibility to deal with evidences arising from different sources of information which don’t have access to

absolute interpretation of the elements Θ under consideration.

Dempster!s  rule

(DP)
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DSm rules for imprecise beliefs

Operations on sets
S1 ! S2 = S2 ! S1 " {x | x = s1 + s2, s1 ∈ S1, s2 ∈ S2}
S1 ! S2 " {x | x = s1 − s2, s1 ∈ S1, s2 ∈ S2}

S1 ! S2 " {x | x = s1 · s2, s1 ∈ S1, s2 ∈ S2}

Addition

Subtraction

Multiplication

Imprecise admissible generalized bba mI(.) are of the form

mI(A) = [a1, b1]∪. . .∪[am, bm]∪(c1, d1)∪. . .∪(cn, dn)∪(e1, f1]∪. . .∪(ep, fp]∪[g1, h1)∪. . .∪[gq, hq)∪{A1, . . . , Ar}

where all the bounds or elements involved intomI(A) belong to [0, 1]

DSmH for imprecise beliefs

A simple 2D example

mI
M(Θ)(A) ! φ(A) "

[

SI
1(A) # SI

2(A) # SI
3 (A)

]

A ∈ DΘ mI
1(A) mI

2(A)
θ1 [0.1, 0.2]∪ {0.3} [0.4, 0.5]
θ2 (0.4, 0.6) ∪ [0.7, 0.8] [0, 0.4] ∪ {0.5, 0.6}

A ∈ DΘ mI(A) = [mI
1 ⊕ mI

2](A)
θ1 [0.04, 0.10]∪ [0.12, 0.15]
θ2 [0, 0.40] ∪ [0.42, 0.48]

θ1 ∩ θ2 (0.16, 0.58]
θ1 ∪ θ2 0

A ∈ DΘ mI
M(A) = [mI

1 ⊕ mI
2](A)

θ1 [0.04, 0.10]∪ [0.12, 0.15]
θ2 [0, 0.40]∪ [0.42, 0.48]

θ1 ∩ θ2
M
≡ ∅ 0

θ1 ∪ θ2 (0.16, 0.58]

Inputs

(DSmH-Imp)

(DSmC-Imp)

(DSmH-Imp)

Inputs:
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Proportional Conflict Redistribution (PCR)

Why PCR fusion rules ? To not increase the mass on uncertainties in the fusion

The way the conflicting mass is redistributed yields to several versions of PCR (PCR1-PCR6) which work 
for any degree of conflict and for any models and both in DST and DSmT and for static or dynamical fusion 
applications. 

Compute the conjunctive rule, ∀X ∈ GΘ,

GΘ is a generic notation depending on the model, i.e. SΘ, DΘ, 2Θ, etc.

GΘ

|2Θref = SΘ � (Θ,∪,∩, c(.))| > |DΘ = (Θ,∪,∩)| > |2Θ = (Θ,∪)|

GΘ represents the generic notation either for 2Θ, SΘ or DΘ including eventually integrity constraints.

A ∩B A B A ∪B
m(.) 0.4 0.2 0.1 0.3

Table I
QUANTITATIVE INPUTS FOR EXAMPLE 5

A B C A ∪B A ∪ C B ∪ C A ∪B ∪ C
m(.) 0.35 0.25 0.02 0.20 0.07 0.05 0.06

Table II
QUANTITATIVE INPUTS FOR EXAMPLE 5

A B C A ∪B A ∪ C B ∪ C A ∪B ∪ C
m(.) 0.10 0 0.20 0.30 0.10 0 0.30

Table III
QUANTITATIVE INPUTS FOR EXAMPLE 5

We consider the hybrid DSm model in which all intersections of elements of Θ are empty, but A ∩ B. In this case, GΘ

reduces to 9 elements {∅, A∩B, A, B,C, A∪B, A∪C, B ∪C, A∪B ∪C}. The input masses of focal elements are given by
m(A ∩B) = 0.20, m(A) = 0.10, m(C) = 0.20, m(A ∪B) = 0.30, m(A ∪ C) = 0.10, and m(A ∪B ∪ C) = 0.10. In order
to apply Sudano’s and Cuzzolin’s mappings, we need to work on the refined frame Θref with Shafer’s model as depicted on
Figure 1 and masses given in the Table XV.

A ∩B ≡ D� A ≡ A� ∪D� C ≡ C�

m(.) 0.2 0.1 0.2

Table IV
QUANTITATIVE INPUTS ON THE REFINED FRAME FOR EXAMPLE 8

A ∪B ≡ A� ∪B� ∪D� A ∪ C ≡ A� ∪ C� ∪D� A ∪B ∪ C ≡ A� ∪B� ∪ C� ∪D�

m(.) 0.3 0.1 0.1

Table V
QUANTITATIVE INPUTS ON THE REFINED FRAME FOR EXAMPLE 8

One sees from the Table XVI that DSmP�→0 provides the best results in term of PIC metric. The refined frame has been
defined as: Θref = {A� � A \ (A ∩B), B� � B \ (A ∩B), C � � C, D� � A ∩B} according to Figure 1.

DSmP�(A) =
m(A) + � · C(A)
m(A) + � · C(A)

· m(A) +
0

m(B) + � · C(B)
· m(B) +

m(A) + � · C(A)
m(A) + m(B) + � · C(A ∪B)

· m(A ∪ B) (1)

DSmP�(B) =
0

m(A) + � · C(A)
· m(A) +

m(B) + � · C(B)
m(B) + � · C(B)

· m(B) +
m(B) + � · C(B)

m(A) + m(B) + � · C(A ∪B)
· m(A ∪ B) (2)

DSmP�(A∪B) =
m(A) + � · C(A)
m(A) + � · C(A)

·m(A) +
m(B) + � · C(B)
m(B) + � · C(B)

·m(B) +
m(A) + m(B) + � · C(A ∪B)
m(A) + m(B) + � · C(A ∪B)

·m(A∪B) (3)

1

Pignistic Entropy

Scans

PCR5
SAC
TCN
DSmH/DP/Y

m12(X) =
∑

X1,X2∈G
X1∩X2=X

m1(X1)m2(X2)

n this chapter we define several Belief Conditioning Rules (BCR) for use in information fusion and
for belief revision. Suppose we have a basic belief assignment (bba) m1(.) defined on hyper-power set
DΘ, and we find out that the truth is in a given element A ∈ DΘ. So far in literature devoted to belief
functions and the mathematical theory of evidence, there has been used Shafer’s Conditioning Rule
(SCR) [?], which simply combines the mass m1(.) with a specific bba focused on A, i.e. mS(A) = 1,
and then uses Dempster’s rule to transfer the conflicting mass to non-empty sets. But in our opinion
this conditioning approach based on the combination of two bba’s is subjective since in such procedure
both sources are subjective. While conditioning a mass m1(.), knowing (or assuming) that the truth is
in A, means that we have an absolute (not subjective) information, i.e. the truth is in A has occurred
(or is assumed to have occurred), thus A was realized (or is assumed to be realized), hence it is an
absolute truth. ”Truth in A” must therefore be considered as an absolute truth when conditioning,
while mS(A) = 1 used in SCR does not refer to an absolute truth actually, but only to a subjective
certainty in the possible occurrence of A given by a second source of evidence. This is the main and
fundamental distinction between our approaches (BCRs) and Shafer’s (SCR). In our opinion, SCR
does not do a conditioning, but only a fusion of m1(.) with a particular bba mS(A) = 1. The main
advantage of SCR is that it is simple and thus very appealing, and in some cases it gives the same
results with some BCRs, and it remains coherent with conditional probability when m1(.) is a Bayesian
belief assignment. In the sequel, we will present many (actually thirty one BCR rules, denoted BCR1-
BCR31) new alternative issues for belief conditioning. The sequel does not count: a) if we first know
the source m1(.) and then that the truth is in A (or is supposed to be in A), or b) if we first know (or
assume) the truth is in A, and then we find the source m1().The results of conditioning are the same.
In addition, we work on a hyper-power set, that is a generalization of the power set. The best among
these BCR1-31, that we recommend researchers to use, are: BCR17 for a pessimistic/prudent view
on conditioning problem and a more refined redistribution of conflicting masses, or BCR12 for a very
pessimistic/prudent view and less refined redistribution. After a short presentation of SCR rule, we
present in the following sections all new BCR rules we propose, many examples, and a very important
and open challenging question about belief fusion and conditioning.

2. the commutativity of the rule of combination

3. the neutral impact of the VBA into the fusion.

The requirement for conditions 1 and 2 is legitimate since

we are obviously looking for best performances (we don’t

want a rule leading to counter-intuitive or wrong solutions)

and we don’t want that the result depends on the arbitrary

order the sources are combined. The neutral impact of VBA

to be satisfied by a fusion rule (condition 3), denoted by the

generic ⊕ operator is very important too. This condition

states that the combination of a full ignorant source with a

set of s ≥ 1 non-totally ignorant sources doesn’t change
the result of the combination of the s sources because the
full ignorant source doesn’t bring any new specific evidence

on any problems under consideration. This condition is

thus perfectly reasonable and legitimate. The condition 3

is mathematically represented as follows: for all possible

s ≥ 1 non-totally ignorant sources and for any X ∈ G, the
fusion operator ⊕ must satisfy

[m1 ⊕ . . .⊕ms ⊕mv](X) = [m1 ⊕ . . .⊕ms](X) (2)

The associativity property, while very attractive and gen-

erally useful for sequential implementation (which is actu-

ally an engineering advantage for computer programming)

is not actually a crucial property that a combination rule

must satisfy if one looks for the best coherence of the result

(and that’s only we are looking for here).

2 The general principle of the PCR rules

Let’s Θ = {θ1, θ2, . . . , θn} be the frame of the fusion
problem under consideration and two belief assignments

m1,m2 : G → [0, 1] such that
�

X∈G mi(X) = 1,
i = 1, 2. The general principle of the Proportional Con-
flict Redistribution Rules (PCR for short) is:

• Step 1: compute the conjunctive rule, ∀X ∈ G

m1...s(X) =
�

X1,...,Xs∈G
X1∩...∩Xs=X

s�

i=1

mi(Xi) (3)

• Step 2: compute the conflicting masses (partial and/or
total), The total conflicting mass drawn from two

sources, denoted k12, is defined as follows:

k12 =
�

X1,X2∈G
X1∩X2=∅

m1(X1)m2(X2) (4)

The total conflicting mass is nothing but the sum of

partial conflicting masses, i.e.

k12 =
�

X1,X2∈G
X1∩X2=∅

m(X1 ∩X2) (5)

Here, m(X1 ∩ X2), where X1 ∩ X2 = ∅, represents
a partial conflict, i.e. the conflict between the sets X1

and X2. Formulas (4) and (5) can be directly general-

ized for s ≥ 2 sources [11].

• Step 3: then proportionally redistribute the conflicting
mass (total or partial) to non-empty sets involved in

the model according to all integrity constraints.

The way the conflicting mass is redistributed yields to

five versions of PCR, denoted PCR1, PCR2, . . . PCR5 as it

will be shown in the sequel. The PCR combination rules

work for any degree of conflict k12 ∈ [0, 1], for any mod-
els (Shafer’s model, free DSm model or any hybrid DSm

model). PCR rules work both in DST and DSmT frame-

works and for static or dynamical fusion applications. The

sophistication/complexity (but correctness) of proportional

conflict redistribution increases from the first PCR1 rule up

to the last rule PCR5. The development of different PCR

rules presented here comes from the fact that PCR1 does

not preserve the neutral impact of VBA. All other improved

rules PCR2-PCR5 preserve the commutativity, the neutral

impact of VBA and present, in our opinion, a more and

more exact solution for the conflict management that any

satisfactory combination rule must tend to.

3 The PCR1 fusion rule

3.1 Definition

PCR1 is the simplest and the easiest version of PCR for

combination described in details in [10]. The basic idea

for PCR1 is to compute only the total conflicting mass k12

(not worrying about the partial conflicting masses) and to

redistribute it to all non-empty sets proportionally with re-

spect to their corresponding non-empty column sum of the

associated mass matrix. The PCR1 fusion for 2 sources1 is

defined ∀(X �= ∅) ∈ G by :

mPCR1(X) = m12(X) +
c12(X)

d12
· k12 (6)

wherem12(X) is the conjunctive consensus onX given by

(3), c12(X) is the non-zero sum of the column of X in the

mass matrix M = [m1 m2]� (where mi for i = 1, 2 is the
row vector of belief assignments committed by the source i
to elements of G), i.e. c12(X) = m1(X) + m2(X) �= 0,
k12 is the total conflicting mass, and d12 is the sum of all

non-zero column sums of all non-empty sets (in many cases

d12 = 2, but in some degenerate cases it can be less) (see
[10]). PCR1 is an alternative combination rule to WAO

(Weighted Average Operator) proposed by Jøsang and al. in

[5]. Both are particular cases of WO (The Weighted Opera-

tor) of Inagaki [4] and Lefèvre and al. [6] because the con-

flicting mass is redistributed with respect to some weight-

ing factors. In the PCR1, the proportionalization is done

for each non-empty set with respect to the non-zero sum of

its corresponding mass matrix - instead of its mass column

average as in WAO. But PCR1 extends WAO it works also

for the degenerate cases (like within some dynamical fusion

applications) when all column sums of all non-empty sets

are zero. In such cases, the conflicting mass is transferred

to the non-empty disjunctive form of all non-empty sets to-

gether; when this disjunctive form happens to be empty,

1PCR1 fusion has been extended for s ≥ 2 sources in [11].

Partial conflicts

Compute the conjunctive rule, ∀X ∈ GΘ,

GΘ is a generic notation depending on the model, i.e. SΘ, DΘ, 2Θ, etc.

GΘ

|2Θref = SΘ � (Θ,∪,∩, c(.))| > |DΘ = (Θ,∪,∩)| > |2Θ = (Θ,∪)|

GΘ represents the generic notation either for 2Θ, SΘ or DΘ including eventually integrity constraints.

A ∩B A B A ∪B
m(.) 0.4 0.2 0.1 0.3

Table I
QUANTITATIVE INPUTS FOR EXAMPLE 5

A B C A ∪B A ∪ C B ∪ C A ∪B ∪ C
m(.) 0.35 0.25 0.02 0.20 0.07 0.05 0.06

Table II
QUANTITATIVE INPUTS FOR EXAMPLE 5

A B C A ∪B A ∪ C B ∪ C A ∪B ∪ C
m(.) 0.10 0 0.20 0.30 0.10 0 0.30

Table III
QUANTITATIVE INPUTS FOR EXAMPLE 5

We consider the hybrid DSm model in which all intersections of elements of Θ are empty, but A ∩ B. In this case, GΘ

reduces to 9 elements {∅, A∩B, A, B,C, A∪B, A∪C, B ∪C, A∪B ∪C}. The input masses of focal elements are given by
m(A ∩B) = 0.20, m(A) = 0.10, m(C) = 0.20, m(A ∪B) = 0.30, m(A ∪ C) = 0.10, and m(A ∪B ∪ C) = 0.10. In order
to apply Sudano’s and Cuzzolin’s mappings, we need to work on the refined frame Θref with Shafer’s model as depicted on
Figure 1 and masses given in the Table XV.

A ∩B ≡ D� A ≡ A� ∪D� C ≡ C�

m(.) 0.2 0.1 0.2

Table IV
QUANTITATIVE INPUTS ON THE REFINED FRAME FOR EXAMPLE 8

A ∪B ≡ A� ∪B� ∪D� A ∪ C ≡ A� ∪ C� ∪D� A ∪B ∪ C ≡ A� ∪B� ∪ C� ∪D�

m(.) 0.3 0.1 0.1

Table V
QUANTITATIVE INPUTS ON THE REFINED FRAME FOR EXAMPLE 8

One sees from the Table XVI that DSmP�→0 provides the best results in term of PIC metric. The refined frame has been
defined as: Θref = {A� � A \ (A ∩B), B� � B \ (A ∩B), C � � C, D� � A ∩B} according to Figure 1.

DSmP�(A) =
m(A) + � · C(A)
m(A) + � · C(A)

· m(A) +
0

m(B) + � · C(B)
· m(B) +

m(A) + � · C(A)
m(A) + m(B) + � · C(A ∪B)

· m(A ∪ B) (1)

DSmP�(B) =
0

m(A) + � · C(A)
· m(A) +

m(B) + � · C(B)
m(B) + � · C(B)

· m(B) +
m(B) + � · C(B)

m(A) + m(B) + � · C(A ∪B)
· m(A ∪ B) (2)

DSmP�(A∪B) =
m(A) + � · C(A)
m(A) + � · C(A)

·m(A) +
m(B) + � · C(B)
m(B) + � · C(B)

·m(B) +
m(A) + m(B) + � · C(A ∪B)
m(A) + m(B) + � · C(A ∪B)

·m(A∪B) (3)

• Step 1: Compute the conjunctive rule

PCR5 versus Bayes’ formula
for combining probability densities

(working notes V3)

1 Principles of estimation

m1(θ1) = 1 − e1 m1(θ2) = 0 m1(θ3) = e1

m2(θ1) = 0 m2(θ2) = 1 − e2 m2(θ3) = e2

• Step 2: compute all the conflicting masses (partial and/or total).

Let’s consider x an hidden/unknown (scalar or vector-valued) quantity called parameter1 and some obser-
vation z of x. This means that z is a function (not necessarily known) of x, i.e. z = h(x). An estimator is a
function of z which transforms the observation z into an estimate x̂(z) of x in some sense. Closer x̂(z) is to
x for a given distance measure, better is the estimator. For notation convenience, we will use x̂ instead x̂(z)
when no confusion is possible. According [1], an optimal estimator is a computational algorithm that processes
observations to yield an estimate of a variable of interest that minimizes a certain error criterion. In tracking
applications, the parameter x is usually time-varying and it corresponds to the state of a dynamic system under
interest. The estimation process uses knowledge or modeling about the evolution the state of the dynamic
system and the probabilistic characterization of the random factors and the prior information. The estimation
error x̃ corresponding to x̂ is

x̃ ! x − x̂

Models for estimation of x [1]:

• Bayesian approach: The unknown parameter x to estimate from observation is considered as a random
variable with a given prior density function p(x). With this model, a realization of x according to p(x) is
assumed to have occured and this value stays constant during the observation process. We would like for
each measurement to have an estimate that converges in some sense to the corresponding realization of
x, and this should hold for all x.

1For simplicity, we assume x being time invariant.

1

2. the commutativity of the rule of combination

3. the neutral impact of the VBA into the fusion.

The requirement for conditions 1 and 2 is legitimate since

we are obviously looking for best performances (we don’t

want a rule leading to counter-intuitive or wrong solutions)

and we don’t want that the result depends on the arbitrary

order the sources are combined. The neutral impact of VBA

to be satisfied by a fusion rule (condition 3), denoted by the

generic ⊕ operator is very important too. This condition

states that the combination of a full ignorant source with a

set of s ≥ 1 non-totally ignorant sources doesn’t change
the result of the combination of the s sources because the
full ignorant source doesn’t bring any new specific evidence

on any problems under consideration. This condition is

thus perfectly reasonable and legitimate. The condition 3

is mathematically represented as follows: for all possible

s ≥ 1 non-totally ignorant sources and for any X ∈ G, the
fusion operator ⊕ must satisfy

[m1 ⊕ . . .⊕ms ⊕mv](X) = [m1 ⊕ . . .⊕ms](X) (2)

The associativity property, while very attractive and gen-

erally useful for sequential implementation (which is actu-

ally an engineering advantage for computer programming)

is not actually a crucial property that a combination rule

must satisfy if one looks for the best coherence of the result

(and that’s only we are looking for here).

2 The general principle of the PCR rules

Let’s Θ = {θ1, θ2, . . . , θn} be the frame of the fusion
problem under consideration and two belief assignments

m1,m2 : G → [0, 1] such that
�

X∈G mi(X) = 1,
i = 1, 2. The general principle of the Proportional Con-
flict Redistribution Rules (PCR for short) is:

• Step 1: compute the conjunctive rule, ∀X ∈ G

m1...s(X) =
�

X1,...,Xs∈G
X1∩...∩Xs=X

s�

i=1

mi(Xi) (3)

• Step 2: compute the conflicting masses (partial and/or
total), The total conflicting mass drawn from two

sources, denoted k12, is defined as follows:

k12 =
�

X1,X2∈G
X1∩X2=∅

m1(X1)m2(X2) (4)

The total conflicting mass is nothing but the sum of

partial conflicting masses, i.e.

k12 =
�

X1,X2∈G
X1∩X2=∅

m(X1 ∩X2) (5)

Here, m(X1 ∩ X2), where X1 ∩ X2 = ∅, represents
a partial conflict, i.e. the conflict between the sets X1

and X2. Formulas (4) and (5) can be directly general-

ized for s ≥ 2 sources [11].

• Step 3: then proportionally redistribute the conflicting
mass (total or partial) to non-empty sets involved in

the model according to all integrity constraints.

The way the conflicting mass is redistributed yields to

five versions of PCR, denoted PCR1, PCR2, . . . PCR5 as it

will be shown in the sequel. The PCR combination rules

work for any degree of conflict k12 ∈ [0, 1], for any mod-
els (Shafer’s model, free DSm model or any hybrid DSm

model). PCR rules work both in DST and DSmT frame-

works and for static or dynamical fusion applications. The

sophistication/complexity (but correctness) of proportional

conflict redistribution increases from the first PCR1 rule up

to the last rule PCR5. The development of different PCR

rules presented here comes from the fact that PCR1 does

not preserve the neutral impact of VBA. All other improved

rules PCR2-PCR5 preserve the commutativity, the neutral

impact of VBA and present, in our opinion, a more and

more exact solution for the conflict management that any

satisfactory combination rule must tend to.

3 The PCR1 fusion rule

3.1 Definition

PCR1 is the simplest and the easiest version of PCR for

combination described in details in [10]. The basic idea

for PCR1 is to compute only the total conflicting mass k12

(not worrying about the partial conflicting masses) and to

redistribute it to all non-empty sets proportionally with re-

spect to their corresponding non-empty column sum of the

associated mass matrix. The PCR1 fusion for 2 sources1 is

defined ∀(X �= ∅) ∈ G by :

mPCR1(X) = m12(X) +
c12(X)

d12
· k12 (6)

wherem12(X) is the conjunctive consensus onX given by

(3), c12(X) is the non-zero sum of the column of X in the

mass matrix M = [m1 m2]� (where mi for i = 1, 2 is the
row vector of belief assignments committed by the source i
to elements of G), i.e. c12(X) = m1(X) + m2(X) �= 0,
k12 is the total conflicting mass, and d12 is the sum of all

non-zero column sums of all non-empty sets (in many cases

d12 = 2, but in some degenerate cases it can be less) (see
[10]). PCR1 is an alternative combination rule to WAO

(Weighted Average Operator) proposed by Jøsang and al. in

[5]. Both are particular cases of WO (The Weighted Opera-

tor) of Inagaki [4] and Lefèvre and al. [6] because the con-

flicting mass is redistributed with respect to some weight-

ing factors. In the PCR1, the proportionalization is done

for each non-empty set with respect to the non-zero sum of

its corresponding mass matrix - instead of its mass column

average as in WAO. But PCR1 extends WAO it works also

for the degenerate cases (like within some dynamical fusion

applications) when all column sums of all non-empty sets

are zero. In such cases, the conflicting mass is transferred

to the non-empty disjunctive form of all non-empty sets to-

gether; when this disjunctive form happens to be empty,

1PCR1 fusion has been extended for s ≥ 2 sources in [11].
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PCR rule # 5 (PCR5)

PCR5  transfers the partial conflicting masses to the elements 
involved in the partial conflict proportionally to mass m1(.) and m2(.) 
of elements involved in the partial conflict ONLY.

PCR5 does a more exact redistribution than PCR1- PCR4. PCR5 
works on any model and preserves the neutrality of VBA.

Advantage :

A new rule (PCR6), more intuitive than (PCR5) for combining s>2 sources, is 
proposed by Martin & Osswald in DSmT Book, Vol. 2. 

Extension possible for N>2 sources

2. calculate the total or partial conflicting masses ;

3. redistribute the conflicting mass (total or partial) proportionally on non-empty sets involved in the model according
to all integrity constraints.

The way the conflicting mass is redistributed yields actually to several versions of PCR rules [11]. These PCR fusion
rules work for any degree of conflict in [0, 1], for any DSm models (Shafer’s model, free DSm model or any hybrid DSm
model) and both in DST and DSmT frameworks for static or dynamical fusion problems. We just now present only the
most sophisticated proportional conflict redistribution rule no. 5 (PCR5) since this rule is what we feel the most efficient
PCR fusion rule proposed8 so far.

The PCR5 combination rule for only two sources9 is defined by [11]: mPCR5(∅) = 0 and ∀X ∈ GΘ \ {∅}

mPCR5(X) = m12(X) +
�

Y ∈GΘ\{X}
X∩Y =∅

[
m1(X)2m2(Y )

m1(X) + m2(Y )
+

m2(X)2m1(Y )
m2(X) + m1(Y )

] (6)

where m12(X) corresponds to the conjunctive consensus on X between the two sources and where all denominators are
different from zero and c(X) is the canonical form10 of X , i.e. its simplest form (for example if X = (A∩B)∩(A∪B∪C),
c(X) = A ∩B). If a denominator is zero, that fraction is discarded.

In our opinion, PCR5 does a better redistribution of the conflicting mass than Dempster’s rule since PCR5 goes
backwards on the tracks of the conjunctive rule and redistributes the partial conflicting masses only to the sets involved in
the conflict and proportionally to their masses put in the conflict, considering the conjunctive normal form of the partial
conflict. PCR5 is quasi-associative and preserves the neutral impact of the vacuous belief assignment.

In short summary, the main differences between DST and DSmT are (1) the model on which one works with, and (2)
the choice of the combination rule.

3 The Target Type Tracking Problem

3.1 Formulation of the problem

The Target Type Tracking Problem can be simply stated as follows:

• Let k = 1, 2, ..., kmax be the time index and consider M possible target types Ti ∈ Θ = {θ1, . . . , θM} in the envi-
ronment; for example Θ = {Fighter, Cargo} and T1 � Fighter, T2 � Cargo; or Θ = {Friend, Foe, Neutral},
etc.

• at each instant k, a target of true type T (k) ∈ Θ (not necessarily the same target) is observed by an attribute-sensor
(we assume a perfect target detection probability here).

• the attribute measurement of the sensor (say noisy Radar Cross Section for example) is then processed through a
classifier which provides a decision Td(k) on the type of the observed target at each instant k.

• The sensor is in general not totally reliable and is characterized by a M ×M confusion matrix

C = [cij = P (Td = Tj |TrueTargetType = Ti)]

Question: How to estimate T (k) from the sequence of declarations done by the unreliable classifier up to time k, i.e.
how to build an estimator T̂ (k) = f(Td(1), Td(2), . . . , Td(k)) of T (k) ?

8A new PCR6 rule has been developed very recently by Martin and Osswald [6] but will not be presented and discussed here since
it coincides with PCR5 for the two-source case in our application.

9A general expression of PCR5 for an arbitrary number (s > 2) of sources can be found in [4].
10The canonical form is introduced here explicitly in order to improve the original formula given in [9] for preserving the neutral

impact of the vacuous belief mass m(Θ) = 1 within complex hybrid models. Actually all propositions involved in formulas are
expressed in their canonical form, i.e. conjunctive normal form, also known as conjunction of disjunctions in Boolean algebra, which
is unique.

∀X �= ∅, X ∈ GΘ

Drawback: PCR5 as most rules (but DS rule) is not associative 
(quasi-associative only) 33
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TCN Fusion rule (Fuzzified PCR5)

[Tchamova, Dezert, Smarandache 2006, DSmT Book3 Chap 15]

This rule is based on fuzzy T-norm (min for conjunction) and fuzzy T-conorm (max for 

disjunction) operators.

m(A) =
�

X,Y ∈GΘ

X∩Y =A

min{m1(X), m2(Y )}min T-norm conjunctive consensus

m̃12TCN (A) =
�

X,Y ∈GΘ

X∩Y =A

min{m1(X), m2(Y )}+

�

X∈GΘ

X∩A=∅

(m1(A)× min{m1(A), m2(X)}
max{m1(A), m2(X)} + m2(A)× min{m2(A), m1(X)}

max{m2(A), m1(X)} )

Conflicting masses are distributed to all non-empty sets involved in the conflict
proportionally with respect to the maximum between the elements of corre-
sponding mass matrix’s columns, associated with the given element of GΘ.

mTCN (A) =
m̃TCN (A)�

A∈Gθ m̃TCN (A)

Can be extented to N sources;
TCN does not belong to the General Weighted Operator Class;
very easy to implement, satisfying the neutrality of Vacuous Belief Assignment; 
commutative, convergent to idempotence, reflecting majority opinion.

Normalization
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Example for PCR5

With PCR5

mPCR5(A) = 0.50 + 0.12 = 0.62
mPCR5(B) = 0.12 + 0.06 = 0.18
mPCR5(A ∪ B) = 0.20 + 0 = 0.20

We did not take into consideration the sum of masses of columnA, i.e. m1(A)+ m2(A) = 0.6+ 0.2 = 0.8, since clearly
m2(A) = 0.2 has no impact on the conflicting mass. In this second example, the result obtained by PCR5 is different
from WAO, PCR1, PCR2, PCR3 and PCR4 which are given by

With PCR1 or WAO With PCR2

mPCR1(A) = 0.572 mPCR2(A) ≈ 0.631
mPCR1(B) = 0.147 mPCR2(B) ≈ 0.169

mPCR1(A ∪ B) = 0.281 mPCR2(A ∪ B) = 0.20

With PCR3 With PCR4

mPCR3(A) ≈ 0.631 mPCR4(A) ≈ 0.645
mPCR3(B) ≈ 0.169 mPCR4(B) ≈ 0.155

mPCR3(A ∪ B) = 0.20 mPCR4(A ∪ B) = 0.20

7.3.3 A two-source example 3

Let’s go further modifying this time the previous example and considering:

A B A ∪ B
m1(.) 0.6 0.3 0.1

m2(.) 0.2 0.3 0.5

m12(.) 0.44 0.27 0.05

The conflicting mass k12 = m12(A ∩ B) = m1(A)m2(B) + m1(B)m2(A) = 0.18 + 0.06 = 0.24 is now different from
the two previous examples, which means that

m2(A) = 0.2 andm1(B) = 0.3 did make an impact on the conflict becausem2(A)m1(B) = 0.2 · 0.3 = 0.06 was added
to the conflicting mass. So, A and B are involved in the conflict (A ∪ B is not involved), hence only A and B deserve a

part of the conflicting mass, A ∪ B does not deserve.

With PCR5, one redistributes the partial conflicting mass 0.18 to A and B proportionally with the massesm1(A) and
m2(B) assigned to A and B respectively, and also the partial conflicting mass 0.06 to A and B proportionally with the

massesm2(A) andm1(B) assigned to A and B respectively, thus one gets two weighting factors of the redistribution for

each corresponding set A and B respectively.

Let x1 be the conflicting mass to be redistributed to A, and y1 the conflicting mass redistributed to B from the first partial

conflicting mass 0.18.

k12 = m12(A ∩ B)

= m1(A)m2(B) + m1(B)m2(A)

= 0.18 + 0.06 = 0.24

This first partial proportional redistribution is then done according

x1/0.6 = y1/0.3 = (x1 + y1)/(0.6 + 0.3) = 0.18/0.9 = 0.2

whence x1 = 0.6 · 0.2 = 0.12, y1 = 0.3 · 0.2 = 0.06.

Let x2 be the conflicting mass to be redistributed to A, and y2 the conflicting mass redistributed to B from second the

partial conflicting mass 0.06.

This second partial proportional redistribution is then done according

x2/0.2 = y2/0.3 = (x2 + y2)/(0.2 + 0.3) = 0.06/0.5 = 0.12

whence x2 = 0.2 · 0.12 = 0.024, y2 = 0.3 · 0.12 = 0.036.
Thus, one gets now:
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7.3.3 A two-source example 3

Let’s go further modifying this time the previous example and considering:

A B A ∪ B
m1(.) 0.6 0.3 0.1

m2(.) 0.2 0.3 0.5

m12(.) 0.44 0.27 0.05

The conflicting mass k12 = m12(A ∩ B) = m1(A)m2(B) + m1(B)m2(A) = 0.18 + 0.06 = 0.24 is now different from
the two previous examples, which means that

m2(A) = 0.2 andm1(B) = 0.3 did make an impact on the conflict becausem2(A)m1(B) = 0.2 · 0.3 = 0.06 was added
to the conflicting mass. So, A and B are involved in the conflict (A ∪ B is not involved), hence only A and B deserve a

part of the conflicting mass, A ∪ B does not deserve.

With PCR5, one redistributes the partial conflicting mass 0.18 to A and B proportionally with the massesm1(A) and
m2(B) assigned to A and B respectively, and also the partial conflicting mass 0.06 to A and B proportionally with the

massesm2(A) andm1(B) assigned to A and B respectively, thus one gets two weighting factors of the redistribution for

each corresponding set A and B respectively.

Let x1 be the conflicting mass to be redistributed to A, and y1 the conflicting mass redistributed to B from the first partial

conflicting mass 0.18, and similarly for x2 and y2 with partial conflict 0.06; one has:

k12 = m12(A ∩ B)

= m1(A)m2(B) + m1(B)m2(A)

= 0.18 + 0.06 = 0.24

This first partial proportional redistribution is then done according

x1/0.6 = y1/0.3 = (x1 + y1)/(0.6 + 0.3) = 0.18/0.9 = 0.2

whence x1 = 0.6 · 0.2 = 0.12, y1 = 0.3 · 0.2 = 0.06.

Let x2 be the conflicting mass to be redistributed to A, and y2 the conflicting mass redistributed to B from second the

partial conflicting mass 0.06.

This second partial proportional redistribution is then done according

x2/0.2 = y2/0.3 = (x2 + y2)/(0.2 + 0.3) = 0.06/0.5 = 0.12

whence x2 = 0.2 · 0.12 = 0.024, y2 = 0.3 · 0.12 = 0.036.
Thus, one gets now:

But A ∪ B was not involved in the conflict, hence A ∪ B doesn’t deserve anything from the conflicting mass, hence

Dempster’s rule is less exact than PCR5. Even more, the proportionality in Dempster’s is done with respect to m12(.)
results, 0.50, 0.12, and respectively 0.20 forA, B,A∪B, which is less exact than PCR5 where the proportionality is done
with respect to just the masses involved in conflict, 0.6 and 0.3, for A and respectivelyB.

whence

{

x = 0.6 · 0.2 = 0.12

y = 0.3 · 0.2 = 0.06

With DSmH and Dubois & Prade’s rules With Dempster’s rule

mDSmH(A) = mDP (A) = 0.44 mDS(A) = 0.578948
mDSmH(B) = mDP (B) = 0.27 mDS(B) = 0.355263

mDSmH(A ∪ B) = mDP (A ∪ B) = 0.29 mDS(A ∪ B) = 0.065789

With DSmH and Dubois & Prade’s rules

mDSmH(A) = mDP (A) = 0.44
mDSmH(B) = mDP (B) = 0.27

mDSmH(A ∪ B) = mDP (A ∪ B) = 0.29

But A ∪ B was not involved in the conflict, hence A ∪ B doesn’t deserve anything from the conflicting mass, hence

Dempster’s rule is less exact than PCR5. Even more, the proportionality in Dempster’s is done with respect to m12(.)
results, 0.44, 0.27, and respectively 0.05 for A, B, A ∪ B, which is less exact than PCR5 where the proportionality is
done with respect to just the masses involved in conflict, 0.6 and 0.3, for A and respectively B, and again with respect to
0.2 and 0.3 for A and respectively B.

This paper presents a new set of alternative combination rules based on different proportional conflict redistribu-

tions (PCR) which can be applied in the framework of the two principal theories dealing with the combination of belief

functions: The Dempster-Shafer Theory (DST) [8, 7] and the recent Dezert-Smarandache Theory (DSmT) [9] which

overcomes limitations of DST for combining uncertain, imprecise and possibly highly conflicting sources of information

for static or dynamic fusion applications. The major differences between these two theories is the nature and hypotheses

on the frame Θ on which are defined the basic belief assignments (bba) m(.), i.e. either on the power set 2Θ for DST

or on the hyper-power set (Dedekind’s lattice) DΘ for DSmT. The difference between DST and DSmT lies also in the

rules of combination to apply (Dempster’s [8], Yager’s [13], Dubois and Prade’s [3], minC [1], disjunctive rules [3], etc

in DST versus general hybrid DSm rule of combination in the DSmT framework). This paper is not devoted specifically

to the presentation of all different rules available in literature like in [7, 9] which will not be reported here but only on a

new family of rules which have not yet been proposed and can be useful for the information fusion community for some

fusion applications. These new rules based on various proportional conflict redistribution methods were stimulated to us

by Dr. Wu Li at NASA Research Center, Langley, VA and by the recent minC combination rule developed by Milan

Daniel in [2]. Due to space limitations, we assume the reader familiar with basics of DST [8] and DSmT [9]. This paper is

a shortened version of [11] which contains in details all derivations of examples presented here and more. Let’s consider

a frame Θ = {θ1, . . . , θn} of finite number of exhaustive hypotheses. Let’s denote G the classical power set of Θ (i.e.

2Θ if we assume the Shafer’s model with all exclusivity constraints between elements of the frame - if we adopt DST)

or denote G the hyper-power set DΘ (if we adopt DSmT and know that some elements can’t be refined because of their

intrinsic fuzzy and continuous nature). A basic belief assignmentm(.) is then defined asm : G → [0, 1] with:

m(∅) = 0 and
∑

X∈G

m(X) = 1 (1)

Among all possible bbas, the vacuous belief assignment (VBA), defined by mv(Θ) = 1 which characterizes a full
ignorant source, plays a particular and important role for the construction of a satisfying combination rule. Indeed, the

major properties that a good rule of combination must satisfy, in the authors’ opinion, are :

1. the coherence of the combination result in all possible cases (i.e. for any number of sources, any values of bbas and

for any types of frames and models which can change or stay invariant over time).

2. the commutativity of the rule of combination

3. the neutral impact of the VBA into the fusion.

The requirement for conditions 1 and 2 is legitimate since we are obviously looking for best performances (we don’t want

a rule leading to counter-intuitive or wrong solutions) and we don’t want that the result depends on the arbitrary order the

sources are combined. The neutral impact of VBA to be satisfied by a fusion rule (condition 3), denoted by the generic
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7.3.3 A two-source example 3

Let’s go further modifying this time the previous example and considering:

A B A ∪ B
m1(.) 0.6 0.3 0.1

m2(.) 0.2 0.3 0.5

m12(.) 0.44 0.27 0.05

The conflicting mass k12 = m12(A ∩ B) = m1(A)m2(B) + m1(B)m2(A) = 0.18 + 0.06 = 0.24 is now different from
the two previous examples, which means thatm2(A) = 0.2 andm1(B) = 0.3 did make an impact on the conflict; why?,
because m2(A)m1(B) = 0.2 · 0.3 = 0.06 was added to the conflicting mass. Therefore A and B are involved in the

conflict (A ∪ B is not involved), hence only A and B deserve a part of the conflicting mass, A ∪ B does not deserve.

With PCR5, one redistributes the partial conflicting mass 0.18 to A and B proportionally with the massesm1(A) and
m2(B) assigned to A and B respectively, and also the partial conflicting mass 0.06 to A and B proportionally with the

massesm2(A) andm1(B) assigned to A and B respectively, thus one gets two weighting factors of the redistribution for

each corresponding set A and B respectively.

Let x1 be the conflicting mass to be redistributed to A, and y1 the conflicting mass redistributed to B from the first partial

conflicting mass 0.18.

k12 = m12(A ∩ B)

= m1(A)m2(B) + m1(B)m2(A)

= 0.18 + 0.06 = 0.24

This first partial proportional redistribution is then done according

x1/0.6 = y1/0.3 = (x1 + y1)/(0.6 + 0.3) = 0.18/0.9 = 0.2

whence x1 = 0.6 · 0.2 = 0.12, y1 = 0.3 · 0.2 = 0.06.

Let x2 be the conflicting mass to be redistributed to A, and y2 the conflicting mass redistributed to B from second the

partial conflicting mass 0.06.

This second partial proportional redistribution is then done according

x2/0.2 = y2/0.3 = (x2 + y2)/(0.2 + 0.3) = 0.06/0.5 = 0.12

whence x2 = 0.2 · 0.12 = 0.024, y2 = 0.3 · 0.12 = 0.036.
Thus, one gets now:

Shafer’s model

A ∪ B ∪ C in minC version a), and worse in minC version b) to A, B, C, A ∪ B, A ∪ C, B ∪ C and A ∪ B ∪ C (see

example in section 5). PCR4 rule improves this and redistributes the mass m(C ∩ (A ∪ B)) to C and A ∪ B only, since

only them were involved in the conflict: i.e. m12(C ∩ (A ∪ B)) = m1(C)m2(A ∪ B) + m2(C)m1(A ∪ B), clearly the
other elements A, B, A∪B ∪C that get some mass in minC were not involved in the conflict C ∩ (A∪B). If at least one
conjunctive rule result is null, then the partial conflicting mass which involved this set is redistributed proportionally to the

column sums corresponding to each set. Thus PCR4 does a more exact redistribution than both minC versions (versions a)

and b) explicated in section 5. The PCR4 rule partially extends Dempster’s rule in the sense that instead of redistributing

the total conflicting mass as within Dempster’s rule, PCR4 redistributes partial conflicting masses, hence PCR4 does

a better refined redistribution than Dempster’s rule; PCR4 and Dempster’s rule coincide for Θ = {A,B}, in Shafer’s
model, with s ≥ 2 sources, and such that m12...s(A) > 0, m12...s(B) > 0, and m12...s(A ∪ B) = 0. Thus according to
authors opinion, PCR4 rule redistributes better than Dempster’s rule since in PCR one goes on partial conflicting, while

Dempster’s rule redistributes the conflicting mass to all non-empty sets whose conjunctive mass is nonzero, even those

not involved in the conflict.

10.2 The PCR4 formula

The PCR4 formula for s = 2 sources: ∀X ∈ G \ {∅}

mPCR4(X) = m12(X) · [1 +
�

Y ∈G
c(Y ∩X)=∅

m12(X ∩ Y )
m12(X) + m12(Y )

] (29)

withm12(X) andm12(Y ) nonzero. m12(.) corresponds to the conjunctive consensus, i.e.

m12(X) �
�

X1,X2∈G
X1∩X2=X

m1(X1)m2(X2) .

If at least one ofm12(X) orm12(Y ) is zero, the fraction is discarded and the massm12(X ∩ Y ) is transferred to X and

Y proportionally with respect to their non-zero column sum of masses; if both their column sums of masses are zero, then

one transfers to the partial ignoranceX∪Y ; if even this partial ignorance is empty then one transfers to the total ignorance.

Let G = {X1, . . . , Xn} �= ∅ (G being either the power-set or hyper-power set depending on the model we want to

deal with), n ≥ 2, ∀X �= ∅, X ∈ G, the general PCR4 formula for s ≥ 2 sources is given by ∀X ∈ G \ {∅}

mPCR4(X) = m12...s(X) · [1 +
s−1�

k=1

SPCR4(X, k)] (30)

with

SPCR4(X, k) �
�

Xi1 ,...,Xik
∈G\{X}

{i1,...,ik}∈Pk({1,2,...,n})
c(X∩Xi1∩...∩Xik

)=∅

m12...s(X ∩Xi1 ∩ . . . ∩Xik)
m12...s(X) +

�k
j=1 m12...s(Xij )

(31)

with allm12...s(X),m12...s(X1), . . . ,m12...s(Xn) nonzero and where the first term of the right side of (30) corresponds to
the conjunctive consensus between s sources (i.e. m12...s(.)). If at least one ofm12...s(X),m12...s(X1), . . . ,m12...s(Xn)
is zero, the fraction is discarded and the mass m12...s(X ∩ X1 ∩ X2 ∩ . . . ∩ Xk) is transferred to X , X1, . . . , Xk

proportionally with respect to their corresponding column sums in the mass matrix.

10.3 Example for PCR4 versus minC

Let’s consider Θ = {A,B}, Shafer’s model and the the two following bbas:

m1(A) = 0.6 m1(B) = 0.3 m1(A ∪B) = 0.1

m2(A) = 0.2 m2(B) = 0.3 m2(A ∪B) = 0.5

Then the conjunctive consensus yields :

m12(A) = 0.44 m12(B) = 0.27 m12(A ∪B) = 0.05

with the conflicting mass

k12 = m12(A ∩B) = m1(A)m2(B) + m1(B)m2(A) = 0.24
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Inputs

With PCR5

mPCR5(A) = 0.50 + 0.12 = 0.62
mPCR5(B) = 0.12 + 0.06 = 0.18
mPCR5(A ∪ B) = 0.20 + 0 = 0.20

We did not take into consideration the sum of masses of columnA, i.e. m1(A)+ m2(A) = 0.6+ 0.2 = 0.8, since clearly
m2(A) = 0.2 has no impact on the conflicting mass. In this second example, the result obtained by PCR5 is different
from WAO, PCR1, PCR2, PCR3 and PCR4 which are given by

With PCR1 or WAO With PCR2

mPCR1(A) = 0.572 mPCR2(A) ≈ 0.631
mPCR1(B) = 0.147 mPCR2(B) ≈ 0.169

mPCR1(A ∪ B) = 0.281 mPCR2(A ∪ B) = 0.20

With PCR3 With PCR4

mPCR3(A) ≈ 0.631 mPCR4(A) ≈ 0.645
mPCR3(B) ≈ 0.169 mPCR4(B) ≈ 0.155

mPCR3(A ∪ B) = 0.20 mPCR4(A ∪ B) = 0.20

7.3.3 A two-source example 3

Let’s go further modifying this time the previous example and considering:

A B A ∪ B
m1(.) 0.6 0.3 0.1

m2(.) 0.2 0.3 0.5

m12(.) 0.44 0.27 0.05

The conflicting mass k12 = m12(A ∩ B) = m1(A)m2(B) + m1(B)m2(A) = 0.18 + 0.06 = 0.24 is now different
from the two previous examples, which means that m2(A) = 0.2 andm1(B) = 0.3 did make an impact on the conflict;
why?, because m2(A)m1(B) = 0.2 · 0.3 = 0.06 was added to the conflicting mass. Therefore A and B are involved in

the conflict (A ∪ B is not involved), hence only A and B deserve a part of the conflicting mass, A ∪ B does not deserve.

With PCR5, one redistributes the partial conflicting mass 0.18 to A and B proportionally with the masses m1(A) and
m2(B) assigned to A and B respectively, and also the partial conflicting mass 0.06 to A and B proportionally with the

masses m2(A) and m1(B) assigned to A and B respectively, thus one gets two weighting factors of the redistribution

for each corresponding set A and B respectively. Let x1 be the conflicting mass to be redistributed to A, and y1 the

conflicting mass redistributed to B from the first partial conflicting mass 0.18. This first partial proportional redistribution

is then done according x1/0.6 = y1/0.3 = (x1 + y1)/(0.6 + 0.3) = 0.18/0.9 = 0.2 whence x1 = 0.6 · 0.2 = 0.12,
y1 = 0.3 ·0.2 = 0.06. Now let x2 be the conflicting mass to be redistributed toA, and y2 the conflicting mass redistributed

to B from second the partial conflicting mass 0.06. This second partial proportional redistribution is then done according

x2/0.2 = y2/0.3 = (x2 + y2)/(0.2+0.3) = 0.06/0.5 = 0.12 whence x2 = 0.2 · 0.12 = 0.024, y2 = 0.3 · 0.12 = 0.036.
Thus, one gets now:

With PCR5

mPCR5(A) = 0.44 + 0.12 + 0.024 = 0.584
mPCR5(B) = 0.27 + 0.06 + 0.036 = 0.366

mPCR5(A ∪ B) = 0.05 + 0 = 0.05

The result is different from PCR1, PCR2, PCR3 and PCR4 since one has7:

With PCR1 With PCR2 ∼PCR3
mPCR1(A) = 0.536 mPCR2(A) ≈ 0.577
mPCR1(B) = 0.342 mPCR2(B) ≈ 0.373

mPCR1(A ∪ B) = 0.122 mPCR2(A ∪ B) = 0.05

With PCR4 With Dempster’s rule

mPCR4(A) ≈ 0.589 mDS(A) ≈ 0.579
mPCR4(B) ≈ 0.361 mDS(B) ≈ 0.355

mPCR4(A ∪ B) = 0.05 mDS(A ∪ B) ≈ 0.066

One clearly sees that mDS(A ∪ B) gets some mass from the conflicting mass although A ∪ B does not deserve any part

of the conflicting mass since A ∪ B is not involved in the conflict (only A and B are involved in the conflicting mass).

Dempster’s rule appears to us less exact than PCR5.

7The verification is left to the reader.
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m12(.) 0.44 0.27 0.05
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x1/0.6 = y1/0.3 = (x1 + y1)/(0.6 + 0.3) = 0.18/0.9 = 0.2

whence x1 = 0.6 · 0.2 = 0.12, y1 = 0.3 · 0.2 = 0.06.

Let x2 be the conflicting mass to be redistributed to A, and y2 the conflicting mass redistributed to B from second the

partial conflicting mass 0.06.

This second partial proportional redistribution is then done according

x2/0.2 = y2/0.3 = (x2 + y2)/(0.2 + 0.3) = 0.06/0.5 = 0.12
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m2(A) = 0.2 has no impact on the conflicting mass. In this second example, the result obtained by PCR5 is different
from WAO, PCR1, PCR2, PCR3 and PCR4 which are given by
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mPCR3(A) ≈ 0.631 mPCR4(A) ≈ 0.645
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7.3.3 A two-source example 3

Let’s go further modifying this time the previous example and considering:

A B A ∪ B
m1(.) 0.6 0.3 0.1

m2(.) 0.2 0.3 0.5

m12(.) 0.44 0.27 0.05

The conflicting mass k12 = m12(A ∩ B) = m1(A)m2(B) + m1(B)m2(A) = 0.18 + 0.06 = 0.24 is now different from
the two previous examples, which means thatm2(A) = 0.2 andm1(B) = 0.3 did make an impact on the conflict; why?,
because m2(A)m1(B) = 0.2 · 0.3 = 0.06 was added to the conflicting mass. Therefore A and B are involved in the

conflict (A ∪ B is not involved), hence only A and B deserve a part of the conflicting mass, A ∪ B does not deserve.

With PCR5, one redistributes the partial conflicting mass 0.18 to A and B proportionally with the massesm1(A) and
m2(B) assigned to A and B respectively, and also the partial conflicting mass 0.06 to A and B proportionally with the

massesm2(A) andm1(B) assigned to A and B respectively, thus one gets two weighting factors of the redistribution for

each corresponding set A and B respectively.

Let x1 be the conflicting mass to be redistributed to A, and y1 the conflicting mass redistributed to B from the first partial

conflicting mass 0.18.

This first partial proportional redistribution is then done according

x1/0.6 = y1/0.3 = (x1 + y1)/(0.6 + 0.3) = 0.18/0.9 = 0.2

whence x1 = 0.6 · 0.2 = 0.12, y1 = 0.3 · 0.2 = 0.06.

Let x2 be the conflicting mass to be redistributed to A, and y2 the conflicting mass redistributed to B from second the

partial conflicting mass 0.06.

This second partial proportional redistribution is then done according

x2/0.2 = y2/0.3 = (x2 + y2)/(0.2 + 0.3) = 0.06/0.5 = 0.12

whence x2 = 0.2 · 0.12 = 0.024, y2 = 0.3 · 0.12 = 0.036.
Thus, one gets now:

With PCR5

mPCR5(A) = 0.44 + 0.12 + 0.024 = 0.584
mPCR5(B) = 0.27 + 0.06 + 0.036 = 0.366

mPCR5(A ∪ B) = 0.05 + 0 = 0.05

�
x1 = 0.6 · 0.2 = 0.12
y1 = 0.3 · 0.2 = 0.06�
x2 = 0.2 · 0.12 = 0.024
y2 = 0.3 · 0.12 = 0.036

With PCR5

mPCR5(A) = 0.44 + 0.12 + 0.024 = 0.584
mPCR5(B) = 0.27 + 0.06 + 0.036 = 0.366

mPCR5(A ∪ B) = 0.05 + 0 = 0.05

The result is different from PCR1, PCR2, PCR3 and PCR4 since one has7:

With PCR1 With PCR2 ∼PCR3
mPCR1(A) = 0.536 mPCR2(A) ≈ 0.577
mPCR1(B) = 0.342 mPCR2(B) ≈ 0.373

mPCR1(A ∪ B) = 0.122 mPCR2(A ∪ B) = 0.05

With PCR4 With Dempster’s rule

mPCR4(A) ≈ 0.589 mDS(A) ≈ 0.579
mPCR4(B) ≈ 0.361 mDS(B) ≈ 0.355

mPCR4(A ∪ B) = 0.05 mDS(A ∪ B) ≈ 0.066

One clearly sees that mDS(A ∪ B) gets some mass from the conflicting mass although A ∪ B does not deserve any part

of the conflicting mass since A ∪ B is not involved in the conflict (only A and B are involved in the conflicting mass).

Dempster’s rule appears to us less exact than PCR5.

8 Application of fusion on Zadeh’s example

We compare here the different rules of combinations on the well-known Zadeh’s example8 [14]. More examples including

hybrid DSm models can be found in [11]. Let’s take Θ = {A, B, C}, Shafer’s model and the two following belief
assignments

A B C
m1(.) 0.9 0 0.1

m2(.) 0 0.9 0.1

m12(.) 0 0 0.01

The masses committed to partial conflicts are given by m12(A ∩ B) = 0.81, m12(A ∩ C) = m12(B ∩ C) = 0.09 and
the conflicting mass by k12 = m1(A)m2(B) + m1(A)m2(C) + m2(B)m1(C) = 0.81 + 0.09 + 0.09 = 0.99. We
denote by indexes DS, S, DP, Y, DSmC the fusion rules based respectively on the Demspter’s rule, Smets’ rule (in open

world), Dubois and Prade’s rule, Yager’s rule, Dezert-Smarandache classic rule (based on free model). DSmH (Dezert-

Smarandache Hybrid rule of combination) based on the Shafer’s model coincides here in this static fusion problem with

Dubois and Prade’s result and will not be reported. The next table summarizes the results of all these different rules.

mDS mS mDP mY mDSmC

∅ 0.99

A ∩ B 0.81

A ∩ C 0.09

B ∩ C 0.09

C 1 0.01 0.01 0.01 0.01

A ∪ B 0.81

A ∪ C 0.09

B ∪ C 0.09

A ∪ B ∪ C 0.99

The results obtained with minC, PCR1-PCR5 for this Zadeh’s example are given in the following table. All details of

derivations can be found in [11].

mminC mPCR2 mPCR4 mPCR5

A 0.405 0.4455 0.47864 0.486

B 0.405 0.4455 0.47864 0.486

C 0.190 0.1090 0.04272 0.028

Since WAO and PCR1 provide the same results as PCR2, and PCR3 provides same result as PCR4, WAO, PCR1 and

PCR3 results have not been reported in the previous table.

7The verification is left to the reader.
8A detailed discussion on this example can be found in [9] (Chap. 5).

The mass put on ignorance with PCR5 is the lowest

Note: Example for imp-PCR5 can be found in [DSmT Book 2]
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With PCR5

mPCR5(A) = 0.50 + 0.12 = 0.62
mPCR5(B) = 0.12 + 0.06 = 0.18
mPCR5(A ∪ B) = 0.20 + 0 = 0.20

We did not take into consideration the sum of masses of columnA, i.e. m1(A)+ m2(A) = 0.6+ 0.2 = 0.8, since clearly
m2(A) = 0.2 has no impact on the conflicting mass. In this second example, the result obtained by PCR5 is different
from WAO, PCR1, PCR2, PCR3 and PCR4 which are given by

With PCR1 or WAO With PCR2

mPCR1(A) = 0.572 mPCR2(A) ≈ 0.631
mPCR1(B) = 0.147 mPCR2(B) ≈ 0.169

mPCR1(A ∪ B) = 0.281 mPCR2(A ∪ B) = 0.20

With PCR3 With PCR4

mPCR3(A) ≈ 0.631 mPCR4(A) ≈ 0.645
mPCR3(B) ≈ 0.169 mPCR4(B) ≈ 0.155

mPCR3(A ∪ B) = 0.20 mPCR4(A ∪ B) = 0.20

7.3.3 A two-source example 3

Let’s go further modifying this time the previous example and considering:

A B A ∪ B
m1(.) 0.6 0.3 0.1

m2(.) 0.2 0.3 0.5

m12(.) 0.44 0.27 0.05

The conflicting mass k12 = m12(A ∩ B) = m1(A)m2(B) + m1(B)m2(A) = 0.18 + 0.06 = 0.24 is now different from
the two previous examples, which means that

m2(A) = 0.2 andm1(B) = 0.3 did make an impact on the conflict becausem2(A)m1(B) = 0.2 · 0.3 = 0.06 was added
to the conflicting mass. So, A and B are involved in the conflict (A ∪ B is not involved), hence only A and B deserve a

part of the conflicting mass, A ∪ B does not deserve.

With PCR5, one redistributes the partial conflicting mass 0.18 to A and B proportionally with the massesm1(A) and
m2(B) assigned to A and B respectively, and also the partial conflicting mass 0.06 to A and B proportionally with the

massesm2(A) andm1(B) assigned to A and B respectively, thus one gets two weighting factors of the redistribution for

each corresponding set A and B respectively.

Let x1 be the conflicting mass to be redistributed to A, and y1 the conflicting mass redistributed to B from the first partial

conflicting mass 0.18.

k12 = m12(A ∩ B)

= m1(A)m2(B) + m1(B)m2(A)

= 0.18 + 0.06 = 0.24

This first partial proportional redistribution is then done according

x1/0.6 = y1/0.3 = (x1 + y1)/(0.6 + 0.3) = 0.18/0.9 = 0.2

whence x1 = 0.6 · 0.2 = 0.12, y1 = 0.3 · 0.2 = 0.06.

Let x2 be the conflicting mass to be redistributed to A, and y2 the conflicting mass redistributed to B from second the

partial conflicting mass 0.06.

This second partial proportional redistribution is then done according

x2/0.2 = y2/0.3 = (x2 + y2)/(0.2 + 0.3) = 0.06/0.5 = 0.12

whence x2 = 0.2 · 0.12 = 0.024, y2 = 0.3 · 0.12 = 0.036.
Thus, one gets now:

With PCR5

mPCR5(A) = 0.50 + 0.12 = 0.62
mPCR5(B) = 0.12 + 0.06 = 0.18
mPCR5(A ∪ B) = 0.20 + 0 = 0.20

We did not take into consideration the sum of masses of columnA, i.e. m1(A)+ m2(A) = 0.6+ 0.2 = 0.8, since clearly
m2(A) = 0.2 has no impact on the conflicting mass. In this second example, the result obtained by PCR5 is different
from WAO, PCR1, PCR2, PCR3 and PCR4 which are given by

With PCR1 or WAO With PCR2

mPCR1(A) = 0.572 mPCR2(A) ≈ 0.631
mPCR1(B) = 0.147 mPCR2(B) ≈ 0.169

mPCR1(A ∪ B) = 0.281 mPCR2(A ∪ B) = 0.20

With PCR3 With PCR4

mPCR3(A) ≈ 0.631 mPCR4(A) ≈ 0.645
mPCR3(B) ≈ 0.169 mPCR4(B) ≈ 0.155

mPCR3(A ∪ B) = 0.20 mPCR4(A ∪ B) = 0.20

7.3.3 A two-source example 3

Let’s go further modifying this time the previous example and considering:

A B A ∪ B
m1(.) 0.6 0.3 0.1

m2(.) 0.2 0.3 0.5

m12(.) 0.44 0.27 0.05

The conflicting mass k12 = m12(A ∩ B) = m1(A)m2(B) + m1(B)m2(A) = 0.18 + 0.06 = 0.24 is now different from
the two previous examples, which means that

m2(A) = 0.2 andm1(B) = 0.3 did make an impact on the conflict becausem2(A)m1(B) = 0.2 · 0.3 = 0.06 was added
to the conflicting mass. So, A and B are involved in the conflict (A ∪ B is not involved), hence only A and B deserve a

part of the conflicting mass, A ∪ B does not deserve.

With PCR5, one redistributes the partial conflicting mass 0.18 to A and B proportionally with the massesm1(A) and
m2(B) assigned to A and B respectively, and also the partial conflicting mass 0.06 to A and B proportionally with the

massesm2(A) andm1(B) assigned to A and B respectively, thus one gets two weighting factors of the redistribution for

each corresponding set A and B respectively.

Let x1 be the conflicting mass to be redistributed to A, and y1 the conflicting mass redistributed to B from the first partial

conflicting mass 0.18, and similarly for x2 and y2 with partial conflict 0.06; one has:

k12 = m12(A ∩ B)

= m1(A)m2(B) + m1(B)m2(A)

= 0.18 + 0.06 = 0.24

This first partial proportional redistribution is then done according

x1/0.6 = y1/0.3 = (x1 + y1)/(0.6 + 0.3) = 0.18/0.9 = 0.2

whence x1 = 0.6 · 0.2 = 0.12, y1 = 0.3 · 0.2 = 0.06.

Let x2 be the conflicting mass to be redistributed to A, and y2 the conflicting mass redistributed to B from second the

partial conflicting mass 0.06.

This second partial proportional redistribution is then done according

x2/0.2 = y2/0.3 = (x2 + y2)/(0.2 + 0.3) = 0.06/0.5 = 0.12

whence x2 = 0.2 · 0.12 = 0.024, y2 = 0.3 · 0.12 = 0.036.
Thus, one gets now:

But A ∪ B was not involved in the conflict, hence A ∪ B doesn’t deserve anything from the conflicting mass, hence

Dempster’s rule is less exact than PCR5. Even more, the proportionality in Dempster’s is done with respect to m12(.)
results, 0.50, 0.12, and respectively 0.20 forA, B,A∪B, which is less exact than PCR5 where the proportionality is done
with respect to just the masses involved in conflict, 0.6 and 0.3, for A and respectivelyB.

whence

{

x = 0.6 · 0.2 = 0.12

y = 0.3 · 0.2 = 0.06

With DSmH and Dubois & Prade’s rules With Dempster’s rule

mDSmH(A) = mDP (A) = 0.44 mDS(A) = 0.578948
mDSmH(B) = mDP (B) = 0.27 mDS(B) = 0.355263

mDSmH(A ∪ B) = mDP (A ∪ B) = 0.29 mDS(A ∪ B) = 0.065789

With DSmH and Dubois & Prade’s rules

mDSmH(A) = mDP (A) = 0.44
mDSmH(B) = mDP (B) = 0.27

mDSmH(A ∪ B) = mDP (A ∪ B) = 0.29

But A ∪ B was not involved in the conflict, hence A ∪ B doesn’t deserve anything from the conflicting mass, hence

Dempster’s rule is less exact than PCR5. Even more, the proportionality in Dempster’s is done with respect to m12(.)
results, 0.44, 0.27, and respectively 0.05 for A, B, A ∪ B, which is less exact than PCR5 where the proportionality is
done with respect to just the masses involved in conflict, 0.6 and 0.3, for A and respectively B, and again with respect to
0.2 and 0.3 for A and respectively B.

This paper presents a new set of alternative combination rules based on different proportional conflict redistribu-

tions (PCR) which can be applied in the framework of the two principal theories dealing with the combination of belief

functions: The Dempster-Shafer Theory (DST) [8, 7] and the recent Dezert-Smarandache Theory (DSmT) [9] which

overcomes limitations of DST for combining uncertain, imprecise and possibly highly conflicting sources of information

for static or dynamic fusion applications. The major differences between these two theories is the nature and hypotheses

on the frame Θ on which are defined the basic belief assignments (bba) m(.), i.e. either on the power set 2Θ for DST

or on the hyper-power set (Dedekind’s lattice) DΘ for DSmT. The difference between DST and DSmT lies also in the

rules of combination to apply (Dempster’s [8], Yager’s [13], Dubois and Prade’s [3], minC [1], disjunctive rules [3], etc

in DST versus general hybrid DSm rule of combination in the DSmT framework). This paper is not devoted specifically

to the presentation of all different rules available in literature like in [7, 9] which will not be reported here but only on a

new family of rules which have not yet been proposed and can be useful for the information fusion community for some

fusion applications. These new rules based on various proportional conflict redistribution methods were stimulated to us

by Dr. Wu Li at NASA Research Center, Langley, VA and by the recent minC combination rule developed by Milan

Daniel in [2]. Due to space limitations, we assume the reader familiar with basics of DST [8] and DSmT [9]. This paper is

a shortened version of [11] which contains in details all derivations of examples presented here and more. Let’s consider

a frame Θ = {θ1, . . . , θn} of finite number of exhaustive hypotheses. Let’s denote G the classical power set of Θ (i.e.

2Θ if we assume the Shafer’s model with all exclusivity constraints between elements of the frame - if we adopt DST)

or denote G the hyper-power set DΘ (if we adopt DSmT and know that some elements can’t be refined because of their

intrinsic fuzzy and continuous nature). A basic belief assignmentm(.) is then defined asm : G → [0, 1] with:

m(∅) = 0 and
∑

X∈G

m(X) = 1 (1)

Among all possible bbas, the vacuous belief assignment (VBA), defined by mv(Θ) = 1 which characterizes a full
ignorant source, plays a particular and important role for the construction of a satisfying combination rule. Indeed, the

major properties that a good rule of combination must satisfy, in the authors’ opinion, are :

1. the coherence of the combination result in all possible cases (i.e. for any number of sources, any values of bbas and

for any types of frames and models which can change or stay invariant over time).

2. the commutativity of the rule of combination

3. the neutral impact of the VBA into the fusion.

The requirement for conditions 1 and 2 is legitimate since we are obviously looking for best performances (we don’t want

a rule leading to counter-intuitive or wrong solutions) and we don’t want that the result depends on the arbitrary order the

sources are combined. The neutral impact of VBA to be satisfied by a fusion rule (condition 3), denoted by the generic

With PCR5

mPCR5(A) = 0.50 + 0.12 = 0.62
mPCR5(B) = 0.12 + 0.06 = 0.18
mPCR5(A ∪ B) = 0.20 + 0 = 0.20

We did not take into consideration the sum of masses of columnA, i.e. m1(A)+ m2(A) = 0.6+ 0.2 = 0.8, since clearly
m2(A) = 0.2 has no impact on the conflicting mass. In this second example, the result obtained by PCR5 is different
from WAO, PCR1, PCR2, PCR3 and PCR4 which are given by

With PCR1 or WAO With PCR2

mPCR1(A) = 0.572 mPCR2(A) ≈ 0.631
mPCR1(B) = 0.147 mPCR2(B) ≈ 0.169

mPCR1(A ∪ B) = 0.281 mPCR2(A ∪ B) = 0.20

With PCR3 With PCR4

mPCR3(A) ≈ 0.631 mPCR4(A) ≈ 0.645
mPCR3(B) ≈ 0.169 mPCR4(B) ≈ 0.155

mPCR3(A ∪ B) = 0.20 mPCR4(A ∪ B) = 0.20

7.3.3 A two-source example 3

Let’s go further modifying this time the previous example and considering:

A B A ∪ B
m1(.) 0.6 0.3 0.1

m2(.) 0.2 0.3 0.5

m12(.) 0.44 0.27 0.05

The conflicting mass k12 = m12(A ∩ B) = m1(A)m2(B) + m1(B)m2(A) = 0.18 + 0.06 = 0.24 is now different from
the two previous examples, which means thatm2(A) = 0.2 andm1(B) = 0.3 did make an impact on the conflict; why?,
because m2(A)m1(B) = 0.2 · 0.3 = 0.06 was added to the conflicting mass. Therefore A and B are involved in the

conflict (A ∪ B is not involved), hence only A and B deserve a part of the conflicting mass, A ∪ B does not deserve.

With PCR5, one redistributes the partial conflicting mass 0.18 to A and B proportionally with the massesm1(A) and
m2(B) assigned to A and B respectively, and also the partial conflicting mass 0.06 to A and B proportionally with the

massesm2(A) andm1(B) assigned to A and B respectively, thus one gets two weighting factors of the redistribution for

each corresponding set A and B respectively.

Let x1 be the conflicting mass to be redistributed to A, and y1 the conflicting mass redistributed to B from the first partial

conflicting mass 0.18.

k12 = m12(A ∩ B)

= m1(A)m2(B) + m1(B)m2(A)

= 0.18 + 0.06 = 0.24

This first partial proportional redistribution is then done according

x1/0.6 = y1/0.3 = (x1 + y1)/(0.6 + 0.3) = 0.18/0.9 = 0.2

whence x1 = 0.6 · 0.2 = 0.12, y1 = 0.3 · 0.2 = 0.06.

Let x2 be the conflicting mass to be redistributed to A, and y2 the conflicting mass redistributed to B from second the

partial conflicting mass 0.06.

This second partial proportional redistribution is then done according

x2/0.2 = y2/0.3 = (x2 + y2)/(0.2 + 0.3) = 0.06/0.5 = 0.12

whence x2 = 0.2 · 0.12 = 0.024, y2 = 0.3 · 0.12 = 0.036.
Thus, one gets now:

Shafer’s model

A ∪ B ∪ C in minC version a), and worse in minC version b) to A, B, C, A ∪ B, A ∪ C, B ∪ C and A ∪ B ∪ C (see

example in section 5). PCR4 rule improves this and redistributes the mass m(C ∩ (A ∪ B)) to C and A ∪ B only, since

only them were involved in the conflict: i.e. m12(C ∩ (A ∪ B)) = m1(C)m2(A ∪ B) + m2(C)m1(A ∪ B), clearly the
other elements A, B, A∪B ∪C that get some mass in minC were not involved in the conflict C ∩ (A∪B). If at least one
conjunctive rule result is null, then the partial conflicting mass which involved this set is redistributed proportionally to the

column sums corresponding to each set. Thus PCR4 does a more exact redistribution than both minC versions (versions a)

and b) explicated in section 5. The PCR4 rule partially extends Dempster’s rule in the sense that instead of redistributing

the total conflicting mass as within Dempster’s rule, PCR4 redistributes partial conflicting masses, hence PCR4 does

a better refined redistribution than Dempster’s rule; PCR4 and Dempster’s rule coincide for Θ = {A,B}, in Shafer’s
model, with s ≥ 2 sources, and such that m12...s(A) > 0, m12...s(B) > 0, and m12...s(A ∪ B) = 0. Thus according to
authors opinion, PCR4 rule redistributes better than Dempster’s rule since in PCR one goes on partial conflicting, while

Dempster’s rule redistributes the conflicting mass to all non-empty sets whose conjunctive mass is nonzero, even those

not involved in the conflict.

10.2 The PCR4 formula

The PCR4 formula for s = 2 sources: ∀X ∈ G \ {∅}

mPCR4(X) = m12(X) · [1 +
�

Y ∈G
c(Y ∩X)=∅

m12(X ∩ Y )
m12(X) + m12(Y )

] (29)

withm12(X) andm12(Y ) nonzero. m12(.) corresponds to the conjunctive consensus, i.e.

m12(X) �
�

X1,X2∈G
X1∩X2=X

m1(X1)m2(X2) .

If at least one ofm12(X) orm12(Y ) is zero, the fraction is discarded and the massm12(X ∩ Y ) is transferred to X and

Y proportionally with respect to their non-zero column sum of masses; if both their column sums of masses are zero, then

one transfers to the partial ignoranceX∪Y ; if even this partial ignorance is empty then one transfers to the total ignorance.

Let G = {X1, . . . , Xn} �= ∅ (G being either the power-set or hyper-power set depending on the model we want to

deal with), n ≥ 2, ∀X �= ∅, X ∈ G, the general PCR4 formula for s ≥ 2 sources is given by ∀X ∈ G \ {∅}

mPCR4(X) = m12...s(X) · [1 +
s−1�

k=1

SPCR4(X, k)] (30)

with

SPCR4(X, k) �
�

Xi1 ,...,Xik
∈G\{X}

{i1,...,ik}∈Pk({1,2,...,n})
c(X∩Xi1∩...∩Xik

)=∅

m12...s(X ∩Xi1 ∩ . . . ∩Xik)
m12...s(X) +

�k
j=1 m12...s(Xij )

(31)

with allm12...s(X),m12...s(X1), . . . ,m12...s(Xn) nonzero and where the first term of the right side of (30) corresponds to
the conjunctive consensus between s sources (i.e. m12...s(.)). If at least one ofm12...s(X),m12...s(X1), . . . ,m12...s(Xn)
is zero, the fraction is discarded and the mass m12...s(X ∩ X1 ∩ X2 ∩ . . . ∩ Xk) is transferred to X , X1, . . . , Xk

proportionally with respect to their corresponding column sums in the mass matrix.

10.3 Example for PCR4 versus minC

Let’s consider Θ = {A,B}, Shafer’s model and the the two following bbas:

m1(A) = 0.6 m1(B) = 0.3 m1(A ∪B) = 0.1

m2(A) = 0.2 m2(B) = 0.3 m2(A ∪B) = 0.5

Then the conjunctive consensus yields :

m12(A) = 0.44 m12(B) = 0.27 m12(A ∪B) = 0.05

with the conflicting mass

k12 = m12(A ∩B) = m1(A)m2(B) + m1(B)m2(A) = 0.24
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Inputs

With PCR5

mPCR5(A) = 0.50 + 0.12 = 0.62
mPCR5(B) = 0.12 + 0.06 = 0.18
mPCR5(A ∪ B) = 0.20 + 0 = 0.20

We did not take into consideration the sum of masses of columnA, i.e. m1(A)+ m2(A) = 0.6+ 0.2 = 0.8, since clearly
m2(A) = 0.2 has no impact on the conflicting mass. In this second example, the result obtained by PCR5 is different
from WAO, PCR1, PCR2, PCR3 and PCR4 which are given by

With PCR1 or WAO With PCR2

mPCR1(A) = 0.572 mPCR2(A) ≈ 0.631
mPCR1(B) = 0.147 mPCR2(B) ≈ 0.169

mPCR1(A ∪ B) = 0.281 mPCR2(A ∪ B) = 0.20

With PCR3 With PCR4

mPCR3(A) ≈ 0.631 mPCR4(A) ≈ 0.645
mPCR3(B) ≈ 0.169 mPCR4(B) ≈ 0.155

mPCR3(A ∪ B) = 0.20 mPCR4(A ∪ B) = 0.20

7.3.3 A two-source example 3

Let’s go further modifying this time the previous example and considering:

A B A ∪ B
m1(.) 0.6 0.3 0.1

m2(.) 0.2 0.3 0.5

m12(.) 0.44 0.27 0.05

The conflicting mass k12 = m12(A ∩ B) = m1(A)m2(B) + m1(B)m2(A) = 0.18 + 0.06 = 0.24 is now different
from the two previous examples, which means that m2(A) = 0.2 andm1(B) = 0.3 did make an impact on the conflict;
why?, because m2(A)m1(B) = 0.2 · 0.3 = 0.06 was added to the conflicting mass. Therefore A and B are involved in

the conflict (A ∪ B is not involved), hence only A and B deserve a part of the conflicting mass, A ∪ B does not deserve.

With PCR5, one redistributes the partial conflicting mass 0.18 to A and B proportionally with the masses m1(A) and
m2(B) assigned to A and B respectively, and also the partial conflicting mass 0.06 to A and B proportionally with the

masses m2(A) and m1(B) assigned to A and B respectively, thus one gets two weighting factors of the redistribution

for each corresponding set A and B respectively. Let x1 be the conflicting mass to be redistributed to A, and y1 the

conflicting mass redistributed to B from the first partial conflicting mass 0.18. This first partial proportional redistribution

is then done according x1/0.6 = y1/0.3 = (x1 + y1)/(0.6 + 0.3) = 0.18/0.9 = 0.2 whence x1 = 0.6 · 0.2 = 0.12,
y1 = 0.3 ·0.2 = 0.06. Now let x2 be the conflicting mass to be redistributed toA, and y2 the conflicting mass redistributed

to B from second the partial conflicting mass 0.06. This second partial proportional redistribution is then done according

x2/0.2 = y2/0.3 = (x2 + y2)/(0.2+0.3) = 0.06/0.5 = 0.12 whence x2 = 0.2 · 0.12 = 0.024, y2 = 0.3 · 0.12 = 0.036.
Thus, one gets now:

With PCR5

mPCR5(A) = 0.44 + 0.12 + 0.024 = 0.584
mPCR5(B) = 0.27 + 0.06 + 0.036 = 0.366

mPCR5(A ∪ B) = 0.05 + 0 = 0.05

The result is different from PCR1, PCR2, PCR3 and PCR4 since one has7:

With PCR1 With PCR2 ∼PCR3
mPCR1(A) = 0.536 mPCR2(A) ≈ 0.577
mPCR1(B) = 0.342 mPCR2(B) ≈ 0.373

mPCR1(A ∪ B) = 0.122 mPCR2(A ∪ B) = 0.05

With PCR4 With Dempster’s rule

mPCR4(A) ≈ 0.589 mDS(A) ≈ 0.579
mPCR4(B) ≈ 0.361 mDS(B) ≈ 0.355

mPCR4(A ∪ B) = 0.05 mDS(A ∪ B) ≈ 0.066

One clearly sees that mDS(A ∪ B) gets some mass from the conflicting mass although A ∪ B does not deserve any part

of the conflicting mass since A ∪ B is not involved in the conflict (only A and B are involved in the conflicting mass).

Dempster’s rule appears to us less exact than PCR5.

7The verification is left to the reader.
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7.3.3 A two-source example 3

Let’s go further modifying this time the previous example and considering:

A B A ∪ B
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m2(.) 0.2 0.3 0.5

m12(.) 0.44 0.27 0.05

The conflicting mass k12 = m12(A ∩ B) = m1(A)m2(B) + m1(B)m2(A) = 0.18 + 0.06 = 0.24 is now different from
the two previous examples, which means thatm2(A) = 0.2 andm1(B) = 0.3 did make an impact on the conflict; why?,
because m2(A)m1(B) = 0.2 · 0.3 = 0.06 was added to the conflicting mass. Therefore A and B are involved in the

conflict (A ∪ B is not involved), hence only A and B deserve a part of the conflicting mass, A ∪ B does not deserve.

With PCR5, one redistributes the partial conflicting mass 0.18 to A and B proportionally with the massesm1(A) and
m2(B) assigned to A and B respectively, and also the partial conflicting mass 0.06 to A and B proportionally with the

massesm2(A) andm1(B) assigned to A and B respectively, thus one gets two weighting factors of the redistribution for

each corresponding set A and B respectively.

Let x1 be the conflicting mass to be redistributed to A, and y1 the conflicting mass redistributed to B from the first partial

conflicting mass 0.18.

This first partial proportional redistribution is then done according

x1/0.6 = y1/0.3 = (x1 + y1)/(0.6 + 0.3) = 0.18/0.9 = 0.2

whence x1 = 0.6 · 0.2 = 0.12, y1 = 0.3 · 0.2 = 0.06.

Let x2 be the conflicting mass to be redistributed to A, and y2 the conflicting mass redistributed to B from second the

partial conflicting mass 0.06.

This second partial proportional redistribution is then done according

x2/0.2 = y2/0.3 = (x2 + y2)/(0.2 + 0.3) = 0.06/0.5 = 0.12

whence x2 = 0.2 · 0.12 = 0.024, y2 = 0.3 · 0.12 = 0.036.
Thus, one gets now:
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We did not take into consideration the sum of masses of columnA, i.e. m1(A)+ m2(A) = 0.6+ 0.2 = 0.8, since clearly
m2(A) = 0.2 has no impact on the conflicting mass. In this second example, the result obtained by PCR5 is different
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7.3.3 A two-source example 3

Let’s go further modifying this time the previous example and considering:

A B A ∪ B
m1(.) 0.6 0.3 0.1

m2(.) 0.2 0.3 0.5

m12(.) 0.44 0.27 0.05

The conflicting mass k12 = m12(A ∩ B) = m1(A)m2(B) + m1(B)m2(A) = 0.18 + 0.06 = 0.24 is now different from
the two previous examples, which means thatm2(A) = 0.2 andm1(B) = 0.3 did make an impact on the conflict; why?,
because m2(A)m1(B) = 0.2 · 0.3 = 0.06 was added to the conflicting mass. Therefore A and B are involved in the

conflict (A ∪ B is not involved), hence only A and B deserve a part of the conflicting mass, A ∪ B does not deserve.

With PCR5, one redistributes the partial conflicting mass 0.18 to A and B proportionally with the massesm1(A) and
m2(B) assigned to A and B respectively, and also the partial conflicting mass 0.06 to A and B proportionally with the

massesm2(A) andm1(B) assigned to A and B respectively, thus one gets two weighting factors of the redistribution for

each corresponding set A and B respectively.

Let x1 be the conflicting mass to be redistributed to A, and y1 the conflicting mass redistributed to B from the first partial

conflicting mass 0.18.

This first partial proportional redistribution is then done according

x1/0.6 = y1/0.3 = (x1 + y1)/(0.6 + 0.3) = 0.18/0.9 = 0.2

whence x1 = 0.6 · 0.2 = 0.12, y1 = 0.3 · 0.2 = 0.06.

Let x2 be the conflicting mass to be redistributed to A, and y2 the conflicting mass redistributed to B from second the

partial conflicting mass 0.06.

This second partial proportional redistribution is then done according

x2/0.2 = y2/0.3 = (x2 + y2)/(0.2 + 0.3) = 0.06/0.5 = 0.12

whence x2 = 0.2 · 0.12 = 0.024, y2 = 0.3 · 0.12 = 0.036.
Thus, one gets now:

With PCR5

mPCR5(A) = 0.44 + 0.12 + 0.024 = 0.584
mPCR5(B) = 0.27 + 0.06 + 0.036 = 0.366

mPCR5(A ∪ B) = 0.05 + 0 = 0.05

�
x1 = 0.6 · 0.2 = 0.12
y1 = 0.3 · 0.2 = 0.06�
x2 = 0.2 · 0.12 = 0.024
y2 = 0.3 · 0.12 = 0.036

With PCR5

mPCR5(A) = 0.44 + 0.12 + 0.024 = 0.584
mPCR5(B) = 0.27 + 0.06 + 0.036 = 0.366

mPCR5(A ∪ B) = 0.05 + 0 = 0.05

The result is different from PCR1, PCR2, PCR3 and PCR4 since one has7:

With PCR1 With PCR2 ∼PCR3
mPCR1(A) = 0.536 mPCR2(A) ≈ 0.577
mPCR1(B) = 0.342 mPCR2(B) ≈ 0.373

mPCR1(A ∪ B) = 0.122 mPCR2(A ∪ B) = 0.05

With PCR4 With Dempster’s rule

mPCR4(A) ≈ 0.589 mDS(A) ≈ 0.579
mPCR4(B) ≈ 0.361 mDS(B) ≈ 0.355

mPCR4(A ∪ B) = 0.05 mDS(A ∪ B) ≈ 0.066

One clearly sees that mDS(A ∪ B) gets some mass from the conflicting mass although A ∪ B does not deserve any part

of the conflicting mass since A ∪ B is not involved in the conflict (only A and B are involved in the conflicting mass).

Dempster’s rule appears to us less exact than PCR5.

8 Application of fusion on Zadeh’s example

We compare here the different rules of combinations on the well-known Zadeh’s example8 [14]. More examples including

hybrid DSm models can be found in [11]. Let’s take Θ = {A, B, C}, Shafer’s model and the two following belief
assignments

A B C
m1(.) 0.9 0 0.1

m2(.) 0 0.9 0.1

m12(.) 0 0 0.01

The masses committed to partial conflicts are given by m12(A ∩ B) = 0.81, m12(A ∩ C) = m12(B ∩ C) = 0.09 and
the conflicting mass by k12 = m1(A)m2(B) + m1(A)m2(C) + m2(B)m1(C) = 0.81 + 0.09 + 0.09 = 0.99. We
denote by indexes DS, S, DP, Y, DSmC the fusion rules based respectively on the Demspter’s rule, Smets’ rule (in open

world), Dubois and Prade’s rule, Yager’s rule, Dezert-Smarandache classic rule (based on free model). DSmH (Dezert-

Smarandache Hybrid rule of combination) based on the Shafer’s model coincides here in this static fusion problem with

Dubois and Prade’s result and will not be reported. The next table summarizes the results of all these different rules.

mDS mS mDP mY mDSmC

∅ 0.99

A ∩ B 0.81

A ∩ C 0.09

B ∩ C 0.09

C 1 0.01 0.01 0.01 0.01

A ∪ B 0.81

A ∪ C 0.09

B ∪ C 0.09

A ∪ B ∪ C 0.99

The results obtained with minC, PCR1-PCR5 for this Zadeh’s example are given in the following table. All details of

derivations can be found in [11].

mminC mPCR2 mPCR4 mPCR5

A 0.405 0.4455 0.47864 0.486

B 0.405 0.4455 0.47864 0.486

C 0.190 0.1090 0.04272 0.028

Since WAO and PCR1 provide the same results as PCR2, and PCR3 provides same result as PCR4, WAO, PCR1 and

PCR3 results have not been reported in the previous table.

7The verification is left to the reader.
8A detailed discussion on this example can be found in [9] (Chap. 5).

The mass put on ignorance with PCR5 is the lowest

Note: Example for imp-PCR5 can be found in [DSmT Book 2]



PCR6 versus PCR5
The difference between PCR5 and PCR6 lies in the way the proportional conflict redistribution is 
done as soon as three or more sources are involved in the fusion (for 2 sources, PCR6=PCR5).
the proportional conflict redistribution is done as soon as three or more sources are involved in the fusion. For
example, let’s consider three sources with bba’s

Let’s consider m1(.), m2(.) and m3(.), A ∩ B = ∅ for the model of the frame Θ.

m1(A) = 0.6, m2(B) = 0.3, m3(B) = 0.1

With PCR5 the partial conflicting mass m1(A)m2(B)m3(B) = 0.6 · 0.3 · 0.1 = 0.018 is redistributed back to
A and B only with respect to the following proportions respectively: xPCR5

A = 0.01714 and xPCR5
B = 0.00086

because the proportionalization requires

xPCR5
A

m1(A)
=

xPCR5
B

m2(B)m3(B)
=

m1(A)m2(B)m3(B)

m1(A) + m2(B)m3(B)

that is
xPCR5

A

0.6
=

xPCR5
B

0.03
=

0.018

0.6 + 0.03
≈ 0.02857

thus
{

xPCR5
A = 0.60 · 0.02857 ≈ 0.01714
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xPCR6
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xPCR6
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and therefore with PCR6, one gets finally the following redistributions to A and B:
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xPCR6
A = 0.0108

xPCR6
B = xPCR6

B,2 + xPCR6
B,3 = 0.0054 + 0.0018 = 0.0072

From the implementation point of view, PCR6 is much more simple to implement than PCR5 (see Appendix).

3 Reliability discounting
Reliability refers to information quality while importance refers to subjective preferences of the fusion system

designer. The reliability of a source represents its ability to provide the correct assessment/solution of the
given problem. It is characterized by a discounting reliability factor, usually denoted α in [0, 1], which should
be estimated from statistics when available, or by other techniques [3]. This reliability factor can be context-
dependent. For example, if one knows that some sensors do not perform well under bad weather conditions, etc,
one will decrease the reliability factor of information arising from that source accordingly. By convention, we
usually take α = 1 when the source is fully reliable and α = 0 if the source is totally unreliable. Reliability of
a source is generally considered6 through Shafer’s discounting method [8], p. 252, which consists in multiplying
the masses of focal elements by the reliability factor α, and transferring all the remaining discounted mass to
the full ignorance Θ. When α < 1, such very simple reliability discounting technique discounts all focal elements
with the same factor α and it increases the non specificity of the discounted sources since the mass committed to

6More sophisticated methods have been also proposed, see [4, 5] for example.
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With PCR5:



Shafer’s model

Zadehʼs Example (1979)
12.3 Example 3 (Zadeh’s example)

Let’s consider the famous Zadeh’s example15 [26] with Θ = {A,B, C}, Shafer’s model and the two following belief
assignments

m1(A) = 0.9 m1(B) = 0 m1(C) = 0.1
m2(A) = 0 m2(B) = 0.9 m2(C) = 0.1

The conjunctive consensus yields for this case,m12(A) = m12(b) = 0,m12(C) = 0.01. The masses committed to partial
conflicts are given bym12(A ∩B) = 0.81,m12(A ∩ C) = m12(B ∩ C) = 0.09 and the conflicting mass by

k12 = m1(A)m2(B) + m1(A)m2(C) + m2(B)m1(C) = 0.81 + 0.09 + 0.09 = 0.99

The first partial conflictm12(A ∩B) = 0.9 · 0.9 = 0.81 is proportionally redistributed to A and B according to

x1

0.9
=

y1

0.9
=

0.81
0.9 + 0.9

whence x1 = 0.405 and y1 = 0.405.

The second partial conflictm12(A ∩ C) = 0.9 · 0.1 = 0.09 is proportionally redistributed to A and C according to

x2

0.9
=

y2

0.1
=

0.09
0.9 + 0.1

whence x2 = 0.081 and y2 = 0.009.

The third partial conflictm12(B ∩ C) = 0.9 · 0.1 = 0.09 is proportionally redistributed to B and C according to

x3

0.9
=

y3

0.1
=

0.09
0.9 + 0.1

whence x3 = 0.081 and y3 = 0.009.

After summing all proportional redistributions of partial conflicts to corresponding elements with PCR5, one finally gets:

mPCR5(A) = 0 + 0.405 + 0.081 = 0.486
mPCR5(B) = 0 + 0.405 + 0.081 = 0.486
mPCR5(C) = 0.01 + 0.009 + 0.009 = 0.028

The fusion obtained from other rules yields:

• with Dempster’s rule based on Shafer’s model, one gets the counter-intuitive result

mDS(C) = 1

• with Smets’ rule based on Open-World model, one gets

mS(∅) = 0.99 mS(C) = 0.01

• with Yager’s rule based on Shafer’s model, one gets

mY (A ∪B ∪ C) = 0.99 mDS(C) = 0.01

• with Dubois & Prade’s rule based on Shafer’s model, one gets

mDP (A ∪B) = 0.81 mDP (A ∪ C) = 0.09 mDP (B ∪ C) = 0.09 mDP (C) = 0.01

• with the classic DSm rule based on the free-DSm model, one gets

mDSmC(A ∩B) = 0.81 mDSmC(A ∩ C) = 0.09 mDSmC(B ∩ C) = 0.09 mDSmC(C) = 0.01
15A detailed discussion on this example can be found in [15] (Chap. 5, p. 110).
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With PCR5

mPCR5(A) = 0.44 + 0.12 + 0.024 = 0.584
mPCR5(B) = 0.27 + 0.06 + 0.036 = 0.366

mPCR5(A ∪ B) = 0.05 + 0 = 0.05

The result is different from PCR1, PCR2, PCR3 and PCR4 since one has7:

With PCR1 With PCR2 ∼PCR3
mPCR1(A) = 0.536 mPCR2(A) ≈ 0.577
mPCR1(B) = 0.342 mPCR2(B) ≈ 0.373

mPCR1(A ∪ B) = 0.122 mPCR2(A ∪ B) = 0.05

With PCR4 With Dempster’s rule

mPCR4(A) ≈ 0.589 mDS(A) ≈ 0.579
mPCR4(B) ≈ 0.361 mDS(B) ≈ 0.355

mPCR4(A ∪ B) = 0.05 mDS(A ∪ B) ≈ 0.066

Note: mDS(A ∪ B) gets some mass from the conflicting mass althoughA ∪ B
does not deserve any part of the conflicting mass.

8 Application of fusion on Zadeh’s example

We compare here the different rules of combinations on the well-known Zadeh’s example8 [14]. More examples including

hybrid DSm models can be found in [11]. Let’s take Θ = {A, B, C}, Shafer’s model and the two following belief
assignments

A B C
m1(.) 0.9 0 0.1

m2(.) 0 0.9 0.1

m12(.) 0 0 0.01

The masses committed to partial conflicts are given by m12(A ∩ B) = 0.81, m12(A ∩ C) = m12(B ∩ C) = 0.09 and
the conflicting mass by k12 = m1(A)m2(B) + m1(A)m2(C) + m2(B)m1(C) = 0.81 + 0.09 + 0.09 = 0.99. We
denote by indexes DS, S, DP, Y, DSmC the fusion rules based respectively on the Demspter’s rule, Smets’ rule (in open

world), Dubois and Prade’s rule, Yager’s rule, Dezert-Smarandache classic rule (based on free model). DSmH (Dezert-

Smarandache Hybrid rule of combination) based on the Shafer’s model coincides here in this static fusion problem with

Dubois and Prade’s result and will not be reported. The next table summarizes the results of all these different rules.

mDS mS mDP mY mDSmC

∅ 0.99

A ∩ B 0.81

A ∩ C 0.09

B ∩ C 0.09

C 1 0.01 0.01 0.01 0.01

A ∪ B 0.81

A ∪ C 0.09

B ∪ C 0.09

A ∪ B ∪ C 0.99

The results obtained with minC, PCR1-PCR5 for this Zadeh’s example are given in the following table. All details of

derivations can be found in [11].

mminC mPCR2 mPCR4 mPCR5

A 0.405 0.4455 0.47864 0.486

B 0.405 0.4455 0.47864 0.486

C 0.190 0.1090 0.04272 0.028

Since WAO and PCR1 provide the same results as PCR2, and PCR3 provides same result as PCR4, WAO, PCR1 and

PCR3 results have not been reported in the previous table.

7The verification is left to the reader.
8A detailed discussion on this example can be found in [9] (Chap. 5).

Partial conflicts:

Total conflict:

(Yager)(DS)
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with Dubois & Prade’s rule based on Shafer’s model, one gets

mDP (A ∪ B) = 0.81

mDP (A ∪ C) = 0.09

mDP (B ∪ C) = 0.09

mDP (C) = 0.01

with the classic DSm rule based on the free-DSm model, one gets

mDSmC(A ∩ B) = 0.81

mDSmC(A ∩ C) = 0.09

mDSmC(B ∩ C) = 0.09

mDSmC(C) = 0.01

with the hybrid DSm rule based on Shafer’s model, one gets same as with Dubois &

Prade (in this specific example)

mDSmH(A ∪ B) = 0.81

mDSmH(A ∪ C) = 0.09

mDSmH(B ∪ C) = 0.09

mDSmH(C) = 0.01

with the WAO rule based on Shafer’s model, one gets

mWAO(A) = 0.4455

mWAO(B) = 0.4455

mWAO(C) = 0.1090

with the PCR1 rule based on Shafer’s model, one gets (same as with WAO)

mPCR1(A) = 0 +
0.9

0.9 + 0.9 + 0.2
· 0.99 = 0.4455

mPCR1(B) = 0 +
0.9

0.9 + 0.9 + 0.2
· 0.99 = 0.4455

mPCR1(C) = 0.01 +
0.2

0.9 + 0.9 + 0.2
· 0.99 = 0.1090

m12(A) = 0.50 m12(B) = 0.12 m12(A ∪ B) = 0.20

(PCR5)
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1. Introduction

mPCR5(A) = 0.486

mPCR5(B) = 0.486

mPCR5(C) = 0.028

m12(A) = 0.50 m12(B) = 0.12 m12(A ∪ B) = 0.20

k12 = m12(A ∩ B) = m1(A)m2(B) + m1(B)m2(A) = 0.18

x

0.6
=

y

0.3
=

x + y

0.6 + 0.3
=

0.18

0.9
= 0.2

Thus x = 0.6 · 0.2 = 0.12, y = 0.3 · 0.2 = 0.06 and one gets :

1Email addresses: jean.dezert@onera.fr, smarand@unm.edu.

What is the most reasonable/trustable result ?

Comparison of Fusion results

(DSmH=DP)

Inputs

No definitive answer since ~ 30 years !!! but simulations can be done based 
on groundtruth to compare performances of different rules.
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Smarandache’s example (non Bayesian case)

Shafer’s modelΘ = {A, B, C, D}
A B C ∪ D

m1(.) 0.99 0 0.01

m2(.) 0 0.99 0.01

m12(.) 0 0 0.0001Partial conflicts:

Total conflict:

m12(A ∩ B) = m1(A)m2(B) = 0.9801

m12(A ∩ (C ∪ D)) = m1(A)m2(C ∪ D) = 0.0099

m12(B ∩ (C ∪ D)) = m1(C ∪ D)m2(B) = 0.0099

k12 = m1(A)m2(B) + m1(A)m2(C ∪ D) + m1(C ∪ D)m2(B) = 0.9801 + 0.0099 + 0.0099 = 0.9999

With (DS) rule, one will get mDS(C ∪ D) = 1

With (DSmH) rule, one will get

With (PCR5) rule, one will get

mDSmH(A ∪ B) = 0.9801
mDSmH(C ∪ D) = 0.0001mDSmH(A ∪ C ∪ D) = 0.0099

mDSmH(B ∪ C ∪ D) = 0.0099

mPCR5(A) = mPCR5(B) = 0.499851

mPCR5(C ∪ D) = 0.000298

With TBM and Smets’ rule, one gets mS(∅) = 0.9999 mS(C ∪ D) = 0.0001

Inputs



Target type tracking with (DS) and (PCR5)

2 targets sequentially observed and classified with

Fighter Type TrackingCargo Type Tracking

Cargo Fighter

(DS)

(DS)(PCR5)

(PCR5)

[Dezert, Tchamova, Konstantinova, Smarandache 2006]



Example : (PCR5) for Gaussian Bayesian 
belief distributions

Here we restrict masses to be Bayesian and we extend PCR5 to 
work on a continuous frame

PCR5 versus Bayes’ formula
for combining probability densities

(working notes V3)

1 Principles of estimation

m1(.) ≡ p1(.)

m2(.) ≡ p2(.)

m2(.) = m1(.) ≡ p2(.)

mPCR5(.)

m∩(.) = m1(.)m2(.)/Cte

m1(θ1) = 1 − e1 m1(θ2) = 0 m1(θ3) = e1

m2(θ1) = 0 m2(θ2) = 1 − e2 m2(θ3) = e2

• Step 2: compute all the conflicting masses (partial and/or total).

Let’s consider x an hidden/unknown (scalar or vector-valued) quantity called parameter1 and some obser-
vation z of x. This means that z is a function (not necessarily known) of x, i.e. z = h(x). An estimator is a
function of z which transforms the observation z into an estimate x̂(z) of x in some sense. Closer x̂(z) is to
x for a given distance measure, better is the estimator. For notation convenience, we will use x̂ instead x̂(z)
when no confusion is possible. According [1], an optimal estimator is a computational algorithm that processes
observations to yield an estimate of a variable of interest that minimizes a certain error criterion. In tracking
applications, the parameter x is usually time-varying and it corresponds to the state of a dynamic system under
interest. The estimation process uses knowledge or modeling about the evolution the state of the dynamic
system and the probabilistic characterization of the random factors and the prior information. The estimation
error x̃ corresponding to x̂ is

1For simplicity, we assume x being time invariant.
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1

Application:  Particle Filtering for target tracking [Fusion 2007]

where Cte is a normalization constant
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Fusion of beliefs based on sampling

[Frédéric Dambreville, Chap.6, DSmT Book 3,2009]

Dempster’s rule obtained from sampling approach

The estimate �mDS(.) of mDS(.) is obtained by the following sampling process:

1. Repeat from n = 1 to n = N :

(a) Generate Y1 and Y2 by means of m1(.) and m2(.) respectively,

(b) If Y1 ∩ Y2 = ∅ , then set Xn = rejected ,

(c) Otherwise, keep Xn = Y1 ∩ Y2 ,

2. Compute the rejection rate �z =
1

N

N�

n=1

I[Xn = rejected] ,

3. For any X ∈ GΘ , compute �mDS(X) by:

�mDS(X) =
1

N(1− �z)

N�

n=1

I[Xn = X] .
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Fusion of beliefs based on sampling

PCR5 rule obtained from sampling approach

The estimate �mPCR5(.) of mPCR5(.) is obtained by the sampling process:

1. Repeat from n = 1 to n = N :

(a) Generate Y1 and Y2 by means of m1(.) and m2(.) respectively,

(b) If Y1 ∩ Y2 �= ∅ , then take Xn = Y1 ∩ Y2 ,

(c) Otherwise, do:

i. Compute θ =
m1(Y1)

m1(Y1)+m2(Y2)
,

ii. Generate a random number u uniformly distributed on [0, 1],

iii. If u < θ, set Xn = Y1 ; otherwise, set Xn = Y2 ,

2. For any X ∈ GΘ , compute �mPCR5(X) by:

�mPCR5(X) =
1

N

N�

n=1

I[Xn = X] .

A general theoretical framework for the fusion based on sampling techniques has been 
developed by Dambreville [DSmT book 3]



Simple MatLab Code for PCR5 and PCR6 
(For Shaferʼs model only)

Sophisticated toolboxes for DSmT are available for research purpose:

By A. Martin - See DSmT Book 3 and upon request to this author

By F. Dambreville - http://refereefunction.fredericdambreville.com

File : PCR5fusion.m

function [mPCR5,TotalConflict]=PCR5fusion(BBA)
% Author and copyrights: Jean Dezert
% Input: BBA matrix
% Output: mPCR5 = resulting bba after fusion with PCR5
% TotalConflict = level of total conflict between sources
NbrSources=size(BBA,2);
CardTheta=log2(size(BBA,1)+1);
if(NbrSources==1)
mPCR5=BBA(:,1);TotalConflict=0;return
end
Card2PowerTheta=2^(CardTheta)-1;
% All possible combinations
vec=[1:Card2PowerTheta];
Combinations=vec;
for s=1:NbrSources-1
Combinations=combvec(Combinations,vec);
end
Combinations=Combinations’;
mPCR5=zeros(Card2PowerTheta,1);
TotalConflict=0;
NbrComb=size(Combinations,1);
for c=1:NbrComb
PC=Combinations(c,:);
mConj=zeros(1,NbrSources);
for s=1:NbrSources
mConj(s)=BBA(PC(s),s);
end
massConj=prod(mConj,2);
if(massConj>0)
% Check if this is a real partial conflict or not
Intersections=PC(1);
for s=2:NbrSources
X=PC(s);
Intersections=bitand(Intersections,X);
end
if(Intersections~=0) % the intersection is not empty
mPCR5(Intersections)=mPCR5(Intersections)+massConj;
else % the intersection is empty
TotalConflict=TotalConflict+massConj;
% Let’s apply PCR5 rule principle
UQ=unique(PC);
Proportions=0*UQ;
DenPCR5=0;
for u=1:size(UQ,2)
SamePropositions=find(PC==UQ(u));
MassProd=prod(mConj(SamePropositions));
Proportions(u)= MassProd*massConj;
DenPCR5=DenPCR5+MassProd;
end
Proportions=Proportions/DenPCR5;
% PCR5 redistribution
for u=1:size(UQ,2)
mPCR5(UQ(u))=mPCR5(UQ(u))+Proportions(u);
end, end, end, end, return

File : PCR6fusion.m

function [mPCR6,TotalConflict]=PCR6fusion(BBA)
% Author and copyrights: Jean Dezert
% Input: BBA matrix
% Output: mPCR6 = resulting bba after fusion with PCR6
% TotalConflict = level of total conflict between sources
NbrSources=size(BBA,2);
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On the associativity of DSm rules

To preserve optimality and coherence of the fusion result, all the sources have to be 

combined altogether at same fusion level (centralized fusion), not sequentially. 

Sequential/decentralized fusion is only suboptimal since part of information is lost during 

intermediate fusion steps.

The Generalized Pignistic Transformation
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France U.S.A. Czech Republic

Jean.Dezert@onera.fr smarand@unm.edu milan.daniel@cs.cas.cz

Abstract – This paper presents in detail the generalized pignistic transformation (GPT) succinctly developed in the Dezert-Smarandache

Theory (DSmT) framework as a tool for decision process. The GPT allows to provide a subjective probability measure from any gen-

eralized basic belief assignment given by any corpus of evidence. We mainly focus our presentation on the 3D case and provide the

complete result obtained by the GPT and its validation drawn from the probability theory.
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1 Introduction

[m1 ⊕ m2 ⊕ m3](.)
︸ ︷︷ ︸

Optimal Fusion

"= [m1 ⊕ m2] ⊕ m3](.)
︸ ︷︷ ︸

Suboptimal fusion

"= m1 ⊕ [m2 ⊕ m3](.)
︸ ︷︷ ︸

Suboptimal fusion

"= m2 ⊕ [m1 ⊕ m3](.)
︸ ︷︷ ︸

Suboptimal fusion

In the recent theory of plausible and paradoxical reasoning (DSmT) developed by Dezert and Smarandache [2, 10],

a new generalized pignistic transformation has been proposed to construct a subjective probability measure P{.} from
any generalized basic belief assignment m(.) defined over the hyper-power set DΘ. In reference [2], a simple example

of such generalized pignistic transformation has been presented only for the case n = |Θ| = 2. In this paper, we present
the complete derivation of this pignistic transformation for the case n = |Θ| = 3 and we generalize the result. Before
introducing the GPT, it is however necessary to briefly present the DSmT [1, 2, 3, 4, 5, 10] with respect to the Dempster-

Shafer Theory (DST) [9].

[m1 ⊕ m2 ⊕ m3](.)
︸ ︷︷ ︸

Optimal Fusion

"= [(m1 ⊕ m2) ⊕ m3](.)
︸ ︷︷ ︸

Suboptimal fusion

"= [m1 ⊕ (m2 ⊕ m3)](.)
︸ ︷︷ ︸

Suboptimal fusion

"= [m2 ⊕ (m1 ⊕ m3)](.)
︸ ︷︷ ︸

Suboptimal fusion

2 Foundations of the DST and DSmT

2.1 The DST and the Shafer’s model

The Shafer’s model, denoted hereM0(Θ), on which is based the Dempster-Shafer Theory, assumes an exhaustive and
exclusive frame of discernment of the problem under consideration Θ = {θ1, θ2, . . . , θn}. The model requires actually
that an ultimate refinement of the problem is possible so that θi can always be well precisely defined/identified in such

a way that we are sure that they are exclusive and exhaustive. From this model, a basic belief assignment (bba) mi(.) :
2Θ → [0, 1] such thatmi(∅) = 0 and

∑

A∈2Θ mi(A) = 1 associated to a given body of evidence Bi is defined, where 2Θ

is the power set ofΘ, i.e. the set of all subsets ofΘ. Within DST, the fusion (combination) of two independent sources of
evidence B1 and B2 is obtained through the Dempster’s rule of combination [9] : [m1 ⊕ m2](∅) = 0 and ∀B "= ∅ ∈ 2Θ:

[m1 ⊕ m2](B) =

∑

X∩Y =B m1(X)m2(Y )

1 −
∑

X∩Y =∅ m1(X)m2(Y )
(1)

The notation
∑

X∩Y =B represents the sum over all X, Y ∈ 2Θ such that X ∩ Y = B. The Dempster’s sum
m(.) ! [m1⊕m2](.) is considered as a basic belief assignment if and only if the denominator in equation (1) is non-zero.
The term k12 !

∑

X∩Y =∅ m1(X)m2(Y ) is called degree of conflict between the sources B1 and B2. When k12 = 1, the
Dempster’s summ(.) does not exist and the bodies of evidences B1 and B2 are said to be in full contradiction. This rule
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General case : Hybrid DSm model

Special case : Free DSm model (no constraint)

DSmH reduces to DSmC (i.e. the conjunctive consensus over hyper-power set).

DSmC is commutative and associative on free DSm models whatever values bbas take.

DSmH and PCR5 rules are commutative and quasi-associative, i.e. in order to preserve the associativity we 
keep the result of the conjunctive rule and, when new evidence comes in, this result is combined with the new 
evidence and then one applies the redistribution of the confliciting mass using (DSmH).

42

DS rule is commutative and associative .... but provide counter-intuitive results when the 

conflict between sources becomes high.

Special case : Free DSm model (no constraint)
DSmH reduces to DSmC (i.e. the conjunctive consensus over hyper-power set).

DSmC is commutative and associative on free DSm models whatever values bbaʼs take.

DS rule is commutative and associative but provides counter-intuitive results when the 
conflict between sources becomes high.
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S2(A) !
∑

X1,X2,...,Xk∈∅
[U=A]∨[(U∈∅)∧(A=It)]

k∏

i=1

mi(Xi) (1.26)

S3(A) !
∑

X1,X2,...,Xk∈DΘ

(X1∪X2∪...∪Xk)=A
(X1∩X2∩...∩Xk)∈∅

k
∏

i=1

mi(Xi) (1.27)

with U ! u(X1) ∪ u(X2) ∪ . . . ∪ u(Xk) where u(X) is the union of all singletons θi that compose X and

It ! θ1∪θ2∪ . . .∪θn is the total ignorance. S1(A) corresponds to the classic DSm rule of combination for

k independent sources based on the free DSm model Mf(Θ); S2(A) represents the mass of all relatively

and absolutely empty sets which is transferred to the total or relative ignorances; S3(A) transfers the

sum of relatively empty sets to the non-empty sets.

The hybrid DSm rule of combination generalizes the classic DSm rule of combination and is not

equivalent to Dempter’s rule. It works for any models (the free DSm model, Shafer’s model or any other

hybrid models) when manipulating precise generalized (or eventually classical) basic belief functions. An

extension of this rule for the combination of imprecise generalized (or eventually classical) basic belief

functions is presented in chapter 6 and is not reported in this presentation of DSmT.

1.3.6 On the refinement of the frames

Let’s bring here a clarification on the notion of refinement and its consequences with respect to DSmT

and DST. The refinement of a set of overlapping hypotheses Θ = {θi, i = 1, . . . , n} consists in getting a

new finer set of hypotheses θ′i, i = 1, . . . , n′, n′ > n} such that we are sure that θ′i are truly exclusive and

∪n
i=1θi ≡ ∪n′

i=1θ
′
i, i.e. Θ = {θ′i, i = 1, . . . , n′ > n}. The DST starts with the notion of frame of discern-

ment (finite set of exhaustive and exclusive hypotheses). The DST assumes therefore that a refinement

exists to describe the fusion problem and is achievable while DSmT does not make such assumption at its

starting. The assumption of existence of a refinement process appears to us as a very strong assumption

which reduces drastically the domain of applicability of the DST because the frames for most of prob-

lems described in terms of natural language manipulating vague/continuous/relative concepts cannot be

formally refined at all. Such an assumption is not fundamental and is relaxed in DSmT.

As a very simple but illustrative example, let’s consider Θ defined as Θ = {θ1 = Small, θ2 = Tall}.

The notions of smallness (θ1) and tallness (θ2) cannot be interpreted in an absolute manner actually

since these notions are only defined with respect to some reference points chosen arbitrarily. Two inde-

pendent sources of evidence (human ”experts” here) can provide a different interpretation of θ1 and θ2

just because they usually do not share the same reference point. θ1 and θ2 represent actually fuzzy con-
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cepts carrying only a relative meaning. Moreover, these concepts are linked together by a continuous path.

Let’s examine now a numerical example. Consider again the frame Θ = {θ1 ! Small, θ2 ! Tall} on

the size of person with two independent witnesses providing belief masses

m1(θ1) = 0.4 m1(θ2) = 0.5 m1(θ1 ∪ θ2) = 0.1

m2(θ1) = 0.6 m2(θ2) = 0.2 m2(θ1 ∪ θ2) = 0.2

If we admit that θ1 and θ2 cannot be precisely refined according to the previous justification, then the

result of the classic DSm rule (denoted by index DSmc here) of combination yields:

mDSmc(∅) = 0 mDSmc(θ1) = 0.38 mDSmc(θ2) = 0.22 mDSmc(θ1∪θ2) = 0.02 mDSmc(θ1∩θ2) = 0.38

Starting now with the same information, i.e. m1(.) and m2(.), we volontary assume that a refinement

is possible (even if it does not make sense actually here) in order to compare the previous result with

the result one would obtain with Dempster’s rule of combination. So, let’s assume the existence of an

hypothetical refined frame of discernment Θref ! {θ′1 = Small’, θ′2 ! Medium, θ′3 = Tall’} where θ′1, θ′2

and θ′3 correspond to some virtual exclusive hypotheses such that θ1 = θ′1∪θ′2, θ2 = θ′2∪θ′3 and θ1∩θ2 = θ′2

and where Small’ and Tall’ correspond respectively to a finer notion of smallness and tallness than in

original frame Θ. Because, we don’t change the information we have available (that’s all we have), the

initial bba m1(.) and m2(.) expressed now on the virtual refined power set 2Θref are given by

m′
1(θ

′
1 ∪ θ′2) = 0.4 m′

1(θ
′
2 ∪ θ′3) = 0.5 m′

1(θ
′
1 ∪ θ′2 ∪ θ′3) = 0.1

m′
2(θ

′
1 ∪ θ′2) = 0.6 m′

2(θ
′
2 ∪ θ′3) = 0.2 m′

2(θ
′
1 ∪ θ′2 ∪ θ′3) = 0.2

Because Θref is a refined frame, DST works and Dempster’s rule applies. Because there is no positive

masses for conflicting terms θ′1∩θ′2, θ′1∩θ′3, θ′2∩θ′3 or θ′1∩θ′2∩θ′3, the degree of conflict reduces to k12 = 0

and the normalization factor involved in Dempster’s rule is 1 in this refined example. One gets formally,

where index DS denotes here Dempster’s rule, the following result:

mDS(∅) = 0

mDS(θ′2) = m′
1(θ

′
1 ∪ θ′2)m

′
2(θ

′
2 ∪ θ′3) + m′

2(θ
′
1 ∪ θ′2)m

′
1(θ

′
2 ∪ θ′3) = 0.2 · 0.4 + 0.5 · 0.6 = 0.38

mDS(θ′1 ∪ θ′2) = m′
1(θ

′
1 ∪ θ′2)m

′
2(θ

′
1 ∪ θ′2) + m′

1(θ
′
1 ∪ θ′2 ∪ θ′3)m

′
2(θ

′
1 ∪ θ′2) + m′

2(θ
′
1 ∪ θ′2 ∪ θ′3)m

′
1(θ

′
1 ∪ θ′2)

= 0.4 · 0.6 + 0.1 · 0.6 + 0.2 · 0.4 = 0.38

mDS(θ′2 ∪ θ′3) = m′
1(θ

′
2 ∪ θ′3)m

′
2(θ

′
2 ∪ θ′3) + m′

1(θ
′
1 ∪ θ′2 ∪ θ′3)m

′
2(θ

′
2 ∪ θ′3) + m′

2(θ
′
1 ∪ θ′2 ∪ θ′3)m

′
1(θ

′
2 ∪ θ′3)

= 0.2 · 0.5 + 0.1 · 0.2 + 0.2 · 0.5 = 0.22

mDS(θ′1 ∪ θ′2 ∪ θ′3) = m′
1(θ

′
1 ∪ θ′2 ∪ θ′3)m

′
2(θ

′
1 ∪ θ′2 ∪ θ′3) = 0.1 · 0.2 = 0.02
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cepts carrying only a relative meaning. Moreover, these concepts are linked together by a continuous path.

Let’s examine now a numerical example. Consider again the frame Θ = {θ1 ! Small, θ2 ! Tall} on

the size of person with two independent witnesses providing belief masses

m1(θ1) = 0.4 m1(θ2) = 0.5 m1(θ1 ∪ θ2) = 0.1
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mDSmc(∅) = 0 mDSmc(θ1) = 0.38 mDSmc(θ2) = 0.22 mDSmc(θ1∪θ2) = 0.02 mDSmc(θ1∩θ2) = 0.38
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is possible (even if it does not make sense actually here) in order to compare the previous result with
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and where Small’ and Tall’ correspond respectively to a finer notion of smallness and tallness than in

original frame Θ. Because, we don’t change the information we have available (that’s all we have), the

initial bba m1(.) and m2(.) expressed now on the virtual refined power set 2Θref are given by

m′
1(θ

′
1 ∪ θ′2) = 0.4 m′

1(θ
′
2 ∪ θ′3) = 0.5 m′

1(θ
′
1 ∪ θ′2 ∪ θ′3) = 0.1

m′
2(θ

′
1 ∪ θ′2) = 0.6 m′

2(θ
′
2 ∪ θ′3) = 0.2 m′

2(θ
′
1 ∪ θ′2 ∪ θ′3) = 0.2

Because Θref is a refined frame, DST works and Dempster’s rule applies. Because there is no positive

masses for conflicting terms θ′1∩θ′2, θ′1∩θ′3, θ′2∩θ′3 or θ′1∩θ′2∩θ′3, the degree of conflict reduces to k12 = 0

and the normalization factor involved in Dempster’s rule is 1 in this refined example. One gets formally,

where index DS denotes here Dempster’s rule, the following result:

mDS(∅) = 0

mDS(θ′2) = m′
1(θ

′
1 ∪ θ′2)m

′
2(θ

′
2 ∪ θ′3) + m′

2(θ
′
1 ∪ θ′2)m

′
1(θ

′
2 ∪ θ′3) = 0.2 · 0.4 + 0.5 · 0.6 = 0.38

mDS(θ′1 ∪ θ′2) = m′
1(θ

′
1 ∪ θ′2)m

′
2(θ

′
1 ∪ θ′2) + m′

1(θ
′
1 ∪ θ′2 ∪ θ′3)m

′
2(θ

′
1 ∪ θ′2) + m′

2(θ
′
1 ∪ θ′2 ∪ θ′3)m

′
1(θ

′
1 ∪ θ′2)

= 0.4 · 0.6 + 0.1 · 0.6 + 0.2 · 0.4 = 0.38

mDS(θ′2 ∪ θ′3) = m′
1(θ

′
2 ∪ θ′3)m

′
2(θ

′
2 ∪ θ′3) + m′

1(θ
′
1 ∪ θ′2 ∪ θ′3)m

′
2(θ

′
2 ∪ θ′3) + m′

2(θ
′
1 ∪ θ′2 ∪ θ′3)m

′
1(θ

′
2 ∪ θ′3)

= 0.2 · 0.5 + 0.1 · 0.2 + 0.2 · 0.5 = 0.22

mDS(θ′1 ∪ θ′2 ∪ θ′3) = m′
1(θ

′
1 ∪ θ′2 ∪ θ′3)m

′
2(θ

′
1 ∪ θ′2 ∪ θ′3) = 0.1 · 0.2 = 0.02

m∪(∅) = 0 and ∀A #= ∅, m∪(A) =
∑

X,Y ∈2Θ

X∪Y =A

m1(X)m2(Y )

mY (∅) = 0 and ∀A #= ∅, A #= ΘmY (A) =
∑

X,Y ∈2Θ

X∩Y =A

m1(X)m2(Y ) and mY (Θ) = m1(Θ)m2(Θ)+
∑

X,Y ∈2Θ

X∩Y =∅

m1(X)m2(Y )




















mY (∅) = 0

mY (A) =
∑

X,Y ∈2Θ

X∩Y =A

m1(X)m2(Y ) ∀A ∈ 2Θ, A #= ∅,A #= Θ

mY (Θ) = m1(Θ)m2(Θ) +
∑

X,Y ∈2Θ

X∩Y =∅

m1(X)m2(Y ) when A = Θ












mDP (∅) = 0

mDP (A) =
∑

X,Y ∈2Θ

X∩Y =A
X∩Y %=∅

m1(X)m2(Y ) +
∑

X,Y ∈2Θ

X∪Y =A
X∩Y =∅

m1(X)m2(Y ) ∀A #= ∅















mS(∅) ≡ k12 =
∑

X,Y ∈2Θ

X∩Y =∅

m1(X)m2(Y )

mS(A) =
∑

X,Y ∈2Θ

X∩Y =A

m1(X)m2(Y ) ∀A #= ∅

k12 = m1(θ1)m2(θ2) + m2(θ1)m1(θ2) = 0.38

m(∅) = 0 m(θ1) =
0.38

1 − 0.38
= 0.613 m(θ2) =

0.22

1 − 0.38
= 0.355 m(θ1 ∪ θ2) =

0.02

1 − 0.38
= 0.032

2 Foundations of the DST and DSmT

2.1 The DST and the Shafer’s model

The Shafer’s model, denoted hereM0(Θ), on which is based the Dempster-Shafer Theory, assumes an exhaustive and
exclusive frame of discernment of the problem under consideration Θ = {θ1, θ2, . . . , θn}. The model requires actually
that an ultimate refinement of the problem is possible so that θi can always be well precisely defined/identified in such

a way that we are sure that they are exclusive and exhaustive. From this model, a basic belief assignment (bba) mi(.) :
2Θ → [0, 1] such thatmi(∅) = 0 and

∑

A∈2Θ mi(A) = 1 associated to a given body of evidence Bi is defined, where 2Θ

is the power set ofΘ, i.e. the set of all subsets ofΘ. Within DST, the fusion (combination) of two independent sources of
evidence B1 and B2 is obtained through the Dempster’s rule of combination [?] : [m1 ⊕ m2](∅) = 0 and ∀B #= ∅ ∈ 2Θ:

[m1 ⊕ m2](B) =

∑

X∩Y =B m1(X)m2(Y )

1 −
∑

X∩Y =∅ m1(X)m2(Y )
(1)

The notation
∑

X∩Y =B represents the sum over all X, Y ∈ 2Θ such that X ∩ Y = B. The Dempster’s sum
m(.) ! [m1⊕m2](.) is considered as a basic belief assignment if and only if the denominator in equation (??) is non-zero.
The term k12 !

∑

X∩Y =∅ m1(X)m2(Y ) is called degree of conflict between the sources B1 and B2. When k12 = 1, the
Dempster’s summ(.) does not exist and the bodies of evidences B1 and B2 are said to be in full contradiction. This rule

of combination can be extended easily for the combination of n > 2 independent sources of evidence. The DST, although
very attractive because of its solid mathematical ground, presents however several weaknesses and limitations because of

the Shafer’s model itself (which does not necessary hold in some fusion problems involving continuous and ill-defined

concepts), the justification of the Dempster’s rule of combination frequently subject to criticisms, but mainly because

of counter-intuitive results given by the Dempster’s rule when the conflict between sources becomes important. Several

classes of infinite counter-examples to the Dempster’s rule can be found in [?]. To overcome these limitations, Jean Dezert

and Florentin Smarandache propose a new mathematical theory based on other models (free or hybrid DSm models) with

new reliable rules of combinations able to deal with any kind of sources ( imprecises, uncertain and paradoxist, i.e. highly

conflicting). This is presented in next subsections.

How to refine ?
Why ?

For this simple 2D static fusion problem, DSmH coincides with Yager’s and Dubois & Prade’s rules.

Case 1:  Assume Shafer!s model holds

DSmH is not equivalent to Dempster’s rule (DS)

m∪(∅) = 0 and ∀A #= ∅, m∪(A) =
∑

X,Y ∈2Θ

X∪Y =A

m1(X)m2(Y )

mY (∅) = 0 and ∀A #= ∅, A #= ΘmY (A) =
∑

X,Y ∈2Θ

X∩Y =A

m1(X)m2(Y ) and mY (Θ) = m1(Θ)m2(Θ)+
∑

X,Y ∈2Θ

X∩Y =∅

m1(X)m2(Y )


















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∑
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X,Y ∈2Θ
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∑
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∑
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∑
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m(∅) = 0 m(θ1) =
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1 − 0.38
= 0.613 m(θ2) =
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1 − 0.38
= 0.355 m(θ1 ∪ θ2) =
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2 Foundations of the DST and DSmT

2.1 The DST and the Shafer’s model

The Shafer’s model, denoted hereM0(Θ), on which is based the Dempster-Shafer Theory, assumes an exhaustive and
exclusive frame of discernment of the problem under consideration Θ = {θ1, θ2, . . . , θn}. The model requires actually
that an ultimate refinement of the problem is possible so that θi can always be well precisely defined/identified in such

a way that we are sure that they are exclusive and exhaustive. From this model, a basic belief assignment (bba) mi(.) :
2Θ → [0, 1] such thatmi(∅) = 0 and

∑

A∈2Θ mi(A) = 1 associated to a given body of evidence Bi is defined, where 2Θ

is the power set ofΘ, i.e. the set of all subsets ofΘ. Within DST, the fusion (combination) of two independent sources of
evidence B1 and B2 is obtained through the Dempster’s rule of combination [9] : [m1 ⊕ m2](∅) = 0 and ∀B #= ∅ ∈ 2Θ:
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The notation
∑

X∩Y =B represents the sum over all X, Y ∈ 2Θ such that X ∩ Y = B. The Dempster’s sum
m(.) ! [m1⊕m2](.) is considered as a basic belief assignment if and only if the denominator in equation (1) is non-zero.
The term k12 !

∑

X∩Y =∅ m1(X)m2(Y ) is called degree of conflict between the sources B1 and B2. When k12 = 1, the
Dempster’s summ(.) does not exist and the bodies of evidences B1 and B2 are said to be in full contradiction. This rule

of combination can be extended easily for the combination of n > 2 independent sources of evidence. The DST, although
very attractive because of its solid mathematical ground, presents however several weaknesses and limitations because of

the Shafer’s model itself (which does not necessary hold in some fusion problems involving continuous and ill-defined
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(DS)

Case 2:  Assume Shafer!s model doesn!t hold

because of the continuity and vagueness of elements and their relative interpretation

Possible appraoches: 1) use DSmC with free model, or 2) use DS on a refined frame



44

On the refinement of the frame (cont’d)
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cepts carrying only a relative meaning. Moreover, these concepts are linked together by a continuous path.

Let’s examine now a numerical example. Consider again the frame Θ = {θ1 ! Small, θ2 ! Tall} on

the size of person with two independent witnesses providing belief masses

m1(θ1) = 0.4 m1(θ2) = 0.5 m1(θ1 ∪ θ2) = 0.1

m2(θ1) = 0.6 m2(θ2) = 0.2 m2(θ1 ∪ θ2) = 0.2

If we admit that θ1 and θ2 cannot be precisely refined according to the previous justification, then the

result of the classic DSm rule (denoted by index DSmc here) of combination yields:

mDSmc(∅) = 0 mDSmc(θ1) = 0.38 mDSmc(θ2) = 0.22 mDSmc(θ1∪θ2) = 0.02 mDSmc(θ1∩θ2) = 0.38

Starting now with the same information, i.e. m1(.) and m2(.), we volontary assume that a refinement

is possible (even if it does not make sense actually here) in order to compare the previous result with

the result one would obtain with Dempster’s rule of combination. So, let’s assume the existence of an

hypothetical refined frame of discernment Θref ! {θ′1 = Small’, θ′2 ! Medium, θ′3 = Tall’} where θ′1, θ′2

and θ′3 correspond to some virtual exclusive hypotheses such that θ1 = θ′1∪θ′2, θ2 = θ′2∪θ′3 and θ1∩θ2 = θ′2

and where Small’ and Tall’ correspond respectively to a finer notion of smallness and tallness than in

original frame Θ. Because, we don’t change the information we have available (that’s all we have), the

initial bba m1(.) and m2(.) expressed now on the virtual refined power set 2Θref are given by

m′
1(θ

′
1 ∪ θ′2) = 0.4 m′

1(θ
′
2 ∪ θ′3) = 0.5 m′

1(θ
′
1 ∪ θ′2 ∪ θ′3) = 0.1

m′
2(θ

′
1 ∪ θ′2) = 0.6 m′

2(θ
′
2 ∪ θ′3) = 0.2 m′

2(θ
′
1 ∪ θ′2 ∪ θ′3) = 0.2

Because Θref is a refined frame, DST works and Dempster’s rule applies. Because there is no positive

masses for conflicting terms θ′1∩θ′2, θ′1∩θ′3, θ′2∩θ′3 or θ′1∩θ′2∩θ′3, the degree of conflict reduces to k12 = 0

and the normalization factor involved in Dempster’s rule is 1 in this refined example. One gets formally,

where index DS denotes here Dempster’s rule, the following result:

mDS(∅) = 0

mDS(θ′2) = m′
1(θ

′
1 ∪ θ′2)m

′
2(θ

′
2 ∪ θ′3) + m′

2(θ
′
1 ∪ θ′2)m

′
1(θ

′
2 ∪ θ′3) = 0.2 · 0.4 + 0.5 · 0.6 = 0.38

mDS(θ′1 ∪ θ′2) = m′
1(θ

′
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′
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= 0.2 · 0.5 + 0.1 · 0.2 + 0.2 · 0.5 = 0.22

mDS(θ′1 ∪ θ′2 ∪ θ′3) = m′
1(θ

′
1 ∪ θ′2 ∪ θ′3)m

′
2(θ

′
1 ∪ θ′2 ∪ θ′3) = 0.1 · 0.2 = 0.02
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′
1 ∪ θ′2)m

′
2(θ

′
1 ∪ θ′2) + m′

1(θ
′
1 ∪ θ′2 ∪ θ′3)m

′
2(θ

′
1 ∪ θ′2) + m′

2(θ
′
1 ∪ θ′2 ∪ θ′3)m

′
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mDS(θ′2 ∪ θ′3) = m′
1(θ

′
2 ∪ θ′3)m

′
2(θ
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1(θ
′
1 ∪ θ′2 ∪ θ′3)m
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2(θ
′
1 ∪ θ′2 ∪ θ′3)m

′
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′
2 ∪ θ′3)
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′
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′
2(θ

′
1 ∪ θ′2 ∪ θ′3) = 0.1 · 0.2 = 0.02
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cepts carrying only a relative meaning. Moreover, these concepts are linked together by a continuous path.

Let’s examine now a numerical example. Consider again the frame Θ = {θ1 ! Small, θ2 ! Tall} on

the size of person with two independent witnesses providing belief masses

m1(θ1) = 0.4 m1(θ2) = 0.5 m1(θ1 ∪ θ2) = 0.1

m2(θ1) = 0.6 m2(θ2) = 0.2 m2(θ1 ∪ θ2) = 0.2

If we admit that θ1 and θ2 cannot be precisely refined according to the previous justification, then the

result of the classic DSm rule (denoted by index DSmc here) of combination yields:

mDSmc(∅) = 0 mDSmc(θ1) = 0.38 mDSmc(θ2) = 0.22 mDSmc(θ1∪θ2) = 0.02 mDSmc(θ1∩θ2) = 0.38

Starting now with the same information, i.e. m1(.) and m2(.), we volontary assume that a refinement

is possible (even if it does not make sense actually here) in order to compare the previous result with

the result one would obtain with Dempster’s rule of combination. So, let’s assume the existence of an

hypothetical refined frame of discernment Θref ! {θ′1 = Small’, θ′2 ! Medium, θ′3 = Tall’} where θ′1, θ′2

and θ′3 correspond to some virtual exclusive hypotheses such that θ1 = θ′1∪θ′2, θ2 = θ′2∪θ′3 and θ1∩θ2 = θ′2

and where Small’ and Tall’ correspond respectively to a finer notion of smallness and tallness than in

original frame Θ. Because, we don’t change the information we have available (that’s all we have), the

initial bba m1(.) and m2(.) expressed now on the virtual refined power set 2Θref are given by

m′
1(θ

′
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1(θ
′
2 ∪ θ′3) = 0.5 m′

1(θ
′
1 ∪ θ′2 ∪ θ′3) = 0.1

m′
2(θ

′
1 ∪ θ′2) = 0.6 m′

2(θ
′
2 ∪ θ′3) = 0.2 m′

2(θ
′
1 ∪ θ′2 ∪ θ′3) = 0.2

Because Θref is a refined frame, DST works and Dempster’s rule applies. Because there is no positive
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′
2(θ
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1 ∪ θ′2) + m′

2(θ
′
1 ∪ θ′2 ∪ θ′3)m

′
1(θ

′
1 ∪ θ′2)

= 0.4 · 0.6 + 0.1 · 0.6 + 0.2 · 0.4 = 0.38

mDS(θ′2 ∪ θ′3) = m′
1(θ

′
2 ∪ θ′3)m

′
2(θ

′
2 ∪ θ′3) + m′

1(θ
′
1 ∪ θ′2 ∪ θ′3)m

′
2(θ

′
2 ∪ θ′3) + m′

2(θ
′
1 ∪ θ′2 ∪ θ′3)m

′
1(θ

′
2 ∪ θ′3)

= 0.2 · 0.5 + 0.1 · 0.2 + 0.2 · 0.5 = 0.22

mDS(θ′1 ∪ θ′2 ∪ θ′3) = m′
1(θ

′
1 ∪ θ′2 ∪ θ′3)m
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′
1 ∪ θ′2 ∪ θ′3) = 0.1 · 0.2 = 0.02

Applying DS rule (there is NO conflict now)

Θ = {θ1, θ2, θ3} ⇒

In general, 0 ≤ Bel(A) ≤ Pl(A) ≤ 1

∀A $= Θ, mv(A) = 0 andmv(Θ) = 1

(m(.) ≡ P (.))

k12 =
∑

X,Y ∈2Θ

X∩Y =∅

m1(X)m2(Y )

!"
#$

!"
#$
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• Commutativity and associativity

• Extension for N > 2 sources
• Neutrality of VBA

• Coherence with Bayes’ rule whenm(.) ≡ P (.)

• (DS) is not defined when conflict is 1

• (DS) povides questionable results when k12 increases

• No way to trust (DS) result beforehand

• Theoretical justification of (DS) ?

• Justification/necessity of working with Shafer’s model ?

The development of the DSmT [8] arises from the necessity to overcome the inher-

ent limitations of the DST [7] which are closely related with the acceptance of Shafer’s

model (i.e. working with an homogeneous1 frame of discernment Θ defined as a finite

1Although the homogeneity of Θ is not explicitly mentioned in the DST, it is a strong implicit assumption

inherent to the Shafer’s model. When working with DST, one implicitly assumes that all finite and exclusive

elements of Θ have somehow the same semantic nature, otherwise the complement defined over the power-set

m∪(∅) = 0 and ∀A #= ∅, m∪(A) =
∑

X,Y ∈2Θ

X∪Y =A

m1(X)m2(Y )

mY (∅) = 0 and ∀A #= ∅, A #= ΘmY (A) =
∑

X,Y ∈2Θ

X∩Y =A

m1(X)m2(Y ) and mY (Θ) = m1(Θ)m2(Θ)+
∑

X,Y ∈2Θ

X∩Y =∅

m1(X)m2(Y )





















mY (∅) = 0

mY (A) =
∑

X,Y ∈2Θ

X∩Y =A

m1(X)m2(Y ) ∀A ∈ 2Θ, A #= ∅,A #= Θ

mY (Θ) = m1(Θ)m2(Θ) +
∑

X,Y ∈2Θ

X∩Y =∅

m1(X)m2(Y ) when A = Θ












mDP (∅) = 0

mDP (A) =
∑

X,Y ∈2Θ

X∩Y =A
X∩Y %=∅

m1(X)m2(Y ) +
∑

X,Y ∈2Θ

X∪Y =A
X∩Y =∅

m1(X)m2(Y ) ∀A #= ∅

















mS(∅) ≡ k12 =
∑

X,Y ∈2Θ

X∩Y =∅

m1(X)m2(Y )

mS(A) =
∑

X,Y ∈2Θ

X∩Y =A

m1(X)m2(Y ) ∀A #= ∅

k12 = m1(θ1)m2(θ2) + m2(θ1)m1(θ2) = 0.38

m(∅) = 0 m(θ1) =
0.38

1 − 0.38
= 0.613 m(θ2) =

0.22

1 − 0.38
= 0.355 m(θ1 ∪ θ2) =

0.02

1 − 0.38
= 0.032

m(∅) = 0 m(θ1) = 0.38 m(θ2) = 0.22 m(θ1 ∪ θ2) = 0.02 + 0.38 = 0.40

m(∅) = 0 m(θ1 ∩ θ2) = 0.38 m(θ1) = 0.38 m(θ2) = 0.22 m(θ1 ∪ θ2) = 0.02

m(∅) = 0

m(θ′2) = m′
1(θ

′
1 ∪ θ′2)m

′
2(θ

′
2 ∪ θ′3) + m′

2(θ
′
1 ∪ θ′2)m

′
1(θ

′
2 ∪ θ′3) = 0.38

m(θ′1 ∪ θ′2) = m′
1(θ

′
1 ∪ θ′2)m

′
2(θ

′
1 ∪ θ′2) + m′

1(θ
′
1 ∪ θ′2 ∪ θ′3)m

′
2(θ

′
1 ∪ θ′2) + m′

2(θ
′
1 ∪ θ′2 ∪ θ′3)m

′
1(θ

′
1 ∪ θ′2) = 0.38

m(θ′2 ∪ θ′3) = m′
1(θ

′
2 ∪ θ′3)m

′
2(θ

′
2 ∪ θ′3) + m′

1(θ
′
1 ∪ θ′2 ∪ θ′3)m

′
2(θ

′
2 ∪ θ′3) + m′

2(θ
′
1 ∪ θ′2 ∪ θ′3)m

′
1(θ

′
2 ∪ θ′3) = 0.22

m(θ′1 ∪ θ′2 ∪ θ′3) = m′
1(θ

′
1 ∪ θ′2 ∪ θ′3)m

′
2(θ

′
1 ∪ θ′2 ∪ θ′3) = 0.02

2 Foundations of the DST and DSmT

2.1 The DST and the Shafer’s model

The Shafer’s model, denoted hereM0(Θ), on which is based the Dempster-Shafer Theory, assumes an exhaustive and
exclusive frame of discernment of the problem under consideration Θ = {θ1, θ2, . . . , θn}. The model requires actually
that an ultimate refinement of the problem is possible so that θi can always be well precisely defined/identified in such

a way that we are sure that they are exclusive and exhaustive. From this model, a basic belief assignment (bba) mi(.) :
2Θ → [0, 1] such thatmi(∅) = 0 and

∑

A∈2Θ mi(A) = 1 associated to a given body of evidence Bi is defined, where 2Θ

is the power set ofΘ, i.e. the set of all subsets ofΘ. Within DST, the fusion (combination) of two independent sources of
evidence B1 and B2 is obtained through the Dempster’s rule of combination [9] : [m1 ⊕ m2](∅) = 0 and ∀B #= ∅ ∈ 2Θ:

[m1 ⊕ m2](B) =

∑

X∩Y =B m1(X)m2(Y )

1 −
∑

X∩Y =∅ m1(X)m2(Y )
(1)

Thus (DS) reduces to (DSmC) with the necessity and justification (?) of the existence of a 

possible refinement. It introduces useless complexity w.r.t the direct DSmT formalism. 

Just work directly on hyper power set !!!

(DS)
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Example of refinement with hybrid model

Θ = {θ1, θ2, θ3} m1(θ1) = 0.6 m1(θ2) = 0.3 m1(θ3) = 0.1

m2(θ1) = 0.4 m2(θ2) = 0.4 m2(θ3) = 0.2

!"!"k12 = 0.04 + 0.04 + 0.12 + 0.06 = 0.26

Keywords

1 Pipo

Θref = {α, β, γ, δ}

Conjunctive consensus m1(θ1 = α ∪ β) = 0.6 m1(θ2 = β ∪ γ) = 0.3 m1(θ3 = δ) = 0.1
m2(θ1 = α ∪ β) = 0.4 0.4 × 0.6 → α ∪ β 0.4 × 0.3 → β 0.4 × 0.1 → ∅
m2(θ2 = β ∪ γ) = 0.4 0.4 × 0.6 → β 0.4 × 0.3 → β ∪ γ 0.4 × 0.1 → ∅
m2(θ3 = δ) = 0.2 0.2 × 0.6 → ∅ 0.2 × 0.3 → ∅ 0.2 × 0.1 → δ

!"!"
(DS)

mDS(α ∪ β = θ1) = 0.24/(1 − k12) = 0.324324

mDS(β = θ1 ∩ θ2) = 0.36/(1− k12) = 0.486486

mDS(β ∪ γ = θ2) = 0.12/(1 − k12) = 0.162162

mDS(δ = θ3) = 0.02/(1− k12) = 0.027028

mDSmH(α ∪ β = θ1) = 0.24

mDSmH(β = θ1 ∩ θ2) = 0.36

mDSmH(β ∪ γ = θ2) = 0.12

mDSmH(δ = θ3) = 0.02

mDSmH(θ1 ∪ θ3) = 0.16

mDSmH(θ2 ∪ θ3) = 0.10

mPCR5(α ∪ β = θ1) = 0.362
mPCR5(β = θ1 ∩ θ2) = 0.360
mPCR5(β ∪ γ = θ2) = 0.188

mPCR5(δ = θ3) = 0.090

(DSmH) (PCR5)

Conclusion: when working on hybrid models, Dempster’s rule applied on refined frame 
is different from DSmT rules (DSmH and PCR5).
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Problem with Smets rule (TBM framework)

Shafer’s model

Θ = {A, B, C, D}

with exclusive hypotheses (i.e. Shafer’s model holds), and the followingmassesm1(.) andm2(.) considered as fully reliable
but non-Bayesian (since focal elements are not only given by singletons):

m1(A) = 0.99 m1(C ∪ D) = 0.01

m2(B) = 0.99 m2(C ∪ D) = 0.01

m1(A) = 0.99 m1(C ∪ D) = 0.01

Using Dempster’s rule we get the anomaly

mDS(C ∪ D) = 1

.

At last Fusion 2005 Conference in Philadelphia in July 2005, we gave this example to R. Haenni to solve. He answered back

that becausem1(B) = m2(A) = 0, means that A and B are excluded as hypotheses and hence what is left, C ∪D deserves the

mass 1. But he could do the same in Zadeh’s example and justify it in the same erroneous way: becausem1(C) = m2(M) = 0
then hypotheses C, M are excluded and only hypothesis T is left, hence T should deserve the mass 1 (which is exactly what

Dempster’s rule provides and which is the source of the problem and the ”justification” of [6])! But Haenni makes a confusion

between objective probability (or classical probability) and subjective probabilitywe work with in information fusion (specially

when human assessments/reports must be taken into account in the fusion process).

In his second solution, Haenni discounts the sources because they are conflicting, although Zadeh considered them fully

reliable, hence not necessarily discountable. The author discounts the sources by 20%, but he does not say where he got this

percentage from? Why not by 15% or by 22% ? If two sources are conflicting it does not mean they are unreliable. For

example, let’s consider two professors A and B asked to evaluate a student. Professor A may say the student is very good,

while professor B the student is very bad, and both can be true (fully reliable) if we consider the first evaluation done from the

student’s mathematical skills point of view and the second from student’s English skills point of view. A student can be good

in Mathematics and bad in English. A good theory has to work in any case, exceptions included! Dempster’s rule fails Zadeh’s

example and five other infinite classes of counter-examples mentioned in [11].

CMf (Θ)(θ1) = 4

CM(Θ)(θ1) = 2

P{A} ≡ betP{A}

If e1 = e2 = 1/2 then m(θ3) = 1 with (DS) while one gets with (DSmH) m(θ3) = 1/4 and m(θ1 ∪ θ2) = m(θ1 ∪ θ3) =
m(θ2 ∪ θ3) = 1/4 which looks more acceptable.

mPCR5(X) = m12(X) +
∑

Y ∈G\{X}
c(X∩Y )=∅

[
m1(X)2m2(Y )

m1(X) + m2(Y )
+

m2(X)2m1(Y )

m2(X) + m1(Y )
] (1)

Hybrid DSm rule for hybrid modelM(Θ)
or if one wants to be more precise, use PCR5.

TBM failing

Θ = {A, B, C}

A B C ∅ A ∪ B A ∪ C B ∪ C
m1(.) 0.4 0 0.6

m2(.) 0.7 0.3 0

m12(.) 0.28 0 0 0.72

mTBM (.) 0.28 0 0 0.72

mDS(.) 1

mDSmH(.) 0.28 0 0 0 0.12 0.42 0.18

mPCR5(.) 0.574725 0.111429 0.313846

Shafer’s model

TBM model

Source s1

m1(.) : DΘ → [0, 1]

!

mk(.) : DΘ → [0, 1]
Source sk

!!

(Conjunctive consensus on hyper-power set DΘ)

Classic DSm rule based on free modelMf (Θ)

!

Introduction of integrity constraints intoDΘ

Hybrid modelM(Θ)

!

Hybrid DSm rule for hybrid modelM(Θ)

or if one wants to be more precise, use PCR5.

!

Decision-making

Now we introduce a third sourcem3(.) with

A B C ∅ A ∪ B A ∪ C B ∪ C A ∪ B ∪ C
m1(.) 0.4 0 0.6

m2(.) 0.7 0.3 0

m3(.) 0 0.8 0.2

m123(.) 0 0 0 1

mTBM (.) 0 0 0 1

mDS(.)
mDSmH(.) 0 0.240 0.120 0 0.224 0.056 0 0.360

mPCR5(.) 0.277490 0.545010 0.177500

A =
{

2 Introduction

The development of the DSmT [?] arises from the necessity to overcome the inherent limitations of the DST [?] which are

closely related with the acceptance of Shafer’s model (i.e. working with an homogeneous frame of discernment Θ defined as

a finite set of exhaustive and exclusive hypotheses θi, i = 1, . . . , n), the third excluded middle principle, and the Dempster’s
rule for the combination of independent sources of evidence. Limitations of DST are well reported in literature [?, ?, ?] and

several alternative rules to the Dempster’s rule of combination can be found in [?, ?, ?, ?, ?, ?] and very recently in [?, ?, ?].

DSmT provides a new mathematical framework for information fusion which appears less restrictive and more general than the

basis and constraints of DST. The basis of DSmT is the refutation of the principle of the third excluded middle and Shafer’s

model in general, since for a wide class of fusion problems the hypotheses one has to deal with can have different intrinsic

nature1 and also appear only vague and imprecise in such a way that precise refinement is just impossible to obtain in reality so

that the exclusive elements θi cannot be properly identified and defined. Many problems involving fuzzy/vague continuous and

relative2 concepts described in natural language with different semantic contents and having no absolute interpretation enter in

this category. DSmT starts with the notion of free DSm model and considers Θ only as a frame of exhaustive elements which

can potentially overlap and have different intrinsic semantic natures and which also can change with time with new information

1By example, in some target tracking and classification applications, one has to deal both with imprecise and uncertain information like radar-cross section,

as well as Doppler/velocity measurements
2The notion of relativity comes from the own interpretation of the elements of the frame Θ by each sources of evidences involved in the fusion process.

(DS) not working (division by 0)

The specificity is lost forever

If again a fourth, fifth, etc. source provide information and we need to sequentially combine each such source 
with the previous result one gets for TBM:

Sequential Fusion 
of 2 sources
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m123(.) 0 0 0 1

mTBM (.) 0 0 0 1

mDS(.)
mDSmH(.) 0 0.240 0.120 0 0.224 0.056 0 0.360

mPCR5(.) 0.277490 0.545010 0.177500

A =
{

2 Introduction

The development of the DSmT [?] arises from the necessity to overcome the inherent limitations of the DST [?] which are

closely related with the acceptance of Shafer’s model (i.e. working with an homogeneous frame of discernment Θ defined as

a finite set of exhaustive and exclusive hypotheses θi, i = 1, . . . , n), the third excluded middle principle, and the Dempster’s
rule for the combination of independent sources of evidence. Limitations of DST are well reported in literature [?, ?, ?] and

several alternative rules to the Dempster’s rule of combination can be found in [?, ?, ?, ?, ?, ?] and very recently in [?, ?, ?].

DSmT provides a new mathematical framework for information fusion which appears less restrictive and more general than the

basis and constraints of DST. The basis of DSmT is the refutation of the principle of the third excluded middle and Shafer’s

model in general, since for a wide class of fusion problems the hypotheses one has to deal with can have different intrinsic

nature1 and also appear only vague and imprecise in such a way that precise refinement is just impossible to obtain in reality so

that the exclusive elements θi cannot be properly identified and defined. Many problems involving fuzzy/vague continuous and

relative2 concepts described in natural language with different semantic contents and having no absolute interpretation enter in

this category. DSmT starts with the notion of free DSm model and considers Θ only as a frame of exhaustive elements which

can potentially overlap and have different intrinsic semantic natures and which also can change with time with new information

1By example, in some target tracking and classification applications, one has to deal both with imprecise and uncertain information like radar-cross section,

as well as Doppler/velocity measurements
2The notion of relativity comes from the own interpretation of the elements of the frame Θ by each sources of evidences involved in the fusion process.

Θ = {A, B, C, D}

with exclusive hypotheses (i.e. Shafer’s model holds), and the followingmassesm1(.) andm2(.) considered as fully reliable
but non-Bayesian (since focal elements are not only given by singletons):

m1(A) = 0.99 m1(C ∪ D) = 0.01

m2(B) = 0.99 m2(C ∪ D) = 0.01

m1(A) = 0.99 m1(C ∪ D) = 0.01

Using Dempster’s rule we get the anomaly

mDS(C ∪ D) = 1

.

At last Fusion 2005 Conference in Philadelphia in July 2005, we gave this example to R. Haenni to solve. He answered back

that becausem1(B) = m2(A) = 0, means that A and B are excluded as hypotheses and hence what is left, C ∪D deserves the

mass 1. But he could do the same in Zadeh’s example and justify it in the same erroneous way: becausem1(C) = m2(M) = 0
then hypotheses C, M are excluded and only hypothesis T is left, hence T should deserve the mass 1 (which is exactly what

Dempster’s rule provides and which is the source of the problem and the ”justification” of [6])! But Haenni makes a confusion

between objective probability (or classical probability) and subjective probabilitywe work with in information fusion (specially

when human assessments/reports must be taken into account in the fusion process).

In his second solution, Haenni discounts the sources because they are conflicting, although Zadeh considered them fully

reliable, hence not necessarily discountable. The author discounts the sources by 20%, but he does not say where he got this

percentage from? Why not by 15% or by 22% ? If two sources are conflicting it does not mean they are unreliable. For

example, let’s consider two professors A and B asked to evaluate a student. Professor A may say the student is very good,

while professor B the student is very bad, and both can be true (fully reliable) if we consider the first evaluation done from the

student’s mathematical skills point of view and the second from student’s English skills point of view. A student can be good

in Mathematics and bad in English. A good theory has to work in any case, exceptions included! Dempster’s rule fails Zadeh’s

example and five other infinite classes of counter-examples mentioned in [11].

CMf (Θ)(θ1) = 4

CM(Θ)(θ1) = 2

P{A} ≡ betP{A}

If e1 = e2 = 1/2 then m(θ3) = 1 with (DS) while one gets with (DSmH) m(θ3) = 1/4 and m(θ1 ∪ θ2) = m(θ1 ∪ θ3) =
m(θ2 ∪ θ3) = 1/4 which looks more acceptable.

mPCR5(X) = m12(X) +
∑

Y ∈G\{X}
c(X∩Y )=∅

[
m1(X)2m2(Y )

m1(X) + m2(Y )
+

m2(X)2m1(Y )

m2(X) + m1(Y )
] (1)

Hybrid DSm rule for hybrid modelM(Θ)
or if one wants to be more precise, use PCR5.

TBM failing

Θ = {A, B, C}

A B C ∅ A ∪ B A ∪ C B ∪ C
m1(.) 0.4 0 0.6

m2(.) 0.7 0.3 0

m12
TBM (.) 0.28 0 0 0.72

m12
DS(.) 1

m12
DSmH(.) 0.28 0 0 0 0.12 0.42 0.18

m12
PCR5(.) 0.574725 0.111429 0.313846

Sequential/Temporal Fusion

Source s1

m1(.) : DΘ → [0, 1]

!

mk(.) : DΘ → [0, 1]
Source sk

!!

(Conjunctive consensus on hyper-power set DΘ)

Classic DSm rule based on free modelMf (Θ)

!

Introduction of integrity constraints intoDΘ

Hybrid modelM(Θ)

!

Hybrid DSm rule for hybrid modelM(Θ)

or if one wants to be more precise, use PCR5.

!

Decision-making

Now we introduce a third sourcem3(.) with

A B C ∅ A ∪ B A ∪ C B ∪ C A ∪ B ∪ C
m1(.) 0.4 0 0.6

m2(.) 0.7 0.3 0

m3(.) 0 0.8 0.2

m123
TBM (.) 0 0 0 1

m123
DS(.)

m123
DSmH(.) 0 0.240 0.120 0 0.224 0.056 0 0.360

m123
PCR5(.) 0.277490 0.545010 0.177500

In the dynamic fusion suppose that a new source m3(.) provides the information below. Then one sequentially combines the
results obtained bym12

TBM (.),m12
DS(.),m12

DSmH(.) andm12
PCR5(.) withm3(.) and one gets:

A B C ∅ A ∪ B A ∪ C B ∪ C A ∪ B ∪ C
m3(.) 0 0.8 0.2

m123
TBM (.) 0 0 0 1

m123
DS(.)

m123
DSmH(.) 0 0.240 0.120 0 0.224 0.056 0 0.360

m123
PCR5(.) 0.277490 0.545010 0.177500

A =
{

m1234
TBM (∅) = 1

,

m12345
TBM (∅) = m12345(∅) = 1

m12...n
TBM (∅) = 1

For a number of sources n ≥ 2, m12...n
TBM (∅) = 1 and TBM approach to fusion does not respond while DSm rules respond to

new information to combine.

Θ = {bo ! bomb object, do ! decoy object, so ! small object, lo ! large object}

Source s1

m1(.) : DΘ → [0, 1]

!

mk(.) : DΘ → [0, 1]
Source sk

!!

(Conjunctive consensus on hyper-power set DΘ)

Classic DSm rule based on free modelMf (Θ)

!

Introduction of integrity constraints intoDΘ

Hybrid modelM(Θ)

!

Hybrid DSm rule for hybrid modelM(Θ)

or if one wants to be more precise, use PCR5.

!

Decision-making

Now we introduce a third sourcem3(.) with

A B C ∅ A ∪ B A ∪ C B ∪ C A ∪ B ∪ C
m1(.) 0.4 0 0.6

m2(.) 0.7 0.3 0

m3(.) 0 0.8 0.2

m123
TBM (.) 0 0 0 1

m123
DS(.)

m123
DSmH(.) 0 0.240 0.120 0 0.224 0.056 0 0.360

m123
PCR5(.) 0.277490 0.545010 0.177500

In the dynamic fusion suppose that a new source m3(.) provides the information below. Then one sequentially combines the
results obtained bym12

TBM (.),m12
DS(.),m12

DSmH(.) andm12
PCR5(.) withm3(.) and one gets:

A B C ∅ A ∪ B A ∪ C B ∪ C A ∪ B ∪ C
m3(.) 0 0.8 0.2

m123
TBM (.) 0 0 0 1

m123
DS(.)

m123
DSmH(.) 0 0.240 0.120 0 0.224 0.056 0 0.360

m123
PCR5(.) 0.277490 0.545010 0.177500

A =
{

m1234
TBM (∅) = 1

,

m12345
TBM (∅) = m12345(∅) = 1

m12...n
TBM (∅) = 1

For a number of sources n ≥ 2, m12...n
TBM (∅) = 1 and TBM approach to fusion does not respond while DSm rules respond to

new information to combine.

Θ = {bo ! bomb object, do ! decoy object, so ! small object, lo ! large object}

...

Source s1

m1(.) : DΘ → [0, 1]

!

mk(.) : DΘ → [0, 1]
Source sk

!!

(Conjunctive consensus on hyper-power set DΘ)

Classic DSm rule based on free modelMf (Θ)

!

Introduction of integrity constraints intoDΘ

Hybrid modelM(Θ)

!

Hybrid DSm rule for hybrid modelM(Θ)

or if one wants to be more precise, use PCR5.

!

Decision-making

Now we introduce a third sourcem3(.) with

A B C ∅ A ∪ B A ∪ C B ∪ C A ∪ B ∪ C
m1(.) 0.4 0 0.6

m2(.) 0.7 0.3 0

m3(.) 0 0.8 0.2

m123
TBM (.) 0 0 0 1

m123
DS(.)

m123
DSmH(.) 0 0.240 0.120 0 0.224 0.056 0 0.360

m123
PCR5(.) 0.277490 0.545010 0.177500

In the dynamic fusion suppose that a new source m3(.) provides the information below. Then one sequentially combines the
results obtained bym12

TBM (.),m12
DS(.),m12

DSmH(.) andm12
PCR5(.) withm3(.) and one gets:

A B C ∅ A ∪ B A ∪ C B ∪ C A ∪ B ∪ C
m3(.) 0 0.8 0.2

m123
TBM (.) 0 0 0 1

m123
DS(.)

m123
DSmH(.) 0 0.240 0.120 0 0.224 0.056 0 0.360

m123
PCR5(.) 0.277490 0.545010 0.177500

A =
{

m1234
TBM (∅) = 1

,

m12345
TBM (∅) = m12345(∅) = 1

m12...n
TBM (∅) = 1

mTBM (∅) = m1234
TBM (∅) = 1

mTBM (∅) = m12345
TBM (∅) = 1

Source s1

m1(.) : DΘ → [0, 1]

!

mk(.) : DΘ → [0, 1]
Source sk

!!

(Conjunctive consensus on hyper-power set DΘ)

Classic DSm rule based on free modelMf (Θ)

!

Introduction of integrity constraints intoDΘ

Hybrid modelM(Θ)

!

Hybrid DSm rule for hybrid modelM(Θ)

or if one wants to be more precise, use PCR5.

!

Decision-making

Now we introduce a third sourcem3(.) with

A B C ∅ A ∪ B A ∪ C B ∪ C A ∪ B ∪ C
m1(.) 0.4 0 0.6

m2(.) 0.7 0.3 0

m3(.) 0 0.8 0.2

m123
TBM (.) 0 0 0 1

m123
DS(.)

m123
DSmH(.) 0 0.240 0.120 0 0.224 0.056 0 0.360

m123
PCR5(.) 0.277490 0.545010 0.177500

In the dynamic fusion suppose that a new source m3(.) provides the information below. Then one sequentially combines the
results obtained bym12

TBM (.),m12
DS(.),m12

DSmH(.) andm12
PCR5(.) withm3(.) and one gets:

A B C ∅ A ∪ B A ∪ C B ∪ C A ∪ B ∪ C
m3(.) 0 0.8 0.2

m123
TBM (.) 0 0 0 1

m123
DS(.)

m123
DSmH(.) 0 0.240 0.120 0 0.224 0.056 0 0.360

m123
PCR5(.) 0.277490 0.545010 0.177500

A =
{

m1234
TBM (∅) = 1

,

m12345
TBM (∅) = m12345(∅) = 1

m12...n
TBM (∅) = 1

mTBM (∅) = m1234
TBM (∅) = 1

mTBM (∅) = m12345
TBM (∅) = 1 mTBM (∅) = m12...n

TBM (∅) = 1

For a number of sources n ≥ 2, m12...n
TBM (∅) = 1 and TBM approach to fusion does not respond while DSm rules respond to

new information to combine.

Θ = {bo ! bomb object, do ! decoy object, so ! small object, lo ! large object}

m1(bo ∩ so) = 1

m2(bo ∩ lo) = 1

Bel1(bo) = 1

Bel2(bo) = 1

Bel12(bo) = 1

so ∩ lo = ∅

bo ∩ do = ∅

m12
TBM ((bo ∩ so) ∩ (bo ∩ lo)) = m12

TBM (bo ∩ (so ∩ lo)) ≡ m12
TBM (bo ∩ ∅) ≡ m12

TBM (∅) = 1

Bel12(bo) = 0

m12((bo ∩ so) ∩ (bo ∩ lo)) = m12(bo ∩ (so ∩ lo)) = m1(bo ∩ so)
︸ ︷︷ ︸

1

m2(bo ∩ lo)
︸ ︷︷ ︸

1

= 1

bo ∩ (so ∪ lo) = bo ∩ (so ∪ lo)

(bo ∩ so) ∪ (bo ∩ lo) = bo ∩ (so ∪ lo)

(so ∪ lo) = bo ∩ (so ∪ lo)

Bel12(bo) = 1

bo ∩ (so ∪ lo) ⊆ bo

m12
DSmH(bo ∩ (so ∪ lo)) = m1(bo ∩ so)

︸ ︷︷ ︸

1

m2(bo ∩ lo)
︸ ︷︷ ︸

1

= 1

m12
PCR5(bo ∩ so) = m12

PCR5(bo ∩ lo) = 0.5

(bo ∩ so) ⊆ bo

(bo ∩ lo) ⊆ bo

The only ad-hoc solution to overcome this behavior is to introduce some temporal discounting 
factors and/or avoid to fall into such pathological cases  ....

TBM approach does not respond to new information while DSm rules (DSmH and/or 
PCR5) respond to new information to combine. (DS) is not working at all.



Dynamic versus static fusion of three sources

Shafer’s 
model

TBM model

Source s1

m1(.) : DΘ → [0, 1]

!

mk(.) : DΘ → [0, 1]
Source sk

!!

(Conjunctive consensus on hyper-power set DΘ)

Classic DSm rule based on free modelMf (Θ)

!

Introduction of integrity constraints intoDΘ

Hybrid modelM(Θ)

!

Hybrid DSm rule for hybrid modelM(Θ)

or if one wants to be more precise, use PCR5.

!

Decision-making

Now we introduce a third sourcem3(.) with

A B C ∅ A ∪ B A ∪ C B ∪ C A ∪ B ∪ C
m1(.) 0.4 0 0.6

m2(.) 0.7 0.3 0

m3(.) 0 0.8 0.2

m123(.) 0 0 0 1

mTBM (.) 0 0 0 1

mDS(.)
mDSmH(.) 0 0.240 0.120 0 0.224 0.056 0 0.360

mPCR5(.) 0.277490 0.545010 0.177500

A =
{

2 Introduction

The development of the DSmT [?] arises from the necessity to overcome the inherent limitations of the DST [?] which are

closely related with the acceptance of Shafer’s model (i.e. working with an homogeneous frame of discernment Θ defined as

a finite set of exhaustive and exclusive hypotheses θi, i = 1, . . . , n), the third excluded middle principle, and the Dempster’s
rule for the combination of independent sources of evidence. Limitations of DST are well reported in literature [?, ?, ?] and

several alternative rules to the Dempster’s rule of combination can be found in [?, ?, ?, ?, ?, ?] and very recently in [?, ?, ?].

DSmT provides a new mathematical framework for information fusion which appears less restrictive and more general than the

basis and constraints of DST. The basis of DSmT is the refutation of the principle of the third excluded middle and Shafer’s

model in general, since for a wide class of fusion problems the hypotheses one has to deal with can have different intrinsic

nature1 and also appear only vague and imprecise in such a way that precise refinement is just impossible to obtain in reality so

that the exclusive elements θi cannot be properly identified and defined. Many problems involving fuzzy/vague continuous and

relative2 concepts described in natural language with different semantic contents and having no absolute interpretation enter in

this category. DSmT starts with the notion of free DSm model and considers Θ only as a frame of exhaustive elements which

can potentially overlap and have different intrinsic semantic natures and which also can change with time with new information

1By example, in some target tracking and classification applications, one has to deal both with imprecise and uncertain information like radar-cross section,

as well as Doppler/velocity measurements
2The notion of relativity comes from the own interpretation of the elements of the frame Θ by each sources of evidences involved in the fusion process.

(DS) not working (division by 0)
TBM not responding and the specificity is lost

Source s1

m1(.) : DΘ → [0, 1]

!

mk(.) : DΘ → [0, 1]
Source sk

!!

(Conjunctive consensus on hyper-power set DΘ)

Classic DSm rule based on free modelMf (Θ)

!

Introduction of integrity constraints intoDΘ

Hybrid modelM(Θ)

!

Hybrid DSm rule for hybrid modelM(Θ)

or if one wants to be more precise, use PCR5.

!

Decision-making

Now we introduce a third sourcem3(.) with

A B C ∅ A ∪ B A ∪ C B ∪ C A ∪ B ∪ C
m1(.) 0.4 0 0.6

m2(.) 0.7 0.3 0

m3(.) 0 0.8 0.2

m123
TBM (.) 0 0 0 1

m123
DS(.)

m123
DSmH(.) 0 0.240 0.120 0 0.224 0.056 0 0.360

m123
PCR5(.) 0.277490 0.545010 0.177500

In the dynamic fusion suppose that a new source m3(.) provides the information below. Then one sequentially combines the
results obtained bym12

TBM (.),m12
DS(.),m12

DSmH(.) andm12
PCR5(.) withm3(.) and one gets:

A B C ∅ A ∪ B A ∪ C B ∪ C A ∪ B ∪ C
m3(.) 0 0.8 0.2

m123
TBM (.) 0 0 0 1

m123
DS(.)

m123
DSmH(.) 0 0.240 0.120 0 0.224 0.056 0 0.360

m123
PCR5(.) 0.277490 0.545010 0.177500

A =
{

m1234
TBM (∅) = 1

,

m12345
TBM (∅) = m12345(∅) = 1

m12...n
TBM (∅) = 1

For a number of sources n ≥ 2, m12...n
TBM (∅) = 1 and TBM approach to fusion does not respond while DSm rules respond to

new information to combine.

Θ = {bo ! bomb object, do ! decoy object, so ! small object, lo ! large object}

Dynamic/temporal Fusion

Static Fusion

Source s1

m1(.) : DΘ → [0, 1]

!

mk(.) : DΘ → [0, 1]
Source sk

!!

(Conjunctive consensus on hyper-power set DΘ)

Classic DSm rule based on free modelMf (Θ)

!

Introduction of integrity constraints intoDΘ

Hybrid modelM(Θ)

!

Hybrid DSm rule for hybrid modelM(Θ)

or if one wants to be more precise, use PCR5.

!

Decision-making

Now we introduce a third sourcem3(.) with

A B C ∅ A ∪ B A ∪ C B ∪ C A ∪ B ∪ C
m1(.) 0.4 0 0.6

m2(.) 0.7 0.3 0

m3(.) 0 0.8 0.2

m123
TBM (.) 0 0 0 1

m123
DS(.)

m123
DSmH(.) 0 0.240 0.120 0 0.224 0.056 0 0.360

m123
PCR5(.) 0.277490 0.545010 0.177500

In the dynamic fusion suppose that a new source m3(.) provides the information below. Then one sequentially combines the
results obtained bym12

TBM (.),m12
DS(.),m12

DSmH(.) andm12
PCR5(.) withm3(.) and one gets:

A B C ∅ A ∪ B A ∪ C B ∪ C A ∪ B ∪ C
m3(.) 0 0.8 0.2

m123
TBM (.) 0 0 0 1

m123
DS(.)

m123
DSmH(.) 0 0.240 0.120 0 0.224 0.056 0 0.360

m123
PCR5(.) 0.277490 0.545010 0.177500

A B C ∅ A ∪ B A ∪ C B ∪ C A ∪ B ∪ C
m1(.) 0.4 0 0.6

m2(.) 0.7 0.3 0

m3(.) 0 0.8 0.2

m123
TBM (.) 0 0 0 1

m123
DS(.)

m123
DSmH(.) 0 0 0 0 0.32 0.14 0.18 0.36

m123
PCR5(.) 0.345115 0.404783 0.250102

A =
{

m1234
TBM (∅) = 1

(DS) not working (division by 0)

TBM not responding and the specificity is lost

Shafer’s 
model

TBM model

Source s1

m1(.) : DΘ → [0, 1]

!

mk(.) : DΘ → [0, 1]
Source sk

!!

(Conjunctive consensus on hyper-power set DΘ)

Classic DSm rule based on free modelMf (Θ)

!

Introduction of integrity constraints intoDΘ

Hybrid modelM(Θ)

!

Hybrid DSm rule for hybrid modelM(Θ)

or if one wants to be more precise, use PCR5.

!

Decision-making

Now we introduce a third sourcem3(.) with

A B C ∅ A ∪ B A ∪ C B ∪ C A ∪ B ∪ C
m1(.) 0.4 0 0.6

m2(.) 0.7 0.3 0

m3(.) 0 0.8 0.2

m123(.) 0 0 0 1

mTBM (.) 0 0 0 1

mDS(.)
mDSmH(.) 0 0.240 0.120 0 0.224 0.056 0 0.360

mPCR5(.) 0.277490 0.545010 0.177500

A =
{

2 Introduction

The development of the DSmT [?] arises from the necessity to overcome the inherent limitations of the DST [?] which are

closely related with the acceptance of Shafer’s model (i.e. working with an homogeneous frame of discernment Θ defined as

a finite set of exhaustive and exclusive hypotheses θi, i = 1, . . . , n), the third excluded middle principle, and the Dempster’s
rule for the combination of independent sources of evidence. Limitations of DST are well reported in literature [?, ?, ?] and

several alternative rules to the Dempster’s rule of combination can be found in [?, ?, ?, ?, ?, ?] and very recently in [?, ?, ?].

DSmT provides a new mathematical framework for information fusion which appears less restrictive and more general than the

basis and constraints of DST. The basis of DSmT is the refutation of the principle of the third excluded middle and Shafer’s

model in general, since for a wide class of fusion problems the hypotheses one has to deal with can have different intrinsic

nature1 and also appear only vague and imprecise in such a way that precise refinement is just impossible to obtain in reality so

that the exclusive elements θi cannot be properly identified and defined. Many problems involving fuzzy/vague continuous and

relative2 concepts described in natural language with different semantic contents and having no absolute interpretation enter in

this category. DSmT starts with the notion of free DSm model and considers Θ only as a frame of exhaustive elements which

can potentially overlap and have different intrinsic semantic natures and which also can change with time with new information

1By example, in some target tracking and classification applications, one has to deal both with imprecise and uncertain information like radar-cross section,

as well as Doppler/velocity measurements
2The notion of relativity comes from the own interpretation of the elements of the frame Θ by each sources of evidences involved in the fusion process.

The three sources are combined alltogether

The three sources are combined sequentially

The masses m1(.),m2(.), m3(.) are those used in the previous example

,

m12345
TBM (∅) = m12345(∅) = 1

m12...n
TBM (∅) = 1

mTBM (∅) = m1234
TBM (∅) = 1

mTBM (∅) = m12345
TBM (∅) = 1

mTBM (∅) = m12...n
TBM (∅) = 1

For a number of sources n ≥ 2, m12...n
TBM (∅) = 1 and TBM approach to fusion does not respond while DSm rules respond to

new information to combine.

Θ = {bo ! bomb object, do ! decoy object, so ! small object, lo ! large object}

m1(bo ∩ so) = 1

m2(bo ∩ lo) = 1

Bel1(bo) = 1

Bel2(bo) = 1

Bel12(bo) = 1

so ∩ lo = ∅

bo ∩ do = ∅

m12
TBM ((bo ∩ so) ∩ (bo ∩ lo)) = m12

TBM (bo ∩ (so ∩ lo)) ≡ m12
TBM (bo ∩ ∅) ≡ m12

TBM (∅) = 1

Bel12(bo) = 0

m12((bo ∩ so) ∩ (bo ∩ lo)) = m12(bo ∩ (so ∩ lo)) = m1(bo ∩ so)
︸ ︷︷ ︸

1

m2(bo ∩ lo)
︸ ︷︷ ︸

1

= 1

bo ∩ (so ∪ lo) = bo ∩ (so ∪ lo)

(bo ∩ so) ∪ (bo ∩ lo) = bo ∩ (so ∪ lo)

(so ∪ lo) = bo ∩ (so ∪ lo)

Bel12(bo) = 1

bo ∩ (so ∪ lo) ⊆ bo

m12
DSmH(bo ∩ (so ∪ lo)) = m1(bo ∩ so)

︸ ︷︷ ︸

1

m2(bo ∩ lo)
︸ ︷︷ ︸

1

= 1

m12
PCR5(bo ∩ so) = m12

PCR5(bo ∩ lo) = 0.5

(bo ∩ so) ⊆ bo

(bo ∩ lo) ⊆ bo

Dynamic Fusion→ [(m1 ⊕ m2) ⊕ m3](.)

Static Fusion→ [m1 ⊕ m2 ⊕ m3](.)

,

m12345
TBM (∅) = m12345(∅) = 1

m12...n
TBM (∅) = 1

mTBM (∅) = m1234
TBM (∅) = 1

mTBM (∅) = m12345
TBM (∅) = 1

mTBM (∅) = m12...n
TBM (∅) = 1

For a number of sources n ≥ 2, m12...n
TBM (∅) = 1 and TBM approach to fusion does not respond while DSm rules respond to

new information to combine.

Θ = {bo ! bomb object, do ! decoy object, so ! small object, lo ! large object}

m1(bo ∩ so) = 1

m2(bo ∩ lo) = 1

Bel1(bo) = 1

Bel2(bo) = 1

Bel12(bo) = 1

so ∩ lo = ∅

bo ∩ do = ∅

m12
TBM ((bo ∩ so) ∩ (bo ∩ lo)) = m12

TBM (bo ∩ (so ∩ lo)) ≡ m12
TBM (bo ∩ ∅) ≡ m12

TBM (∅) = 1

Bel12(bo) = 0

m12((bo ∩ so) ∩ (bo ∩ lo)) = m12(bo ∩ (so ∩ lo)) = m1(bo ∩ so)
︸ ︷︷ ︸

1

m2(bo ∩ lo)
︸ ︷︷ ︸

1

= 1

bo ∩ (so ∪ lo) = bo ∩ (so ∪ lo)

(bo ∩ so) ∪ (bo ∩ lo) = bo ∩ (so ∪ lo)

(so ∪ lo) = bo ∩ (so ∪ lo)

Bel12(bo) = 1

bo ∩ (so ∪ lo) ⊆ bo

m12
DSmH(bo ∩ (so ∪ lo)) = m1(bo ∩ so)

︸ ︷︷ ︸

1

m2(bo ∩ lo)
︸ ︷︷ ︸

1

= 1

m12
PCR5(bo ∩ so) = m12

PCR5(bo ∩ lo) = 0.5

(bo ∩ so) ⊆ bo

(bo ∩ lo) ⊆ bo

Dynamic Fusion→ [(m1 ⊕ m2) ⊕ m3](.)

Static Fusion→ [m1 ⊕ m2 ⊕ m3](.)



Belief conditioning and Non-Bayesian Reasoning

Approach 1:  Following Shafer’s idea based on fusion

1) Shafer’s “conditioning” rule (SCR)

2

examples, and a very important and open challenging question about belief
fusion and conditioning.

0.1 Shafer’s conditioning rule (SCR)

Before going further in the development of new belief conditioning rules, it
is important to recall the conditioning of beliefs proposed by Glenn Shafer
in [?] (p.66–67) and reported below.

So, let’s suppose that the effect of a new evidence (say source 2) on
the frame of discernment Θ is to establish a particular subset B ⊂ Θ with
certainty. Then Bel2 will give a degree of belief one to the proposition
corresponding to B and to every proposition implied by it:

Bel2(A) =





1, if B ⊂ A;

0, otherwise.

Since the subset B is the only focal element of Bel2, its basic belief
assignment is one, i.e. m2(B) = 1. Such a function Bel2 is then combinable
with the (prior) Bel1 as long as Bel1(B̄) < 1, and the Dempster’s rule of
combination (denoted ⊕) provides the conditional belief Bel1(.|B) = Bel1 ⊕
Bel2 (according to Theorem 3.6 in [?]). More specifically, one gets for all
A ⊂ Θ,

Bel1(A|B) =
Bel1(A ∪ B̄) − Bel1(B̄)

1 − Bel1(B̄)

Pl1(A|B) =
Pl1(A ∩ B)

Pl1(B)

where Pl(.) denotes the plausibility function.

m1(.|A) = [m1 ⊕ m2](.)

where 



m2(A) = 1

⊕ = Dempster’s rule

2

examples, and a very important and open challenging question about belief
fusion and conditioning.

0.1 Shafer’s conditioning rule (SCR)

Before going further in the development of new belief conditioning rules, it
is important to recall the conditioning of beliefs proposed by Glenn Shafer
in [?] (p.66–67) and reported below.

So, let’s suppose that the effect of a new evidence (say source 2) on
the frame of discernment Θ is to establish a particular subset B ⊂ Θ with
certainty. Then Bel2 will give a degree of belief one to the proposition
corresponding to B and to every proposition implied by it:

Bel2(A) =





1, if B ⊂ A;

0, otherwise.

Since the subset B is the only focal element of Bel2, its basic belief
assignment is one, i.e. m2(B) = 1. Such a function Bel2 is then combinable
with the (prior) Bel1 as long as Bel1(B̄) < 1, and the Dempster’s rule of
combination (denoted ⊕) provides the conditional belief Bel1(.|B) = Bel1 ⊕
Bel2 (according to Theorem 3.6 in [?]). More specifically, one gets for all
A ⊂ Θ,

Bel1(A|B) =
Bel1(A ∪ B̄) − Bel1(B̄)

1 − Bel1(B̄)

Pl1(A|B) =
Pl1(A ∩ B)

Pl1(B)

where Pl(.) denotes the plausibility function.

m1(.|A) = [m1 ⊕ m2](.)

where 



m2(A) = 1

⊕ = Dempster’s rule
with

subjective certainty committed 
to A by source # 2

2) PCR5 conditioning rule (PCR5CR) [Smarandache Dezert, Brest 2010]

SCR = Bayesian reasoning with plausibilities

PCR5CR = Non Bayesian reasoning (NBR)

Approach 2:  Direct Belief Conditioning Rules (BCR)

We replace Dempster rule by PCR5 fusion rule 



1) Extension of Bayesian Reasoning (Shaferʼs cond.)
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'>#9?."%+A%@ABC%D#E"<A#$%?0A/0 '>#9?."%8A%@ABC%5/$FD#E"<A#$%?0A/0Let’s consider Θ = {A, B, C}, Shafer’s model, and the prior bba’s
) given in Table 4 and the conditional evidence

Y = A ∪ B

GH0?/<"=%_9%@;'@')9%5%F9C%`'F/&5<9)75F%I'FG7L'F7FD%;E,9%:';%89,79:%;967)7'F%85)9G%'F%M;'@';L'F5,%Z'Fa7I=%b9G7)=;78EL'F%WMZbY%;E,9%':%
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_9%)>'C%=>5=%=>9%G9I'FG7L'F7FD%@;'8,9#%5G#7=)%5%EF7gE9%)',EL'F%C>9F%=>9%@;7';%7)%&5<9)75F%W:'I5,%9,9#9F=)%':%=>9%89,79:%5;9%)7FD,9='F)Yh%

EF7I7=<%':%=>9%)',EL'F%7)%F'=%@'))78,9%='%'8=57F%C7=>%I,5))7I5,%">5:9;%5FG%&5<9)%I'FG7L'F7FD%;E,9)-

&"9?<B"0I<%0H."%/:%;/9JA$#1/$=% Θ = {θ1, θ2, . . . , θ2} m(∅) = 0 and
∑

X∈2Θ

m(X) = 1

Bel(X) =
∑

Z∈2Θ,Z⊆X

m(Z) WZ;9G787,7=<Y

Pl(X) =
∑

Z∈2Θ,Z∩X #=0

m(Z) WM,5E)787,7=<Y

885A
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8<%5%)'E;I9%#1W-Y%'F,<%:'IE)9G%'F%j*%=>5=%7)%)EI>%=>5=%#1WjYi.-%

Bel(X) ≤ P (X) ≤ Pl(X)

mDS(∅) = 0 and mDS(X) = [m1⊕m2](X) =

∑

X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2)

1 −
∑

X1,X2∈2Θ

X1∩X2=∅

m1(X1)m2(X2)

G6)N%0H."%/:%;/9JA$#1/$=%

∀X "= ∅

mPCR5(∅) = 0 and mPCR5(X) =
∑

X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2)+
∑

X2∈2Θ

X2∩X=∅

[
m1(X)2m2(X2)

m1(X) + m2(X2)
+

m2(X)2m1(X2)

m2(X) + m1(X2)
]

∀X "= ∅

5/$%D#E"<A#$%0H."%/:%;/$,A1/$A$K=%%MZb[%I'#87F5L'F%':%=>9%@;7';%885%#.W-Y%C7=>%=>9%I'FG7L'F5,%967G9FI9*%)5<%j%;9@;9)9F=9G%8<%5%)'E;I9%

#1W-Y%'F,<%:'IE)9G%'F%j*%=>5=%7)%)EI>%=>5=%#1WjYi.-%

Bel(X ‖ Y ) ≤ P (X ||Y ) ≤ Pl(X ||Y ) (11)

Bel(X ‖ Y ) =
∑

Z∈2Θ

Z⊆X

m(Z ‖ Y ) (9)

Pl(X ‖ Y ) =
∑

Z∈2Θ

Z∩X #=∅

m(Z ‖ Y ) (10)

m(X ‖ Y ) =
∑

X1∈2Θ

X1∩Y =X

m1(X1)+δ(X∩Y = ∅)·
m1(X)2

1 + m1(X)
+δ(X = Y )·

∑

X2∈2Θ

X2∩Y =∅

m1(X2)

1 + m1(X2)

Bayesian⊕ Non-Bayesian = Bayesian

Bayesian⊕ Non-Bayesian = Non-Bayesian (in general)

M;'@9;=<%':%!"%;E,9A

M;'@9;=<%':%MZb[%;E,9A
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)99%7:%:';%5F<%D769F%I'FG7L'F5,%885%#W-eejY*%C9%I5F%I'#@E=9%#.W-Y%)EI>%=>5=%%#W-eejYiMZb[W#.W-Y*#1W-Y%C7=>%#1WjYi.-

Focal Elem. m1(.) m2(.) mDS(.) mPCR5(.)
A 0.1 0 0.0833 0.0642
B 0.2 0.3 0.1000 0.1941
C 0.7 0.2 0.8167 0.6703

A ∪ C 0 0.5 0 0.0714

Example: For focal elements A and B such that A ∩B = ∅ with m1(A) = 0.6
and m2(B) = 0.3. With PCR5 m1(A)m2(B) = 0.6 · 0.3 = 0.18 is redistributed
to A and B with proportions: xA = 0.12 and xB = 0.06 since

xA

m1(A)
=

xB

m2(B)
=

m1(A)m2(B)
m1(A) + m2(B)

=
0.18
0.9

= 0.2

*CA<%;/$,A1/$A$K%A<%B0H.E%$/$%
D#E"<A#$%<A$;"%D".LOPPOMQ%+
<""%'>#9?."<%+%R%8%J"./@S%

6/$<A<B"$;E%@ABC%
D#E"<%:/09H.#%H<A$K%
D#E"<A#$%JJ#I<=%

P (X |Y ) =
P (X ∩ Y )

P (Y )

m(X |Y ) = mDS(X) = [m1 ⊕ m2](X) with m2(Y ) = 1

Bel(X |Y ) =
∑

Z∈2Θ

Z⊆X

mDS(Z|Y ) =
Bel1(X ∪ Ȳ ) − Bel1(Ȳ )

1 − Bel1(Ȳ )

Pl(X |Y ) =
∑

Z∈2Θ

Z∩X #=∅

mDS(Z|Y ) =
Pl1(X ∩ Y )

Pl1(Y )
&5<9)75F%

@;7FI7@,9A

When Y = X and as soon as Bel(X̄) < 1, one gets Bel(X |X) = 1 because
Bel1(X ∪ Ȳ ) = Bel1(X ∪ X̄) = Bel1(Θ) = 1. For Bayesian belief, this implies
P (X |X) = 1 for any X such that P1(X) > 0.

Bel(X |Y ) ≤ P (X |Y ) ≤ Pl(X |Y ) (11)

TF%MZb[*%=>9%@5;L5,%I'Fa7I=)%5;9%;9G7)=;78E=9G%

85I(%='%9,9#9F=)%7F6',69G%7F%=>9#%

@;'@';L'F5,,<%C7=>%;9)@9I=%='%=>97;%#5))9)%

C>7I>%@;9)9;69)%=>9%)@9I7lI7=<%':%=>9%

7F:';#5L'F-

2Θ ∆(.|Y ) = ∆′(.|Y ) ∆(.||Y ) ∆′(.||Y )
∅ [0,0] [0,0] [0,0]
A [0.5,0.5] [0.4900, 0.5096] [ 0.0100, 0.5050]
B [0.5,0.5] [0.4900, 0.5096] [ 0.0100, 0.5050]
C [0,0] [0.0004, 0.0004] [0.4850,0.4850]

Y = A ∪ B [1,1] [0.9996,0.9996] [0.5150,0.5150]
A ∪ C [0.5,0.5] [ 0.4904, 0.5100] [0.4950, 0.9900]
B ∪ C [0.5,0.5] [ 0.4904, 0.5100] [0.4950, 0.9900]

A ∪ B ∪ C [1,1] [1,1] [1,1]

∆(.|Y ) = [Bel(.|Y ), P l(.|Y )]

Focal Elem. m1 m′
1(.)

A 0.49 0.01
B 0.49 0.01
C 0.02 0.98

Focal Elem. m(.|Y ) m′(.|Y )
A 0.5 0.5
B 0.5 0.5
C 0 0

A ∪ B 0 0

Focal Elem. m(.||Y ) m′(.||Y )
A 0.4900 0.0100
B 0.4900 0.0100
C 0.00039215 0.48505051

A ∪ B 0.01960785 0.49494949

`'F%&5<9)75F%I'FG7L'F7FD

!"#$%&'(&)*"(#+*"#",'
*-'./01')*"(#+*"#",
#2'3*22#45&'62&&'373&89'
)*":878#;#2&':*'</0

M;7';%&5<9)75F%885m) ">5:9;m)%I'FG7L'F7FD

Bel(Y |Y ) = 1 Bel′(Y |Y ) = 1 Bel(Y ||Y ) = 0.99960785 < 1

Bel′(Y ||Y ) = 0, 51494949 < 1

Focal Elem. m1 m′
1(.)

A 0.20 0.20
B 0.30 0.30
C 0.10 0.10

A ∪ B 0.25 0.15
A ∪ B ∪ C 0.15 0.25

Let’s consider Θ = {A, B, C}, Shafer’s model, and the prior bba’s
) given in Table 4 and the conditional evidence

Y = A ∪ B

M;7';%885m)

Focal Elem. m(.|Y ) m′(.|Y )
A 0.222 0.222
B 0.333 0.333
C 0 0

A ∪ B 0.445 0.445

Focal Elem. m(. ‖ Y ) m′(. ‖ Y )
A 0.20 0.20
B 0.30 0.30
C 0.01 0.01

A ∪ B 0.49 0.49

`'F%&5<9)75F%I'FG7L'F7FD">5:9;%I'FG7L'F7FD

Bel(Y |Y ) = 1 Bel′(Y |Y ) = 1

2Θ ∆(.|Y ) = ∆′(.|Y ) ∆(.||Y ) = ∆′(.||Y )
∅ [0,0] [0,0]
A [0.2220,0.6670] [0.2000,0.6900]
B [0.3330,0.7780] [0.3000,0.7900]
C [0,0] [ 0.0100,0.0100]

Y = A ∪ B [1,1] [0.9900,0.9900]
A ∪ C [0.2220,0.6670] [ 0.2100,0.7000]
B ∪ C [0.3330,0.7780] [ 0.3100,0.8000]

A ∪ B ∪ C [1,1] [1,1]

∆(.|Y ) = [Bel(.|Y ), P l(.|Y )]

!"#$%&'(&)*"(#+*"#",'*-'./01'
)*"(#+*"#",'#2'"*:'3*22#45&'#"'
,&"&875';#:='"*"'>7?&2#7"'38#*8'
447@'%"5&22'7((#+*"75')*"2:87#":2'
78&'#":8*(%)&(A

Bel(Y ||Y ) = Bel′(Y ||Y ) = 0.99 < 1

!"#$%&"'(")(*&+(,&+"#-(".(/+01+.(23)45")%(
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'>#9?."%+A%@ABC%D#E"<A#$%?0A/0 '>#9?."%8A%@ABC%5/$FD#E"<A#$%?0A/0Let’s consider Θ = {A, B, C}, Shafer’s model, and the prior bba’s
) given in Table 4 and the conditional evidence

Y = A ∪ B
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&"9?<B"0I<%0H."%/:%;/9JA$#1/$=% Θ = {θ1, θ2, . . . , θ2} m(∅) = 0 and
∑

X∈2Θ

m(X) = 1

Bel(X) =
∑

Z∈2Θ,Z⊆X

m(Z) WZ;9G787,7=<Y

Pl(X) =
∑

Z∈2Θ,Z∩X #=0

m(Z) WM,5E)787,7=<Y

885A

2C#:"0I<%0H."%/:%;/$,A1/$A$K%L26)M=%%"Zb%i%!9#@)=9;S)%I'#87F5L'F%':%=>9%@;7';%885%#.W-Y%C7=>%=>9%I'FG7L'F5,%967G9FI9*%)5<%j%;9@;9)9F=9G%

8<%5%)'E;I9%#1W-Y%'F,<%:'IE)9G%'F%j*%=>5=%7)%)EI>%=>5=%#1WjYi.-%

Bel(X) ≤ P (X) ≤ Pl(X)

mDS(∅) = 0 and mDS(X) = [m1⊕m2](X) =

∑

X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2)

1 −
∑

X1,X2∈2Θ

X1∩X2=∅

m1(X1)m2(X2)

G6)N%0H."%/:%;/9JA$#1/$=%

∀X "= ∅

mPCR5(∅) = 0 and mPCR5(X) =
∑

X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2)+
∑

X2∈2Θ

X2∩X=∅

[
m1(X)2m2(X2)

m1(X) + m2(X2)
+

m2(X)2m1(X2)

m2(X) + m1(X2)
]

∀X "= ∅

5/$%D#E"<A#$%0H."%/:%;/$,A1/$A$K=%%MZb[%I'#87F5L'F%':%=>9%@;7';%885%#.W-Y%C7=>%=>9%I'FG7L'F5,%967G9FI9*%)5<%j%;9@;9)9F=9G%8<%5%)'E;I9%
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Bel(X ‖ Y ) ≤ P (X ||Y ) ≤ Pl(X ||Y ) (11)

Bel(X ‖ Y ) =
∑

Z∈2Θ

Z⊆X

m(Z ‖ Y ) (9)

Pl(X ‖ Y ) =
∑

Z∈2Θ

Z∩X #=∅

m(Z ‖ Y ) (10)

m(X ‖ Y ) =
∑

X1∈2Θ

X1∩Y =X

m1(X1)+δ(X∩Y = ∅)·
m1(X)2

1 + m1(X)
+δ(X = Y )·

∑

X2∈2Θ

X2∩Y =∅

m1(X2)

1 + m1(X2)

Bayesian⊕ Non-Bayesian = Bayesian

Bayesian⊕ Non-Bayesian = Non-Bayesian (in general)

M;'@9;=<%':%!"%;E,9A

M;'@9;=<%':%MZb[%;E,9A

&";/$,A1/$A$K=%T=%7)%=>9%7F69;)9%WGE5,Y%@;'8,9#%':%I'FG7L'F7FD-%T=%I'F)7)=)%='%;9=;7969%=>9%@;7';%89,79:%:EFIL'F%:;'#%5%D769F%@')=9;7';B
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)99%7:%:';%5F<%D769F%I'FG7L'F5,%885%#W-eejY*%C9%I5F%I'#@E=9%#.W-Y%)EI>%=>5=%%#W-eejYiMZb[W#.W-Y*#1W-Y%C7=>%#1WjYi.-

Focal Elem. m1(.) m2(.) mDS(.) mPCR5(.)
A 0.1 0 0.0833 0.0642
B 0.2 0.3 0.1000 0.1941
C 0.7 0.2 0.8167 0.6703

A ∪ C 0 0.5 0 0.0714

Example: For focal elements A and B such that A ∩B = ∅ with m1(A) = 0.6
and m2(B) = 0.3. With PCR5 m1(A)m2(B) = 0.6 · 0.3 = 0.18 is redistributed
to A and B with proportions: xA = 0.12 and xB = 0.06 since

xA

m1(A)
=

xB

m2(B)
=

m1(A)m2(B)
m1(A) + m2(B)

=
0.18
0.9

= 0.2

*CA<%;/$,A1/$A$K%A<%B0H.E%$/$%
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P (X |Y ) =
P (X ∩ Y )

P (Y )

m(X |Y ) = mDS(X) = [m1 ⊕ m2](X) with m2(Y ) = 1

Bel(X |Y ) =
∑

Z∈2Θ

Z⊆X

mDS(Z|Y ) =
Bel1(X ∪ Ȳ ) − Bel1(Ȳ )

1 − Bel1(Ȳ )

Pl(X |Y ) =
∑

Z∈2Θ

Z∩X #=∅

mDS(Z|Y ) =
Pl1(X ∩ Y )

Pl1(Y )
&5<9)75F%

@;7FI7@,9A

When Y = X and as soon as Bel(X̄) < 1, one gets Bel(X |X) = 1 because
Bel1(X ∪ Ȳ ) = Bel1(X ∪ X̄) = Bel1(Θ) = 1. For Bayesian belief, this implies
P (X |X) = 1 for any X such that P1(X) > 0.

Bel(X |Y ) ≤ P (X |Y ) ≤ Pl(X |Y ) (11)

TF%MZb[*%=>9%@5;L5,%I'Fa7I=)%5;9%;9G7)=;78E=9G%

85I(%='%9,9#9F=)%7F6',69G%7F%=>9#%
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2Θ ∆(.|Y ) = ∆′(.|Y ) ∆(.||Y ) ∆′(.||Y )
∅ [0,0] [0,0] [0,0]
A [0.5,0.5] [0.4900, 0.5096] [ 0.0100, 0.5050]
B [0.5,0.5] [0.4900, 0.5096] [ 0.0100, 0.5050]
C [0,0] [0.0004, 0.0004] [0.4850,0.4850]

Y = A ∪ B [1,1] [0.9996,0.9996] [0.5150,0.5150]
A ∪ C [0.5,0.5] [ 0.4904, 0.5100] [0.4950, 0.9900]
B ∪ C [0.5,0.5] [ 0.4904, 0.5100] [0.4950, 0.9900]

A ∪ B ∪ C [1,1] [1,1] [1,1]

∆(.|Y ) = [Bel(.|Y ), P l(.|Y )]

Focal Elem. m1 m′
1(.)

A 0.49 0.01
B 0.49 0.01
C 0.02 0.98

Focal Elem. m(.|Y ) m′(.|Y )
A 0.5 0.5
B 0.5 0.5
C 0 0

A ∪ B 0 0

Focal Elem. m(.||Y ) m′(.||Y )
A 0.4900 0.0100
B 0.4900 0.0100
C 0.00039215 0.48505051

A ∪ B 0.01960785 0.49494949

`'F%&5<9)75F%I'FG7L'F7FD
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Bel(Y |Y ) = 1 Bel′(Y |Y ) = 1 Bel(Y ||Y ) = 0.99960785 < 1

Bel′(Y ||Y ) = 0, 51494949 < 1

Focal Elem. m1 m′
1(.)

A 0.20 0.20
B 0.30 0.30
C 0.10 0.10

A ∪ B 0.25 0.15
A ∪ B ∪ C 0.15 0.25

Let’s consider Θ = {A, B, C}, Shafer’s model, and the prior bba’s
) given in Table 4 and the conditional evidence

Y = A ∪ B

M;7';%885m)

Focal Elem. m(.|Y ) m′(.|Y )
A 0.222 0.222
B 0.333 0.333
C 0 0

A ∪ B 0.445 0.445

Focal Elem. m(. ‖ Y ) m′(. ‖ Y )
A 0.20 0.20
B 0.30 0.30
C 0.01 0.01

A ∪ B 0.49 0.49

`'F%&5<9)75F%I'FG7L'F7FD">5:9;%I'FG7L'F7FD

Bel(Y |Y ) = 1 Bel′(Y |Y ) = 1

2Θ ∆(.|Y ) = ∆′(.|Y ) ∆(.||Y ) = ∆′(.||Y )
∅ [0,0] [0,0]
A [0.2220,0.6670] [0.2000,0.6900]
B [0.3330,0.7780] [0.3000,0.7900]
C [0,0] [ 0.0100,0.0100]

Y = A ∪ B [1,1] [0.9900,0.9900]
A ∪ C [0.2220,0.6670] [ 0.2100,0.7000]
B ∪ C [0.3330,0.7780] [ 0.3100,0.8000]

A ∪ B ∪ C [1,1] [1,1]

∆(.|Y ) = [Bel(.|Y ), P l(.|Y )]

!"#$%&'(&)*"(#+*"#",'*-'./01'
)*"(#+*"#",'#2'"*:'3*22#45&'#"'
,&"&875';#:='"*"'>7?&2#7"'38#*8'
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Bel(Y ||Y ) = Bel′(Y ||Y ) = 0.99 < 1
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'>#9?."%+A%@ABC%D#E"<A#$%?0A/0 '>#9?."%8A%@ABC%5/$FD#E"<A#$%?0A/0Let’s consider Θ = {A, B, C}, Shafer’s model, and the prior bba’s
) given in Table 4 and the conditional evidence

Y = A ∪ B

GH0?/<"=%_9%@;'@')9%5%F9C%`'F/&5<9)75F%I'FG7L'F7FD%;E,9%:';%89,79:%;967)7'F%85)9G%'F%M;'@';L'F5,%Z'Fa7I=%b9G7)=;78EL'F%WMZbY%;E,9%':%

I'#87F5L'F%G969,'@9G%7F%!9c9;=/"#5;5FG5I>9%W!"#$Y%:;5#9C';(-%$>7)%;E,9%7)%=;E,<%`'F/&5<9)75F%)7FI9%7:%5%@;7';%89,79:%7)%&5<9)75F*%&9,WdedYf.-%

_9%)>'C%=>5=%=>9%G9I'FG7L'F7FD%@;'8,9#%5G#7=)%5%EF7gE9%)',EL'F%C>9F%=>9%@;7';%7)%&5<9)75F%W:'I5,%9,9#9F=)%':%=>9%89,79:%5;9%)7FD,9='F)Yh%

EF7I7=<%':%=>9%)',EL'F%7)%F'=%@'))78,9%='%'8=57F%C7=>%I,5))7I5,%">5:9;%5FG%&5<9)%I'FG7L'F7FD%;E,9)-

&"9?<B"0I<%0H."%/:%;/9JA$#1/$=% Θ = {θ1, θ2, . . . , θ2} m(∅) = 0 and
∑

X∈2Θ

m(X) = 1

Bel(X) =
∑

Z∈2Θ,Z⊆X

m(Z) WZ;9G787,7=<Y

Pl(X) =
∑

Z∈2Θ,Z∩X #=0

m(Z) WM,5E)787,7=<Y

885A

2C#:"0I<%0H."%/:%;/$,A1/$A$K%L26)M=%%"Zb%i%!9#@)=9;S)%I'#87F5L'F%':%=>9%@;7';%885%#.W-Y%C7=>%=>9%I'FG7L'F5,%967G9FI9*%)5<%j%;9@;9)9F=9G%
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Bel(X) ≤ P (X) ≤ Pl(X)

mDS(∅) = 0 and mDS(X) = [m1⊕m2](X) =

∑

X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2)

1 −
∑

X1,X2∈2Θ

X1∩X2=∅

m1(X1)m2(X2)

G6)N%0H."%/:%;/9JA$#1/$=%

∀X "= ∅

mPCR5(∅) = 0 and mPCR5(X) =
∑

X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2)+
∑

X2∈2Θ

X2∩X=∅

[
m1(X)2m2(X2)

m1(X) + m2(X2)
+

m2(X)2m1(X2)

m2(X) + m1(X2)
]

∀X "= ∅

5/$%D#E"<A#$%0H."%/:%;/$,A1/$A$K=%%MZb[%I'#87F5L'F%':%=>9%@;7';%885%#.W-Y%C7=>%=>9%I'FG7L'F5,%967G9FI9*%)5<%j%;9@;9)9F=9G%8<%5%)'E;I9%
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Bel(X ‖ Y ) ≤ P (X ||Y ) ≤ Pl(X ||Y ) (11)

Bel(X ‖ Y ) =
∑

Z∈2Θ

Z⊆X

m(Z ‖ Y ) (9)

Pl(X ‖ Y ) =
∑

Z∈2Θ

Z∩X #=∅

m(Z ‖ Y ) (10)

m(X ‖ Y ) =
∑

X1∈2Θ

X1∩Y =X

m1(X1)+δ(X∩Y = ∅)·
m1(X)2

1 + m1(X)
+δ(X = Y )·

∑

X2∈2Θ

X2∩Y =∅

m1(X2)

1 + m1(X2)

Bayesian⊕ Non-Bayesian = Bayesian

Bayesian⊕ Non-Bayesian = Non-Bayesian (in general)

M;'@9;=<%':%!"%;E,9A
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Focal Elem. m1(.) m2(.) mDS(.) mPCR5(.)
A 0.1 0 0.0833 0.0642
B 0.2 0.3 0.1000 0.1941
C 0.7 0.2 0.8167 0.6703

A ∪ C 0 0.5 0 0.0714

Example: For focal elements A and B such that A ∩B = ∅ with m1(A) = 0.6
and m2(B) = 0.3. With PCR5 m1(A)m2(B) = 0.6 · 0.3 = 0.18 is redistributed
to A and B with proportions: xA = 0.12 and xB = 0.06 since

xA

m1(A)
=

xB

m2(B)
=

m1(A)m2(B)
m1(A) + m2(B)

=
0.18
0.9

= 0.2
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P (X |Y ) =
P (X ∩ Y )

P (Y )

m(X |Y ) = mDS(X) = [m1 ⊕ m2](X) with m2(Y ) = 1

Bel(X |Y ) =
∑

Z∈2Θ

Z⊆X

mDS(Z|Y ) =
Bel1(X ∪ Ȳ ) − Bel1(Ȳ )

1 − Bel1(Ȳ )

Pl(X |Y ) =
∑

Z∈2Θ

Z∩X #=∅

mDS(Z|Y ) =
Pl1(X ∩ Y )

Pl1(Y )
&5<9)75F%

@;7FI7@,9A

When Y = X and as soon as Bel(X̄) < 1, one gets Bel(X |X) = 1 because
Bel1(X ∪ Ȳ ) = Bel1(X ∪ X̄) = Bel1(Θ) = 1. For Bayesian belief, this implies
P (X |X) = 1 for any X such that P1(X) > 0.

Bel(X |Y ) ≤ P (X |Y ) ≤ Pl(X |Y ) (11)

TF%MZb[*%=>9%@5;L5,%I'Fa7I=)%5;9%;9G7)=;78E=9G%
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2Θ ∆(.|Y ) = ∆′(.|Y ) ∆(.||Y ) ∆′(.||Y )
∅ [0,0] [0,0] [0,0]
A [0.5,0.5] [0.4900, 0.5096] [ 0.0100, 0.5050]
B [0.5,0.5] [0.4900, 0.5096] [ 0.0100, 0.5050]
C [0,0] [0.0004, 0.0004] [0.4850,0.4850]

Y = A ∪ B [1,1] [0.9996,0.9996] [0.5150,0.5150]
A ∪ C [0.5,0.5] [ 0.4904, 0.5100] [0.4950, 0.9900]
B ∪ C [0.5,0.5] [ 0.4904, 0.5100] [0.4950, 0.9900]

A ∪ B ∪ C [1,1] [1,1] [1,1]

∆(.|Y ) = [Bel(.|Y ), P l(.|Y )]

Focal Elem. m1 m′
1(.)

A 0.49 0.01
B 0.49 0.01
C 0.02 0.98

Focal Elem. m(.|Y ) m′(.|Y )
A 0.5 0.5
B 0.5 0.5
C 0 0

A ∪ B 0 0

Focal Elem. m(.||Y ) m′(.||Y )
A 0.4900 0.0100
B 0.4900 0.0100
C 0.00039215 0.48505051

A ∪ B 0.01960785 0.49494949

`'F%&5<9)75F%I'FG7L'F7FD
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Bel(Y |Y ) = 1 Bel′(Y |Y ) = 1 Bel(Y ||Y ) = 0.99960785 < 1

Bel′(Y ||Y ) = 0, 51494949 < 1

Focal Elem. m1 m′
1(.)

A 0.20 0.20
B 0.30 0.30
C 0.10 0.10

A ∪ B 0.25 0.15
A ∪ B ∪ C 0.15 0.25

Let’s consider Θ = {A, B, C}, Shafer’s model, and the prior bba’s
) given in Table 4 and the conditional evidence

Y = A ∪ B

M;7';%885m)

Focal Elem. m(.|Y ) m′(.|Y )
A 0.222 0.222
B 0.333 0.333
C 0 0

A ∪ B 0.445 0.445

Focal Elem. m(. ‖ Y ) m′(. ‖ Y )
A 0.20 0.20
B 0.30 0.30
C 0.01 0.01

A ∪ B 0.49 0.49

`'F%&5<9)75F%I'FG7L'F7FD">5:9;%I'FG7L'F7FD

Bel(Y |Y ) = 1 Bel′(Y |Y ) = 1

2Θ ∆(.|Y ) = ∆′(.|Y ) ∆(.||Y ) = ∆′(.||Y )
∅ [0,0] [0,0]
A [0.2220,0.6670] [0.2000,0.6900]
B [0.3330,0.7780] [0.3000,0.7900]
C [0,0] [ 0.0100,0.0100]

Y = A ∪ B [1,1] [0.9900,0.9900]
A ∪ C [0.2220,0.6670] [ 0.2100,0.7000]
B ∪ C [0.3330,0.7780] [ 0.3100,0.8000]

A ∪ B ∪ C [1,1] [1,1]

∆(.|Y ) = [Bel(.|Y ), P l(.|Y )]
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Bel(Y ||Y ) = Bel′(Y ||Y ) = 0.99 < 1
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'>#9?."%+A%@ABC%D#E"<A#$%?0A/0 '>#9?."%8A%@ABC%5/$FD#E"<A#$%?0A/0Let’s consider Θ = {A, B, C}, Shafer’s model, and the prior bba’s
) given in Table 4 and the conditional evidence

Y = A ∪ B

GH0?/<"=%_9%@;'@')9%5%F9C%`'F/&5<9)75F%I'FG7L'F7FD%;E,9%:';%89,79:%;967)7'F%85)9G%'F%M;'@';L'F5,%Z'Fa7I=%b9G7)=;78EL'F%WMZbY%;E,9%':%
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_9%)>'C%=>5=%=>9%G9I'FG7L'F7FD%@;'8,9#%5G#7=)%5%EF7gE9%)',EL'F%C>9F%=>9%@;7';%7)%&5<9)75F%W:'I5,%9,9#9F=)%':%=>9%89,79:%5;9%)7FD,9='F)Yh%

EF7I7=<%':%=>9%)',EL'F%7)%F'=%@'))78,9%='%'8=57F%C7=>%I,5))7I5,%">5:9;%5FG%&5<9)%I'FG7L'F7FD%;E,9)-

&"9?<B"0I<%0H."%/:%;/9JA$#1/$=% Θ = {θ1, θ2, . . . , θ2} m(∅) = 0 and
∑

X∈2Θ

m(X) = 1

Bel(X) =
∑

Z∈2Θ,Z⊆X

m(Z) WZ;9G787,7=<Y

Pl(X) =
∑

Z∈2Θ,Z∩X #=0

m(Z) WM,5E)787,7=<Y
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8<%5%)'E;I9%#1W-Y%'F,<%:'IE)9G%'F%j*%=>5=%7)%)EI>%=>5=%#1WjYi.-%

Bel(X) ≤ P (X) ≤ Pl(X)

mDS(∅) = 0 and mDS(X) = [m1⊕m2](X) =

∑

X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2)

1 −
∑

X1,X2∈2Θ

X1∩X2=∅

m1(X1)m2(X2)

G6)N%0H."%/:%;/9JA$#1/$=%

∀X "= ∅

mPCR5(∅) = 0 and mPCR5(X) =
∑

X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2)+
∑

X2∈2Θ

X2∩X=∅

[
m1(X)2m2(X2)

m1(X) + m2(X2)
+

m2(X)2m1(X2)

m2(X) + m1(X2)
]

∀X "= ∅
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Bel(X ‖ Y ) ≤ P (X ||Y ) ≤ Pl(X ||Y ) (11)

Bel(X ‖ Y ) =
∑

Z∈2Θ

Z⊆X

m(Z ‖ Y ) (9)

Pl(X ‖ Y ) =
∑

Z∈2Θ

Z∩X #=∅

m(Z ‖ Y ) (10)

m(X ‖ Y ) =
∑

X1∈2Θ

X1∩Y =X

m1(X1)+δ(X∩Y = ∅)·
m1(X)2

1 + m1(X)
+δ(X = Y )·

∑

X2∈2Θ

X2∩Y =∅

m1(X2)

1 + m1(X2)

Bayesian⊕ Non-Bayesian = Bayesian

Bayesian⊕ Non-Bayesian = Non-Bayesian (in general)
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Focal Elem. m1(.) m2(.) mDS(.) mPCR5(.)
A 0.1 0 0.0833 0.0642
B 0.2 0.3 0.1000 0.1941
C 0.7 0.2 0.8167 0.6703

A ∪ C 0 0.5 0 0.0714

Example: For focal elements A and B such that A ∩B = ∅ with m1(A) = 0.6
and m2(B) = 0.3. With PCR5 m1(A)m2(B) = 0.6 · 0.3 = 0.18 is redistributed
to A and B with proportions: xA = 0.12 and xB = 0.06 since

xA

m1(A)
=

xB

m2(B)
=

m1(A)m2(B)
m1(A) + m2(B)

=
0.18
0.9

= 0.2
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P (X |Y ) =
P (X ∩ Y )

P (Y )

m(X |Y ) = mDS(X) = [m1 ⊕ m2](X) with m2(Y ) = 1

Bel(X |Y ) =
∑

Z∈2Θ

Z⊆X

mDS(Z|Y ) =
Bel1(X ∪ Ȳ ) − Bel1(Ȳ )

1 − Bel1(Ȳ )

Pl(X |Y ) =
∑

Z∈2Θ

Z∩X #=∅

mDS(Z|Y ) =
Pl1(X ∩ Y )

Pl1(Y )
&5<9)75F%

@;7FI7@,9A

When Y = X and as soon as Bel(X̄) < 1, one gets Bel(X |X) = 1 because
Bel1(X ∪ Ȳ ) = Bel1(X ∪ X̄) = Bel1(Θ) = 1. For Bayesian belief, this implies
P (X |X) = 1 for any X such that P1(X) > 0.

Bel(X |Y ) ≤ P (X |Y ) ≤ Pl(X |Y ) (11)

TF%MZb[*%=>9%@5;L5,%I'Fa7I=)%5;9%;9G7)=;78E=9G%

85I(%='%9,9#9F=)%7F6',69G%7F%=>9#%
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2Θ ∆(.|Y ) = ∆′(.|Y ) ∆(.||Y ) ∆′(.||Y )
∅ [0,0] [0,0] [0,0]
A [0.5,0.5] [0.4900, 0.5096] [ 0.0100, 0.5050]
B [0.5,0.5] [0.4900, 0.5096] [ 0.0100, 0.5050]
C [0,0] [0.0004, 0.0004] [0.4850,0.4850]

Y = A ∪ B [1,1] [0.9996,0.9996] [0.5150,0.5150]
A ∪ C [0.5,0.5] [ 0.4904, 0.5100] [0.4950, 0.9900]
B ∪ C [0.5,0.5] [ 0.4904, 0.5100] [0.4950, 0.9900]

A ∪ B ∪ C [1,1] [1,1] [1,1]

∆(.|Y ) = [Bel(.|Y ), P l(.|Y )]

Focal Elem. m1 m′
1(.)

A 0.49 0.01
B 0.49 0.01
C 0.02 0.98

Focal Elem. m(.|Y ) m′(.|Y )
A 0.5 0.5
B 0.5 0.5
C 0 0

A ∪ B 0 0

Focal Elem. m(.||Y ) m′(.||Y )
A 0.4900 0.0100
B 0.4900 0.0100
C 0.00039215 0.48505051

A ∪ B 0.01960785 0.49494949

`'F%&5<9)75F%I'FG7L'F7FD
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Bel(Y |Y ) = 1 Bel′(Y |Y ) = 1 Bel(Y ||Y ) = 0.99960785 < 1

Bel′(Y ||Y ) = 0, 51494949 < 1

Focal Elem. m1 m′
1(.)

A 0.20 0.20
B 0.30 0.30
C 0.10 0.10

A ∪ B 0.25 0.15
A ∪ B ∪ C 0.15 0.25

Let’s consider Θ = {A, B, C}, Shafer’s model, and the prior bba’s
) given in Table 4 and the conditional evidence

Y = A ∪ B

M;7';%885m)

Focal Elem. m(.|Y ) m′(.|Y )
A 0.222 0.222
B 0.333 0.333
C 0 0

A ∪ B 0.445 0.445

Focal Elem. m(. ‖ Y ) m′(. ‖ Y )
A 0.20 0.20
B 0.30 0.30
C 0.01 0.01

A ∪ B 0.49 0.49

`'F%&5<9)75F%I'FG7L'F7FD">5:9;%I'FG7L'F7FD

Bel(Y |Y ) = 1 Bel′(Y |Y ) = 1

2Θ ∆(.|Y ) = ∆′(.|Y ) ∆(.||Y ) = ∆′(.||Y )
∅ [0,0] [0,0]
A [0.2220,0.6670] [0.2000,0.6900]
B [0.3330,0.7780] [0.3000,0.7900]
C [0,0] [ 0.0100,0.0100]

Y = A ∪ B [1,1] [0.9900,0.9900]
A ∪ C [0.2220,0.6670] [ 0.2100,0.7000]
B ∪ C [0.3330,0.7780] [ 0.3100,0.8000]

A ∪ B ∪ C [1,1] [1,1]

∆(.|Y ) = [Bel(.|Y ), P l(.|Y )]

!"#$%&'(&)*"(#+*"#",'*-'./01'
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78&'#":8*(%)&(A

Bel(Y ||Y ) = Bel′(Y ||Y ) = 0.99 < 1
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Approach 1 (based on fusion) 



2) Non Bayesian Reasoning (NBR or PCR5CR)

Approach 1 (based on fusion) 
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'>#9?."%+A%@ABC%D#E"<A#$%?0A/0 '>#9?."%8A%@ABC%5/$FD#E"<A#$%?0A/0Let’s consider Θ = {A, B, C}, Shafer’s model, and the prior bba’s
) given in Table 4 and the conditional evidence

Y = A ∪ B
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_9%)>'C%=>5=%=>9%G9I'FG7L'F7FD%@;'8,9#%5G#7=)%5%EF7gE9%)',EL'F%C>9F%=>9%@;7';%7)%&5<9)75F%W:'I5,%9,9#9F=)%':%=>9%89,79:%5;9%)7FD,9='F)Yh%

EF7I7=<%':%=>9%)',EL'F%7)%F'=%@'))78,9%='%'8=57F%C7=>%I,5))7I5,%">5:9;%5FG%&5<9)%I'FG7L'F7FD%;E,9)-

&"9?<B"0I<%0H."%/:%;/9JA$#1/$=% Θ = {θ1, θ2, . . . , θ2} m(∅) = 0 and
∑

X∈2Θ

m(X) = 1

Bel(X) =
∑

Z∈2Θ,Z⊆X

m(Z) WZ;9G787,7=<Y

Pl(X) =
∑

Z∈2Θ,Z∩X #=0

m(Z) WM,5E)787,7=<Y
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Bel(X) ≤ P (X) ≤ Pl(X)

mDS(∅) = 0 and mDS(X) = [m1⊕m2](X) =

∑

X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2)

1 −
∑

X1,X2∈2Θ

X1∩X2=∅

m1(X1)m2(X2)

G6)N%0H."%/:%;/9JA$#1/$=%

∀X "= ∅

mPCR5(∅) = 0 and mPCR5(X) =
∑

X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2)+
∑

X2∈2Θ

X2∩X=∅

[
m1(X)2m2(X2)

m1(X) + m2(X2)
+

m2(X)2m1(X2)

m2(X) + m1(X2)
]

∀X "= ∅

5/$%D#E"<A#$%0H."%/:%;/$,A1/$A$K=%%MZb[%I'#87F5L'F%':%=>9%@;7';%885%#.W-Y%C7=>%=>9%I'FG7L'F5,%967G9FI9*%)5<%j%;9@;9)9F=9G%8<%5%)'E;I9%
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Bel(X ‖ Y ) ≤ P (X ||Y ) ≤ Pl(X ||Y ) (11)

Bel(X ‖ Y ) =
∑

Z∈2Θ

Z⊆X

m(Z ‖ Y ) (9)

Pl(X ‖ Y ) =
∑

Z∈2Θ

Z∩X #=∅

m(Z ‖ Y ) (10)

m(X ‖ Y ) =
∑

X1∈2Θ

X1∩Y =X

m1(X1)+δ(X∩Y = ∅)·
m1(X)2

1 + m1(X)
+δ(X = Y )·

∑

X2∈2Θ

X2∩Y =∅

m1(X2)

1 + m1(X2)

Bayesian⊕ Non-Bayesian = Bayesian

Bayesian⊕ Non-Bayesian = Non-Bayesian (in general)

M;'@9;=<%':%!"%;E,9A

M;'@9;=<%':%MZb[%;E,9A
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Focal Elem. m1(.) m2(.) mDS(.) mPCR5(.)
A 0.1 0 0.0833 0.0642
B 0.2 0.3 0.1000 0.1941
C 0.7 0.2 0.8167 0.6703

A ∪ C 0 0.5 0 0.0714

Example: For focal elements A and B such that A ∩B = ∅ with m1(A) = 0.6
and m2(B) = 0.3. With PCR5 m1(A)m2(B) = 0.6 · 0.3 = 0.18 is redistributed
to A and B with proportions: xA = 0.12 and xB = 0.06 since

xA

m1(A)
=

xB

m2(B)
=

m1(A)m2(B)
m1(A) + m2(B)

=
0.18
0.9

= 0.2

*CA<%;/$,A1/$A$K%A<%B0H.E%$/$%
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P (X |Y ) =
P (X ∩ Y )

P (Y )

m(X |Y ) = mDS(X) = [m1 ⊕ m2](X) with m2(Y ) = 1

Bel(X |Y ) =
∑

Z∈2Θ

Z⊆X

mDS(Z|Y ) =
Bel1(X ∪ Ȳ ) − Bel1(Ȳ )

1 − Bel1(Ȳ )

Pl(X |Y ) =
∑

Z∈2Θ

Z∩X #=∅

mDS(Z|Y ) =
Pl1(X ∩ Y )

Pl1(Y )
&5<9)75F%

@;7FI7@,9A

When Y = X and as soon as Bel(X̄) < 1, one gets Bel(X |X) = 1 because
Bel1(X ∪ Ȳ ) = Bel1(X ∪ X̄) = Bel1(Θ) = 1. For Bayesian belief, this implies
P (X |X) = 1 for any X such that P1(X) > 0.

Bel(X |Y ) ≤ P (X |Y ) ≤ Pl(X |Y ) (11)

TF%MZb[*%=>9%@5;L5,%I'Fa7I=)%5;9%;9G7)=;78E=9G%
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2Θ ∆(.|Y ) = ∆′(.|Y ) ∆(.||Y ) ∆′(.||Y )
∅ [0,0] [0,0] [0,0]
A [0.5,0.5] [0.4900, 0.5096] [ 0.0100, 0.5050]
B [0.5,0.5] [0.4900, 0.5096] [ 0.0100, 0.5050]
C [0,0] [0.0004, 0.0004] [0.4850,0.4850]

Y = A ∪ B [1,1] [0.9996,0.9996] [0.5150,0.5150]
A ∪ C [0.5,0.5] [ 0.4904, 0.5100] [0.4950, 0.9900]
B ∪ C [0.5,0.5] [ 0.4904, 0.5100] [0.4950, 0.9900]

A ∪ B ∪ C [1,1] [1,1] [1,1]

∆(.|Y ) = [Bel(.|Y ), P l(.|Y )]

Focal Elem. m1 m′
1(.)

A 0.49 0.01
B 0.49 0.01
C 0.02 0.98

Focal Elem. m(.|Y ) m′(.|Y )
A 0.5 0.5
B 0.5 0.5
C 0 0

A ∪ B 0 0

Focal Elem. m(.||Y ) m′(.||Y )
A 0.4900 0.0100
B 0.4900 0.0100
C 0.00039215 0.48505051

A ∪ B 0.01960785 0.49494949
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Bel(Y |Y ) = 1 Bel′(Y |Y ) = 1 Bel(Y ||Y ) = 0.99960785 < 1

Bel′(Y ||Y ) = 0, 51494949 < 1

Focal Elem. m1 m′
1(.)

A 0.20 0.20
B 0.30 0.30
C 0.10 0.10

A ∪ B 0.25 0.15
A ∪ B ∪ C 0.15 0.25

Let’s consider Θ = {A, B, C}, Shafer’s model, and the prior bba’s
) given in Table 4 and the conditional evidence

Y = A ∪ B

M;7';%885m)

Focal Elem. m(.|Y ) m′(.|Y )
A 0.222 0.222
B 0.333 0.333
C 0 0

A ∪ B 0.445 0.445

Focal Elem. m(. ‖ Y ) m′(. ‖ Y )
A 0.20 0.20
B 0.30 0.30
C 0.01 0.01

A ∪ B 0.49 0.49

`'F%&5<9)75F%I'FG7L'F7FD">5:9;%I'FG7L'F7FD

Bel(Y |Y ) = 1 Bel′(Y |Y ) = 1

2Θ ∆(.|Y ) = ∆′(.|Y ) ∆(.||Y ) = ∆′(.||Y )
∅ [0,0] [0,0]
A [0.2220,0.6670] [0.2000,0.6900]
B [0.3330,0.7780] [0.3000,0.7900]
C [0,0] [ 0.0100,0.0100]

Y = A ∪ B [1,1] [0.9900,0.9900]
A ∪ C [0.2220,0.6670] [ 0.2100,0.7000]
B ∪ C [0.3330,0.7780] [ 0.3100,0.8000]

A ∪ B ∪ C [1,1] [1,1]

∆(.|Y ) = [Bel(.|Y ), P l(.|Y )]
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Bel(Y ||Y ) = Bel′(Y ||Y ) = 0.99 < 1
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examples, and a very important and open challenging question about belief
fusion and conditioning.

0.1 Shafer’s conditioning rule (SCR)

Before going further in the development of new belief conditioning rules, it
is important to recall the conditioning of beliefs proposed by Glenn Shafer
in [?] (p.66–67) and reported below.

So, let’s suppose that the effect of a new evidence (say source 2) on
the frame of discernment Θ is to establish a particular subset B ⊂ Θ with
certainty. Then Bel2 will give a degree of belief one to the proposition
corresponding to B and to every proposition implied by it:

Bel2(A) =





1, if B ⊂ A;

0, otherwise.

Since the subset B is the only focal element of Bel2, its basic belief
assignment is one, i.e. m2(B) = 1. Such a function Bel2 is then combinable
with the (prior) Bel1 as long as Bel1(B̄) < 1, and the Dempster’s rule of
combination (denoted ⊕) provides the conditional belief Bel1(.|B) = Bel1 ⊕
Bel2 (according to Theorem 3.6 in [?]). More specifically, one gets for all
A ⊂ Θ,

Bel1(A|B) =
Bel1(A ∪ B̄) − Bel1(B̄)

1 − Bel1(B̄)

Pl1(A|B) =
Pl1(A ∩ B)

Pl1(B)

where Pl(.) denotes the plausibility function.

m1(.|A) = [m1 ⊕ m2](.)

where 



m2(A) = 1

⊕ = Dempster’s rule

with

the proportional conflict redistribution is done as soon as three or more sources are involved in the fusion. For
example, let’s consider three sources with bba’s

Let’s consider m1(.), m2(.) and m3(.), A ∩ B = ∅ for the model of the frame Θ.

m1(A) = 0.6, m2(B) = 0.3, m3(B) = 0.1

{

m2(A) = 1

⊕ = PCR5 Fusion rule

With PCR5 the partial conflicting mass m1(A)m2(B)m3(B) = 0.6 · 0.3 · 0.1 = 0.018 is redistributed back to
A and B only with respect to the following proportions respectively: xPCR5

A = 0.01714 and xPCR5
B = 0.00086

because the proportionalization requires

xPCR5
A

m1(A)
=

xPCR5
B

m2(B)m3(B)
=

m1(A)m2(B)m3(B)

m1(A) + m2(B)m3(B)

that is
xPCR5

A

0.6
=

xPCR5
B

0.03
=

0.018

0.6 + 0.03
≈ 0.02857

thus
{

xPCR5
A = 0.60 · 0.02857 ≈ 0.01714

xPCR5
B = 0.03 · 0.02857 ≈ 0.00086

With the PCR6 fusion rule, the partial conflicting mass m1(A)m2(B)m3(B) = 0.6·0.3·0.1 = 0.018 is redistributed
back to A and B only with respect to the following proportions respectively: xPCR6

A = 0.0108 and xPCR6
B = 0.0072

because the PCR6 proportionalization is done as follows:

xPCR6
A

m1(A)
=

xPCR6
B,2

m2(B)
=

xPCR6
B,3

m3(B)
=

m1(A)m2(B)m3(B)

m1(A) + m2(B) + m3(B)

that is
xPCR6

A

0.6
=

xPCR6
B,2

0.3
=

xPCR6
B,3

0.1
=

0.018

0.6 + 0.3 + 0.1
= 0.018

thus










xPCR6
A = 0.6 · 0.018 = 0.0108

xPCR6
B,2 = 0.3 · 0.018 = 0.0054

xPCR6
B,3 = 0.1 · 0.018 = 0.0018

and therefore with PCR6, one gets finally the following redistributions to A and B:
{

xPCR6
A = 0.0108

xPCR6
B = xPCR6

B,2 + xPCR6
B,3 = 0.0054 + 0.0018 = 0.0072

From the implementation point of view, PCR6 is much more simple to implement than PCR5 (see Appendix).

3 Reliability discounting
Reliability refers to information quality while importance refers to subjective preferences of the fusion system

designer. The reliability of a source represents its ability to provide the correct assessment/solution of the
given problem. It is characterized by a discounting reliability factor, usually denoted α in [0, 1], which should
be estimated from statistics when available, or by other techniques [3]. This reliability factor can be context-
dependent. For example, if one knows that some sensors do not perform well under bad weather conditions, etc,
one will decrease the reliability factor of information arising from that source accordingly. By convention, we
usually take α = 1 when the source is fully reliable and α = 0 if the source is totally unreliable. Reliability of
a source is generally considered6 through Shafer’s discounting method [8], p. 252, which consists in multiplying

6More sophisticated methods have been also proposed, see [4, 5] for example.

Principle:

Result:
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'>#9?."%+A%@ABC%D#E"<A#$%?0A/0 '>#9?."%8A%@ABC%5/$FD#E"<A#$%?0A/0Let’s consider Θ = {A, B, C}, Shafer’s model, and the prior bba’s
) given in Table 4 and the conditional evidence

Y = A ∪ B

GH0?/<"=%_9%@;'@')9%5%F9C%`'F/&5<9)75F%I'FG7L'F7FD%;E,9%:';%89,79:%;967)7'F%85)9G%'F%M;'@';L'F5,%Z'Fa7I=%b9G7)=;78EL'F%WMZbY%;E,9%':%
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_9%)>'C%=>5=%=>9%G9I'FG7L'F7FD%@;'8,9#%5G#7=)%5%EF7gE9%)',EL'F%C>9F%=>9%@;7';%7)%&5<9)75F%W:'I5,%9,9#9F=)%':%=>9%89,79:%5;9%)7FD,9='F)Yh%

EF7I7=<%':%=>9%)',EL'F%7)%F'=%@'))78,9%='%'8=57F%C7=>%I,5))7I5,%">5:9;%5FG%&5<9)%I'FG7L'F7FD%;E,9)-

&"9?<B"0I<%0H."%/:%;/9JA$#1/$=% Θ = {θ1, θ2, . . . , θ2} m(∅) = 0 and
∑

X∈2Θ

m(X) = 1

Bel(X) =
∑

Z∈2Θ,Z⊆X

m(Z) WZ;9G787,7=<Y

Pl(X) =
∑

Z∈2Θ,Z∩X #=0

m(Z) WM,5E)787,7=<Y

885A

2C#:"0I<%0H."%/:%;/$,A1/$A$K%L26)M=%%"Zb%i%!9#@)=9;S)%I'#87F5L'F%':%=>9%@;7';%885%#.W-Y%C7=>%=>9%I'FG7L'F5,%967G9FI9*%)5<%j%;9@;9)9F=9G%

8<%5%)'E;I9%#1W-Y%'F,<%:'IE)9G%'F%j*%=>5=%7)%)EI>%=>5=%#1WjYi.-%

Bel(X) ≤ P (X) ≤ Pl(X)

mDS(∅) = 0 and mDS(X) = [m1⊕m2](X) =

∑

X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2)

1 −
∑

X1,X2∈2Θ

X1∩X2=∅

m1(X1)m2(X2)

G6)N%0H."%/:%;/9JA$#1/$=%

∀X "= ∅

mPCR5(∅) = 0 and mPCR5(X) =
∑

X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2)+
∑

X2∈2Θ

X2∩X=∅

[
m1(X)2m2(X2)

m1(X) + m2(X2)
+

m2(X)2m1(X2)

m2(X) + m1(X2)
]

∀X "= ∅

5/$%D#E"<A#$%0H."%/:%;/$,A1/$A$K=%%MZb[%I'#87F5L'F%':%=>9%@;7';%885%#.W-Y%C7=>%=>9%I'FG7L'F5,%967G9FI9*%)5<%j%;9@;9)9F=9G%8<%5%)'E;I9%

#1W-Y%'F,<%:'IE)9G%'F%j*%=>5=%7)%)EI>%=>5=%#1WjYi.-%

Bel(X ‖ Y ) ≤ P (X ||Y ) ≤ Pl(X ||Y ) (11)

Bel(X ‖ Y ) =
∑

Z∈2Θ

Z⊆X

m(Z ‖ Y ) (9)

Pl(X ‖ Y ) =
∑

Z∈2Θ

Z∩X #=∅

m(Z ‖ Y ) (10)

m(X ‖ Y ) =
∑

X1∈2Θ

X1∩Y =X

m1(X1)+δ(X∩Y = ∅)·
m1(X)2

1 + m1(X)
+δ(X = Y )·

∑

X2∈2Θ

X2∩Y =∅

m1(X2)

1 + m1(X2)

Bayesian⊕ Non-Bayesian = Bayesian

Bayesian⊕ Non-Bayesian = Non-Bayesian (in general)

M;'@9;=<%':%!"%;E,9A

M;'@9;=<%':%MZb[%;E,9A
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Focal Elem. m1(.) m2(.) mDS(.) mPCR5(.)
A 0.1 0 0.0833 0.0642
B 0.2 0.3 0.1000 0.1941
C 0.7 0.2 0.8167 0.6703

A ∪ C 0 0.5 0 0.0714

Example: For focal elements A and B such that A ∩B = ∅ with m1(A) = 0.6
and m2(B) = 0.3. With PCR5 m1(A)m2(B) = 0.6 · 0.3 = 0.18 is redistributed
to A and B with proportions: xA = 0.12 and xB = 0.06 since

xA

m1(A)
=

xB

m2(B)
=

m1(A)m2(B)
m1(A) + m2(B)

=
0.18
0.9

= 0.2

*CA<%;/$,A1/$A$K%A<%B0H.E%$/$%
D#E"<A#$%<A$;"%D".LOPPOMQ%+
<""%'>#9?."<%+%R%8%J"./@S%

6/$<A<B"$;E%@ABC%
D#E"<%:/09H.#%H<A$K%
D#E"<A#$%JJ#I<=%

P (X |Y ) =
P (X ∩ Y )

P (Y )

m(X |Y ) = mDS(X) = [m1 ⊕ m2](X) with m2(Y ) = 1

Bel(X |Y ) =
∑

Z∈2Θ

Z⊆X

mDS(Z|Y ) =
Bel1(X ∪ Ȳ ) − Bel1(Ȳ )

1 − Bel1(Ȳ )

Pl(X |Y ) =
∑

Z∈2Θ

Z∩X #=∅

mDS(Z|Y ) =
Pl1(X ∩ Y )

Pl1(Y )
&5<9)75F%

@;7FI7@,9A

When Y = X and as soon as Bel(X̄) < 1, one gets Bel(X |X) = 1 because
Bel1(X ∪ Ȳ ) = Bel1(X ∪ X̄) = Bel1(Θ) = 1. For Bayesian belief, this implies
P (X |X) = 1 for any X such that P1(X) > 0.

Bel(X |Y ) ≤ P (X |Y ) ≤ Pl(X |Y ) (11)

TF%MZb[*%=>9%@5;L5,%I'Fa7I=)%5;9%;9G7)=;78E=9G%

85I(%='%9,9#9F=)%7F6',69G%7F%=>9#%

@;'@';L'F5,,<%C7=>%;9)@9I=%='%=>97;%#5))9)%

C>7I>%@;9)9;69)%=>9%)@9I7lI7=<%':%=>9%

7F:';#5L'F-

2Θ ∆(.|Y ) = ∆′(.|Y ) ∆(.||Y ) ∆′(.||Y )
∅ [0,0] [0,0] [0,0]
A [0.5,0.5] [0.4900, 0.5096] [ 0.0100, 0.5050]
B [0.5,0.5] [0.4900, 0.5096] [ 0.0100, 0.5050]
C [0,0] [0.0004, 0.0004] [0.4850,0.4850]

Y = A ∪ B [1,1] [0.9996,0.9996] [0.5150,0.5150]
A ∪ C [0.5,0.5] [ 0.4904, 0.5100] [0.4950, 0.9900]
B ∪ C [0.5,0.5] [ 0.4904, 0.5100] [0.4950, 0.9900]

A ∪ B ∪ C [1,1] [1,1] [1,1]

∆(.|Y ) = [Bel(.|Y ), P l(.|Y )]

Focal Elem. m1 m′
1(.)

A 0.49 0.01
B 0.49 0.01
C 0.02 0.98

Focal Elem. m(.|Y ) m′(.|Y )
A 0.5 0.5
B 0.5 0.5
C 0 0

A ∪ B 0 0

Focal Elem. m(.||Y ) m′(.||Y )
A 0.4900 0.0100
B 0.4900 0.0100
C 0.00039215 0.48505051

A ∪ B 0.01960785 0.49494949
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Bel(Y |Y ) = 1 Bel′(Y |Y ) = 1 Bel(Y ||Y ) = 0.99960785 < 1

Bel′(Y ||Y ) = 0, 51494949 < 1

Focal Elem. m1 m′
1(.)

A 0.20 0.20
B 0.30 0.30
C 0.10 0.10

A ∪ B 0.25 0.15
A ∪ B ∪ C 0.15 0.25

Let’s consider Θ = {A, B, C}, Shafer’s model, and the prior bba’s
) given in Table 4 and the conditional evidence

Y = A ∪ B

M;7';%885m)

Focal Elem. m(.|Y ) m′(.|Y )
A 0.222 0.222
B 0.333 0.333
C 0 0

A ∪ B 0.445 0.445

Focal Elem. m(. ‖ Y ) m′(. ‖ Y )
A 0.20 0.20
B 0.30 0.30
C 0.01 0.01

A ∪ B 0.49 0.49

`'F%&5<9)75F%I'FG7L'F7FD">5:9;%I'FG7L'F7FD

Bel(Y |Y ) = 1 Bel′(Y |Y ) = 1

2Θ ∆(.|Y ) = ∆′(.|Y ) ∆(.||Y ) = ∆′(.||Y )
∅ [0,0] [0,0]
A [0.2220,0.6670] [0.2000,0.6900]
B [0.3330,0.7780] [0.3000,0.7900]
C [0,0] [ 0.0100,0.0100]

Y = A ∪ B [1,1] [0.9900,0.9900]
A ∪ C [0.2220,0.6670] [ 0.2100,0.7000]
B ∪ C [0.3330,0.7780] [ 0.3100,0.8000]

A ∪ B ∪ C [1,1] [1,1]

∆(.|Y ) = [Bel(.|Y ), P l(.|Y )]
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Bel(Y ||Y ) = Bel′(Y ||Y ) = 0.99 < 1
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'>#9?."%+A%@ABC%D#E"<A#$%?0A/0 '>#9?."%8A%@ABC%5/$FD#E"<A#$%?0A/0Let’s consider Θ = {A, B, C}, Shafer’s model, and the prior bba’s
) given in Table 4 and the conditional evidence

Y = A ∪ B
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&"9?<B"0I<%0H."%/:%;/9JA$#1/$=% Θ = {θ1, θ2, . . . , θ2} m(∅) = 0 and
∑

X∈2Θ

m(X) = 1

Bel(X) =
∑

Z∈2Θ,Z⊆X

m(Z) WZ;9G787,7=<Y

Pl(X) =
∑

Z∈2Θ,Z∩X #=0

m(Z) WM,5E)787,7=<Y
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Bel(X) ≤ P (X) ≤ Pl(X)

mDS(∅) = 0 and mDS(X) = [m1⊕m2](X) =

∑

X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2)

1 −
∑

X1,X2∈2Θ

X1∩X2=∅

m1(X1)m2(X2)

G6)N%0H."%/:%;/9JA$#1/$=%

∀X "= ∅

mPCR5(∅) = 0 and mPCR5(X) =
∑

X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2)+
∑

X2∈2Θ

X2∩X=∅

[
m1(X)2m2(X2)

m1(X) + m2(X2)
+

m2(X)2m1(X2)

m2(X) + m1(X2)
]

∀X "= ∅
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Bel(X ‖ Y ) ≤ P (X ||Y ) ≤ Pl(X ||Y ) (11)

Bel(X ‖ Y ) =
∑

Z∈2Θ

Z⊆X

m(Z ‖ Y ) (9)

Pl(X ‖ Y ) =
∑

Z∈2Θ

Z∩X #=∅

m(Z ‖ Y ) (10)

m(X ‖ Y ) =
∑

X1∈2Θ

X1∩Y =X

m1(X1)+δ(X∩Y = ∅)·
m1(X)2

1 + m1(X)
+δ(X = Y )·

∑

X2∈2Θ

X2∩Y =∅

m1(X2)

1 + m1(X2)

Bayesian⊕ Non-Bayesian = Bayesian

Bayesian⊕ Non-Bayesian = Non-Bayesian (in general)
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Focal Elem. m1(.) m2(.) mDS(.) mPCR5(.)
A 0.1 0 0.0833 0.0642
B 0.2 0.3 0.1000 0.1941
C 0.7 0.2 0.8167 0.6703

A ∪ C 0 0.5 0 0.0714

Example: For focal elements A and B such that A ∩B = ∅ with m1(A) = 0.6
and m2(B) = 0.3. With PCR5 m1(A)m2(B) = 0.6 · 0.3 = 0.18 is redistributed
to A and B with proportions: xA = 0.12 and xB = 0.06 since

xA

m1(A)
=

xB

m2(B)
=

m1(A)m2(B)
m1(A) + m2(B)

=
0.18
0.9

= 0.2
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P (X |Y ) =
P (X ∩ Y )

P (Y )

m(X |Y ) = mDS(X) = [m1 ⊕ m2](X) with m2(Y ) = 1

Bel(X |Y ) =
∑

Z∈2Θ

Z⊆X

mDS(Z|Y ) =
Bel1(X ∪ Ȳ ) − Bel1(Ȳ )

1 − Bel1(Ȳ )

Pl(X |Y ) =
∑

Z∈2Θ

Z∩X #=∅

mDS(Z|Y ) =
Pl1(X ∩ Y )

Pl1(Y )
&5<9)75F%

@;7FI7@,9A

When Y = X and as soon as Bel(X̄) < 1, one gets Bel(X |X) = 1 because
Bel1(X ∪ Ȳ ) = Bel1(X ∪ X̄) = Bel1(Θ) = 1. For Bayesian belief, this implies
P (X |X) = 1 for any X such that P1(X) > 0.

Bel(X |Y ) ≤ P (X |Y ) ≤ Pl(X |Y ) (11)

TF%MZb[*%=>9%@5;L5,%I'Fa7I=)%5;9%;9G7)=;78E=9G%

85I(%='%9,9#9F=)%7F6',69G%7F%=>9#%
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2Θ ∆(.|Y ) = ∆′(.|Y ) ∆(.||Y ) ∆′(.||Y )
∅ [0,0] [0,0] [0,0]
A [0.5,0.5] [0.4900, 0.5096] [ 0.0100, 0.5050]
B [0.5,0.5] [0.4900, 0.5096] [ 0.0100, 0.5050]
C [0,0] [0.0004, 0.0004] [0.4850,0.4850]

Y = A ∪ B [1,1] [0.9996,0.9996] [0.5150,0.5150]
A ∪ C [0.5,0.5] [ 0.4904, 0.5100] [0.4950, 0.9900]
B ∪ C [0.5,0.5] [ 0.4904, 0.5100] [0.4950, 0.9900]

A ∪ B ∪ C [1,1] [1,1] [1,1]

∆(.|Y ) = [Bel(.|Y ), P l(.|Y )]

Focal Elem. m1 m′
1(.)

A 0.49 0.01
B 0.49 0.01
C 0.02 0.98

Focal Elem. m(.|Y ) m′(.|Y )
A 0.5 0.5
B 0.5 0.5
C 0 0

A ∪ B 0 0

Focal Elem. m(.||Y ) m′(.||Y )
A 0.4900 0.0100
B 0.4900 0.0100
C 0.00039215 0.48505051

A ∪ B 0.01960785 0.49494949
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Bel(Y |Y ) = 1 Bel′(Y |Y ) = 1 Bel(Y ||Y ) = 0.99960785 < 1

Bel′(Y ||Y ) = 0, 51494949 < 1

Focal Elem. m1 m′
1(.)

A 0.20 0.20
B 0.30 0.30
C 0.10 0.10

A ∪ B 0.25 0.15
A ∪ B ∪ C 0.15 0.25

Let’s consider Θ = {A, B, C}, Shafer’s model, and the prior bba’s
) given in Table 4 and the conditional evidence

Y = A ∪ B

M;7';%885m)

Focal Elem. m(.|Y ) m′(.|Y )
A 0.222 0.222
B 0.333 0.333
C 0 0

A ∪ B 0.445 0.445

Focal Elem. m(. ‖ Y ) m′(. ‖ Y )
A 0.20 0.20
B 0.30 0.30
C 0.01 0.01

A ∪ B 0.49 0.49

`'F%&5<9)75F%I'FG7L'F7FD">5:9;%I'FG7L'F7FD

Bel(Y |Y ) = 1 Bel′(Y |Y ) = 1

2Θ ∆(.|Y ) = ∆′(.|Y ) ∆(.||Y ) = ∆′(.||Y )
∅ [0,0] [0,0]
A [0.2220,0.6670] [0.2000,0.6900]
B [0.3330,0.7780] [0.3000,0.7900]
C [0,0] [ 0.0100,0.0100]

Y = A ∪ B [1,1] [0.9900,0.9900]
A ∪ C [0.2220,0.6670] [ 0.2100,0.7000]
B ∪ C [0.3330,0.7780] [ 0.3100,0.8000]

A ∪ B ∪ C [1,1] [1,1]

∆(.|Y ) = [Bel(.|Y ), P l(.|Y )]

!"#$%&'(&)*"(#+*"#",'*-'./01'
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Bel(Y ||Y ) = Bel′(Y ||Y ) = 0.99 < 1
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Non Bayesian Conditioning and Deconditioning
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'>#9?."%+A%@ABC%D#E"<A#$%?0A/0 '>#9?."%8A%@ABC%5/$FD#E"<A#$%?0A/0Let’s consider Θ = {A, B, C}, Shafer’s model, and the prior bba’s
) given in Table 4 and the conditional evidence

Y = A ∪ B

GH0?/<"=%_9%@;'@')9%5%F9C%`'F/&5<9)75F%I'FG7L'F7FD%;E,9%:';%89,79:%;967)7'F%85)9G%'F%M;'@';L'F5,%Z'Fa7I=%b9G7)=;78EL'F%WMZbY%;E,9%':%

I'#87F5L'F%G969,'@9G%7F%!9c9;=/"#5;5FG5I>9%W!"#$Y%:;5#9C';(-%$>7)%;E,9%7)%=;E,<%`'F/&5<9)75F%)7FI9%7:%5%@;7';%89,79:%7)%&5<9)75F*%&9,WdedYf.-%

_9%)>'C%=>5=%=>9%G9I'FG7L'F7FD%@;'8,9#%5G#7=)%5%EF7gE9%)',EL'F%C>9F%=>9%@;7';%7)%&5<9)75F%W:'I5,%9,9#9F=)%':%=>9%89,79:%5;9%)7FD,9='F)Yh%

EF7I7=<%':%=>9%)',EL'F%7)%F'=%@'))78,9%='%'8=57F%C7=>%I,5))7I5,%">5:9;%5FG%&5<9)%I'FG7L'F7FD%;E,9)-

&"9?<B"0I<%0H."%/:%;/9JA$#1/$=% Θ = {θ1, θ2, . . . , θ2} m(∅) = 0 and
∑

X∈2Θ

m(X) = 1

Bel(X) =
∑

Z∈2Θ,Z⊆X

m(Z) WZ;9G787,7=<Y

Pl(X) =
∑

Z∈2Θ,Z∩X #=0

m(Z) WM,5E)787,7=<Y
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Bel(X) ≤ P (X) ≤ Pl(X)

mDS(∅) = 0 and mDS(X) = [m1⊕m2](X) =

∑

X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2)

1 −
∑

X1,X2∈2Θ

X1∩X2=∅

m1(X1)m2(X2)

G6)N%0H."%/:%;/9JA$#1/$=%

∀X "= ∅

mPCR5(∅) = 0 and mPCR5(X) =
∑

X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2)+
∑

X2∈2Θ

X2∩X=∅

[
m1(X)2m2(X2)

m1(X) + m2(X2)
+

m2(X)2m1(X2)

m2(X) + m1(X2)
]

∀X "= ∅

5/$%D#E"<A#$%0H."%/:%;/$,A1/$A$K=%%MZb[%I'#87F5L'F%':%=>9%@;7';%885%#.W-Y%C7=>%=>9%I'FG7L'F5,%967G9FI9*%)5<%j%;9@;9)9F=9G%8<%5%)'E;I9%
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Bel(X ‖ Y ) ≤ P (X ||Y ) ≤ Pl(X ||Y ) (11)

Bel(X ‖ Y ) =
∑

Z∈2Θ

Z⊆X

m(Z ‖ Y ) (9)

Pl(X ‖ Y ) =
∑

Z∈2Θ

Z∩X #=∅

m(Z ‖ Y ) (10)

m(X ‖ Y ) =
∑

X1∈2Θ

X1∩Y =X

m1(X1)+δ(X∩Y = ∅)·
m1(X)2

1 + m1(X)
+δ(X = Y )·

∑

X2∈2Θ

X2∩Y =∅

m1(X2)

1 + m1(X2)

Bayesian⊕ Non-Bayesian = Bayesian

Bayesian⊕ Non-Bayesian = Non-Bayesian (in general)

M;'@9;=<%':%!"%;E,9A
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&";/$,A1/$A$K=%T=%7)%=>9%7F69;)9%WGE5,Y%@;'8,9#%':%I'FG7L'F7FD-%T=%I'F)7)=)%='%;9=;7969%=>9%@;7';%89,79:%:EFIL'F%:;'#%5%D769F%@')=9;7';B
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)99%7:%:';%5F<%D769F%I'FG7L'F5,%885%#W-eejY*%C9%I5F%I'#@E=9%#.W-Y%)EI>%=>5=%%#W-eejYiMZb[W#.W-Y*#1W-Y%C7=>%#1WjYi.-

Focal Elem. m1(.) m2(.) mDS(.) mPCR5(.)
A 0.1 0 0.0833 0.0642
B 0.2 0.3 0.1000 0.1941
C 0.7 0.2 0.8167 0.6703

A ∪ C 0 0.5 0 0.0714

Example: For focal elements A and B such that A ∩B = ∅ with m1(A) = 0.6
and m2(B) = 0.3. With PCR5 m1(A)m2(B) = 0.6 · 0.3 = 0.18 is redistributed
to A and B with proportions: xA = 0.12 and xB = 0.06 since

xA

m1(A)
=

xB

m2(B)
=

m1(A)m2(B)
m1(A) + m2(B)

=
0.18
0.9

= 0.2
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P (X |Y ) =
P (X ∩ Y )

P (Y )

m(X |Y ) = mDS(X) = [m1 ⊕ m2](X) with m2(Y ) = 1

Bel(X |Y ) =
∑

Z∈2Θ

Z⊆X

mDS(Z|Y ) =
Bel1(X ∪ Ȳ ) − Bel1(Ȳ )

1 − Bel1(Ȳ )

Pl(X |Y ) =
∑

Z∈2Θ

Z∩X #=∅

mDS(Z|Y ) =
Pl1(X ∩ Y )

Pl1(Y )
&5<9)75F%

@;7FI7@,9A

When Y = X and as soon as Bel(X̄) < 1, one gets Bel(X |X) = 1 because
Bel1(X ∪ Ȳ ) = Bel1(X ∪ X̄) = Bel1(Θ) = 1. For Bayesian belief, this implies
P (X |X) = 1 for any X such that P1(X) > 0.

Bel(X |Y ) ≤ P (X |Y ) ≤ Pl(X |Y ) (11)

TF%MZb[*%=>9%@5;L5,%I'Fa7I=)%5;9%;9G7)=;78E=9G%
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2Θ ∆(.|Y ) = ∆′(.|Y ) ∆(.||Y ) ∆′(.||Y )
∅ [0,0] [0,0] [0,0]
A [0.5,0.5] [0.4900, 0.5096] [ 0.0100, 0.5050]
B [0.5,0.5] [0.4900, 0.5096] [ 0.0100, 0.5050]
C [0,0] [0.0004, 0.0004] [0.4850,0.4850]

Y = A ∪ B [1,1] [0.9996,0.9996] [0.5150,0.5150]
A ∪ C [0.5,0.5] [ 0.4904, 0.5100] [0.4950, 0.9900]
B ∪ C [0.5,0.5] [ 0.4904, 0.5100] [0.4950, 0.9900]

A ∪ B ∪ C [1,1] [1,1] [1,1]

∆(.|Y ) = [Bel(.|Y ), P l(.|Y )]

Focal Elem. m1 m′
1(.)

A 0.49 0.01
B 0.49 0.01
C 0.02 0.98

Focal Elem. m(.|Y ) m′(.|Y )
A 0.5 0.5
B 0.5 0.5
C 0 0

A ∪ B 0 0

Focal Elem. m(.||Y ) m′(.||Y )
A 0.4900 0.0100
B 0.4900 0.0100
C 0.00039215 0.48505051

A ∪ B 0.01960785 0.49494949
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#2'3*22#45&'62&&'373&89'
)*":878#;#2&':*'</0

M;7';%&5<9)75F%885m) ">5:9;m)%I'FG7L'F7FD

Bel(Y |Y ) = 1 Bel′(Y |Y ) = 1 Bel(Y ||Y ) = 0.99960785 < 1

Bel′(Y ||Y ) = 0, 51494949 < 1

Focal Elem. m1 m′
1(.)

A 0.20 0.20
B 0.30 0.30
C 0.10 0.10

A ∪ B 0.25 0.15
A ∪ B ∪ C 0.15 0.25

Let’s consider Θ = {A, B, C}, Shafer’s model, and the prior bba’s
) given in Table 4 and the conditional evidence

Y = A ∪ B

M;7';%885m)

Focal Elem. m(.|Y ) m′(.|Y )
A 0.222 0.222
B 0.333 0.333
C 0 0

A ∪ B 0.445 0.445

Focal Elem. m(. ‖ Y ) m′(. ‖ Y )
A 0.20 0.20
B 0.30 0.30
C 0.01 0.01

A ∪ B 0.49 0.49

`'F%&5<9)75F%I'FG7L'F7FD">5:9;%I'FG7L'F7FD

Bel(Y |Y ) = 1 Bel′(Y |Y ) = 1

2Θ ∆(.|Y ) = ∆′(.|Y ) ∆(.||Y ) = ∆′(.||Y )
∅ [0,0] [0,0]
A [0.2220,0.6670] [0.2000,0.6900]
B [0.3330,0.7780] [0.3000,0.7900]
C [0,0] [ 0.0100,0.0100]

Y = A ∪ B [1,1] [0.9900,0.9900]
A ∪ C [0.2220,0.6670] [ 0.2100,0.7000]
B ∪ C [0.3330,0.7780] [ 0.3100,0.8000]

A ∪ B ∪ C [1,1] [1,1]

∆(.|Y ) = [Bel(.|Y ), P l(.|Y )]

!"#$%&'(&)*"(#+*"#",'*-'./01'
)*"(#+*"#",'#2'"*:'3*22#45&'#"'
,&"&875';#:='"*"'>7?&2#7"'38#*8'
447@'%"5&22'7((#+*"75')*"2:87#":2'
78&'#":8*(%)&(A

Bel(Y ||Y ) = Bel′(Y ||Y ) = 0.99 < 1

!"#$%&"'(")(*&+(,&+"#-(".(/+01+.(23)45")%(
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This conditioning is 
truly Non-Bayesian 
since Bel(Y||Y) ≤ 1



Example of NBR with Bayesian prior
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'>#9?."%+A%@ABC%D#E"<A#$%?0A/0 '>#9?."%8A%@ABC%5/$FD#E"<A#$%?0A/0Let’s consider Θ = {A, B, C}, Shafer’s model, and the prior bba’s
) given in Table 4 and the conditional evidence

Y = A ∪ B

GH0?/<"=%_9%@;'@')9%5%F9C%`'F/&5<9)75F%I'FG7L'F7FD%;E,9%:';%89,79:%;967)7'F%85)9G%'F%M;'@';L'F5,%Z'Fa7I=%b9G7)=;78EL'F%WMZbY%;E,9%':%

I'#87F5L'F%G969,'@9G%7F%!9c9;=/"#5;5FG5I>9%W!"#$Y%:;5#9C';(-%$>7)%;E,9%7)%=;E,<%`'F/&5<9)75F%)7FI9%7:%5%@;7';%89,79:%7)%&5<9)75F*%&9,WdedYf.-%

_9%)>'C%=>5=%=>9%G9I'FG7L'F7FD%@;'8,9#%5G#7=)%5%EF7gE9%)',EL'F%C>9F%=>9%@;7';%7)%&5<9)75F%W:'I5,%9,9#9F=)%':%=>9%89,79:%5;9%)7FD,9='F)Yh%

EF7I7=<%':%=>9%)',EL'F%7)%F'=%@'))78,9%='%'8=57F%C7=>%I,5))7I5,%">5:9;%5FG%&5<9)%I'FG7L'F7FD%;E,9)-

&"9?<B"0I<%0H."%/:%;/9JA$#1/$=% Θ = {θ1, θ2, . . . , θ2} m(∅) = 0 and
∑

X∈2Θ

m(X) = 1

Bel(X) =
∑

Z∈2Θ,Z⊆X

m(Z) WZ;9G787,7=<Y

Pl(X) =
∑

Z∈2Θ,Z∩X #=0

m(Z) WM,5E)787,7=<Y

885A
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Bel(X) ≤ P (X) ≤ Pl(X)

mDS(∅) = 0 and mDS(X) = [m1⊕m2](X) =

∑

X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2)

1 −
∑

X1,X2∈2Θ

X1∩X2=∅

m1(X1)m2(X2)

G6)N%0H."%/:%;/9JA$#1/$=%

∀X "= ∅

mPCR5(∅) = 0 and mPCR5(X) =
∑

X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2)+
∑

X2∈2Θ

X2∩X=∅

[
m1(X)2m2(X2)

m1(X) + m2(X2)
+

m2(X)2m1(X2)

m2(X) + m1(X2)
]

∀X "= ∅

5/$%D#E"<A#$%0H."%/:%;/$,A1/$A$K=%%MZb[%I'#87F5L'F%':%=>9%@;7';%885%#.W-Y%C7=>%=>9%I'FG7L'F5,%967G9FI9*%)5<%j%;9@;9)9F=9G%8<%5%)'E;I9%

#1W-Y%'F,<%:'IE)9G%'F%j*%=>5=%7)%)EI>%=>5=%#1WjYi.-%

Bel(X ‖ Y ) ≤ P (X ||Y ) ≤ Pl(X ||Y ) (11)

Bel(X ‖ Y ) =
∑

Z∈2Θ

Z⊆X

m(Z ‖ Y ) (9)

Pl(X ‖ Y ) =
∑

Z∈2Θ

Z∩X #=∅

m(Z ‖ Y ) (10)

m(X ‖ Y ) =
∑

X1∈2Θ

X1∩Y =X

m1(X1)+δ(X∩Y = ∅)·
m1(X)2

1 + m1(X)
+δ(X = Y )·

∑

X2∈2Θ

X2∩Y =∅

m1(X2)

1 + m1(X2)

Bayesian⊕ Non-Bayesian = Bayesian

Bayesian⊕ Non-Bayesian = Non-Bayesian (in general)

M;'@9;=<%':%!"%;E,9A
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&";/$,A1/$A$K=%T=%7)%=>9%7F69;)9%WGE5,Y%@;'8,9#%':%I'FG7L'F7FD-%T=%I'F)7)=)%='%;9=;7969%=>9%@;7';%89,79:%:EFIL'F%:;'#%5%D769F%@')=9;7';B
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)99%7:%:';%5F<%D769F%I'FG7L'F5,%885%#W-eejY*%C9%I5F%I'#@E=9%#.W-Y%)EI>%=>5=%%#W-eejYiMZb[W#.W-Y*#1W-Y%C7=>%#1WjYi.-

Focal Elem. m1(.) m2(.) mDS(.) mPCR5(.)
A 0.1 0 0.0833 0.0642
B 0.2 0.3 0.1000 0.1941
C 0.7 0.2 0.8167 0.6703

A ∪ C 0 0.5 0 0.0714

Example: For focal elements A and B such that A ∩B = ∅ with m1(A) = 0.6
and m2(B) = 0.3. With PCR5 m1(A)m2(B) = 0.6 · 0.3 = 0.18 is redistributed
to A and B with proportions: xA = 0.12 and xB = 0.06 since

xA

m1(A)
=

xB

m2(B)
=

m1(A)m2(B)
m1(A) + m2(B)

=
0.18
0.9

= 0.2

*CA<%;/$,A1/$A$K%A<%B0H.E%$/$%
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P (X |Y ) =
P (X ∩ Y )

P (Y )

m(X |Y ) = mDS(X) = [m1 ⊕ m2](X) with m2(Y ) = 1

Bel(X |Y ) =
∑

Z∈2Θ

Z⊆X

mDS(Z|Y ) =
Bel1(X ∪ Ȳ ) − Bel1(Ȳ )

1 − Bel1(Ȳ )

Pl(X |Y ) =
∑

Z∈2Θ

Z∩X #=∅

mDS(Z|Y ) =
Pl1(X ∩ Y )

Pl1(Y )
&5<9)75F%

@;7FI7@,9A

When Y = X and as soon as Bel(X̄) < 1, one gets Bel(X |X) = 1 because
Bel1(X ∪ Ȳ ) = Bel1(X ∪ X̄) = Bel1(Θ) = 1. For Bayesian belief, this implies
P (X |X) = 1 for any X such that P1(X) > 0.

Bel(X |Y ) ≤ P (X |Y ) ≤ Pl(X |Y ) (11)

TF%MZb[*%=>9%@5;L5,%I'Fa7I=)%5;9%;9G7)=;78E=9G%

85I(%='%9,9#9F=)%7F6',69G%7F%=>9#%

@;'@';L'F5,,<%C7=>%;9)@9I=%='%=>97;%#5))9)%
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2Θ ∆(.|Y ) = ∆′(.|Y ) ∆(.||Y ) ∆′(.||Y )
∅ [0,0] [0,0] [0,0]
A [0.5,0.5] [0.4900, 0.5096] [ 0.0100, 0.5050]
B [0.5,0.5] [0.4900, 0.5096] [ 0.0100, 0.5050]
C [0,0] [0.0004, 0.0004] [0.4850,0.4850]

Y = A ∪ B [1,1] [0.9996,0.9996] [0.5150,0.5150]
A ∪ C [0.5,0.5] [ 0.4904, 0.5100] [0.4950, 0.9900]
B ∪ C [0.5,0.5] [ 0.4904, 0.5100] [0.4950, 0.9900]

A ∪ B ∪ C [1,1] [1,1] [1,1]

∆(.|Y ) = [Bel(.|Y ), P l(.|Y )]

Focal Elem. m1 m′
1(.)

A 0.49 0.01
B 0.49 0.01
C 0.02 0.98

Focal Elem. m(.|Y ) m′(.|Y )
A 0.5 0.5
B 0.5 0.5
C 0 0

A ∪ B 0 0

Focal Elem. m(.||Y ) m′(.||Y )
A 0.4900 0.0100
B 0.4900 0.0100
C 0.00039215 0.48505051

A ∪ B 0.01960785 0.49494949

`'F%&5<9)75F%I'FG7L'F7FD
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Bel(Y |Y ) = 1 Bel′(Y |Y ) = 1 Bel(Y ||Y ) = 0.99960785 < 1

Bel′(Y ||Y ) = 0, 51494949 < 1

Focal Elem. m1 m′
1(.)

A 0.20 0.20
B 0.30 0.30
C 0.10 0.10

A ∪ B 0.25 0.15
A ∪ B ∪ C 0.15 0.25

Let’s consider Θ = {A, B, C}, Shafer’s model, and the prior bba’s
) given in Table 4 and the conditional evidence

Y = A ∪ B

M;7';%885m)

Focal Elem. m(.|Y ) m′(.|Y )
A 0.222 0.222
B 0.333 0.333
C 0 0

A ∪ B 0.445 0.445

Focal Elem. m(. ‖ Y ) m′(. ‖ Y )
A 0.20 0.20
B 0.30 0.30
C 0.01 0.01

A ∪ B 0.49 0.49

`'F%&5<9)75F%I'FG7L'F7FD">5:9;%I'FG7L'F7FD

Bel(Y |Y ) = 1 Bel′(Y |Y ) = 1

2Θ ∆(.|Y ) = ∆′(.|Y ) ∆(.||Y ) = ∆′(.||Y )
∅ [0,0] [0,0]
A [0.2220,0.6670] [0.2000,0.6900]
B [0.3330,0.7780] [0.3000,0.7900]
C [0,0] [ 0.0100,0.0100]

Y = A ∪ B [1,1] [0.9900,0.9900]
A ∪ C [0.2220,0.6670] [ 0.2100,0.7000]
B ∪ C [0.3330,0.7780] [ 0.3100,0.8000]

A ∪ B ∪ C [1,1] [1,1]

∆(.|Y ) = [Bel(.|Y ), P l(.|Y )]

!"#$%&'(&)*"(#+*"#",'*-'./01'
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Bel(Y ||Y ) = Bel′(Y ||Y ) = 0.99 < 1
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'>#9?."%+A%@ABC%D#E"<A#$%?0A/0 '>#9?."%8A%@ABC%5/$FD#E"<A#$%?0A/0Let’s consider Θ = {A, B, C}, Shafer’s model, and the prior bba’s
) given in Table 4 and the conditional evidence

Y = A ∪ B

GH0?/<"=%_9%@;'@')9%5%F9C%`'F/&5<9)75F%I'FG7L'F7FD%;E,9%:';%89,79:%;967)7'F%85)9G%'F%M;'@';L'F5,%Z'Fa7I=%b9G7)=;78EL'F%WMZbY%;E,9%':%

I'#87F5L'F%G969,'@9G%7F%!9c9;=/"#5;5FG5I>9%W!"#$Y%:;5#9C';(-%$>7)%;E,9%7)%=;E,<%`'F/&5<9)75F%)7FI9%7:%5%@;7';%89,79:%7)%&5<9)75F*%&9,WdedYf.-%

_9%)>'C%=>5=%=>9%G9I'FG7L'F7FD%@;'8,9#%5G#7=)%5%EF7gE9%)',EL'F%C>9F%=>9%@;7';%7)%&5<9)75F%W:'I5,%9,9#9F=)%':%=>9%89,79:%5;9%)7FD,9='F)Yh%

EF7I7=<%':%=>9%)',EL'F%7)%F'=%@'))78,9%='%'8=57F%C7=>%I,5))7I5,%">5:9;%5FG%&5<9)%I'FG7L'F7FD%;E,9)-

&"9?<B"0I<%0H."%/:%;/9JA$#1/$=% Θ = {θ1, θ2, . . . , θ2} m(∅) = 0 and
∑

X∈2Θ

m(X) = 1

Bel(X) =
∑

Z∈2Θ,Z⊆X

m(Z) WZ;9G787,7=<Y

Pl(X) =
∑

Z∈2Θ,Z∩X #=0

m(Z) WM,5E)787,7=<Y

885A
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Bel(X) ≤ P (X) ≤ Pl(X)

mDS(∅) = 0 and mDS(X) = [m1⊕m2](X) =

∑

X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2)

1 −
∑

X1,X2∈2Θ

X1∩X2=∅

m1(X1)m2(X2)

G6)N%0H."%/:%;/9JA$#1/$=%

∀X "= ∅

mPCR5(∅) = 0 and mPCR5(X) =
∑

X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2)+
∑

X2∈2Θ

X2∩X=∅

[
m1(X)2m2(X2)

m1(X) + m2(X2)
+

m2(X)2m1(X2)

m2(X) + m1(X2)
]

∀X "= ∅

5/$%D#E"<A#$%0H."%/:%;/$,A1/$A$K=%%MZb[%I'#87F5L'F%':%=>9%@;7';%885%#.W-Y%C7=>%=>9%I'FG7L'F5,%967G9FI9*%)5<%j%;9@;9)9F=9G%8<%5%)'E;I9%

#1W-Y%'F,<%:'IE)9G%'F%j*%=>5=%7)%)EI>%=>5=%#1WjYi.-%

Bel(X ‖ Y ) ≤ P (X ||Y ) ≤ Pl(X ||Y ) (11)

Bel(X ‖ Y ) =
∑

Z∈2Θ

Z⊆X

m(Z ‖ Y ) (9)

Pl(X ‖ Y ) =
∑

Z∈2Θ

Z∩X #=∅

m(Z ‖ Y ) (10)

m(X ‖ Y ) =
∑

X1∈2Θ

X1∩Y =X

m1(X1)+δ(X∩Y = ∅)·
m1(X)2

1 + m1(X)
+δ(X = Y )·

∑

X2∈2Θ

X2∩Y =∅

m1(X2)

1 + m1(X2)

Bayesian⊕ Non-Bayesian = Bayesian

Bayesian⊕ Non-Bayesian = Non-Bayesian (in general)

M;'@9;=<%':%!"%;E,9A
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I'FG7L'F5,%89,79:%:EFIL'F-%N)9:E,%:';%;967)7FDB;9I'FG7L'F7FD%(F'C,9GD9%C-;-=-%'=>9;%I'FG7L'F5,%><@'=>9)7)-%k';9%)7#@,<%)=5=9G*%C9%C5F=%='%

)99%7:%:';%5F<%D769F%I'FG7L'F5,%885%#W-eejY*%C9%I5F%I'#@E=9%#.W-Y%)EI>%=>5=%%#W-eejYiMZb[W#.W-Y*#1W-Y%C7=>%#1WjYi.-

Focal Elem. m1(.) m2(.) mDS(.) mPCR5(.)
A 0.1 0 0.0833 0.0642
B 0.2 0.3 0.1000 0.1941
C 0.7 0.2 0.8167 0.6703

A ∪ C 0 0.5 0 0.0714

Example: For focal elements A and B such that A ∩B = ∅ with m1(A) = 0.6
and m2(B) = 0.3. With PCR5 m1(A)m2(B) = 0.6 · 0.3 = 0.18 is redistributed
to A and B with proportions: xA = 0.12 and xB = 0.06 since

xA

m1(A)
=

xB

m2(B)
=

m1(A)m2(B)
m1(A) + m2(B)

=
0.18
0.9

= 0.2
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P (X |Y ) =
P (X ∩ Y )

P (Y )

m(X |Y ) = mDS(X) = [m1 ⊕ m2](X) with m2(Y ) = 1

Bel(X |Y ) =
∑

Z∈2Θ

Z⊆X

mDS(Z|Y ) =
Bel1(X ∪ Ȳ ) − Bel1(Ȳ )

1 − Bel1(Ȳ )

Pl(X |Y ) =
∑

Z∈2Θ

Z∩X #=∅

mDS(Z|Y ) =
Pl1(X ∩ Y )

Pl1(Y )
&5<9)75F%

@;7FI7@,9A

When Y = X and as soon as Bel(X̄) < 1, one gets Bel(X |X) = 1 because
Bel1(X ∪ Ȳ ) = Bel1(X ∪ X̄) = Bel1(Θ) = 1. For Bayesian belief, this implies
P (X |X) = 1 for any X such that P1(X) > 0.

Bel(X |Y ) ≤ P (X |Y ) ≤ Pl(X |Y ) (11)

TF%MZb[*%=>9%@5;L5,%I'Fa7I=)%5;9%;9G7)=;78E=9G%
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2Θ ∆(.|Y ) = ∆′(.|Y ) ∆(.||Y ) ∆′(.||Y )
∅ [0,0] [0,0] [0,0]
A [0.5,0.5] [0.4900, 0.5096] [ 0.0100, 0.5050]
B [0.5,0.5] [0.4900, 0.5096] [ 0.0100, 0.5050]
C [0,0] [0.0004, 0.0004] [0.4850,0.4850]

Y = A ∪ B [1,1] [0.9996,0.9996] [0.5150,0.5150]
A ∪ C [0.5,0.5] [ 0.4904, 0.5100] [0.4950, 0.9900]
B ∪ C [0.5,0.5] [ 0.4904, 0.5100] [0.4950, 0.9900]

A ∪ B ∪ C [1,1] [1,1] [1,1]

∆(.|Y ) = [Bel(.|Y ), P l(.|Y )]

Focal Elem. m1 m′
1(.)

A 0.49 0.01
B 0.49 0.01
C 0.02 0.98

Focal Elem. m(.|Y ) m′(.|Y )
A 0.5 0.5
B 0.5 0.5
C 0 0

A ∪ B 0 0

Focal Elem. m(.||Y ) m′(.||Y )
A 0.4900 0.0100
B 0.4900 0.0100
C 0.00039215 0.48505051

A ∪ B 0.01960785 0.49494949
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Bel(Y |Y ) = 1 Bel′(Y |Y ) = 1 Bel(Y ||Y ) = 0.99960785 < 1

Bel′(Y ||Y ) = 0, 51494949 < 1

Focal Elem. m1 m′
1(.)

A 0.20 0.20
B 0.30 0.30
C 0.10 0.10

A ∪ B 0.25 0.15
A ∪ B ∪ C 0.15 0.25

Let’s consider Θ = {A, B, C}, Shafer’s model, and the prior bba’s
) given in Table 4 and the conditional evidence

Y = A ∪ B

M;7';%885m)

Focal Elem. m(.|Y ) m′(.|Y )
A 0.222 0.222
B 0.333 0.333
C 0 0

A ∪ B 0.445 0.445

Focal Elem. m(. ‖ Y ) m′(. ‖ Y )
A 0.20 0.20
B 0.30 0.30
C 0.01 0.01

A ∪ B 0.49 0.49

`'F%&5<9)75F%I'FG7L'F7FD">5:9;%I'FG7L'F7FD

Bel(Y |Y ) = 1 Bel′(Y |Y ) = 1

2Θ ∆(.|Y ) = ∆′(.|Y ) ∆(.||Y ) = ∆′(.||Y )
∅ [0,0] [0,0]
A [0.2220,0.6670] [0.2000,0.6900]
B [0.3330,0.7780] [0.3000,0.7900]
C [0,0] [ 0.0100,0.0100]

Y = A ∪ B [1,1] [0.9900,0.9900]
A ∪ C [0.2220,0.6670] [ 0.2100,0.7000]
B ∪ C [0.3330,0.7780] [ 0.3100,0.8000]

A ∪ B ∪ C [1,1] [1,1]

∆(.|Y ) = [Bel(.|Y ), P l(.|Y )]

!"#$%&'(&)*"(#+*"#",'*-'./01'
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Bel(Y ||Y ) = Bel′(Y ||Y ) = 0.99 < 1
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'>#9?."%+A%@ABC%D#E"<A#$%?0A/0 '>#9?."%8A%@ABC%5/$FD#E"<A#$%?0A/0Let’s consider Θ = {A, B, C}, Shafer’s model, and the prior bba’s
) given in Table 4 and the conditional evidence

Y = A ∪ B

GH0?/<"=%_9%@;'@')9%5%F9C%`'F/&5<9)75F%I'FG7L'F7FD%;E,9%:';%89,79:%;967)7'F%85)9G%'F%M;'@';L'F5,%Z'Fa7I=%b9G7)=;78EL'F%WMZbY%;E,9%':%
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_9%)>'C%=>5=%=>9%G9I'FG7L'F7FD%@;'8,9#%5G#7=)%5%EF7gE9%)',EL'F%C>9F%=>9%@;7';%7)%&5<9)75F%W:'I5,%9,9#9F=)%':%=>9%89,79:%5;9%)7FD,9='F)Yh%

EF7I7=<%':%=>9%)',EL'F%7)%F'=%@'))78,9%='%'8=57F%C7=>%I,5))7I5,%">5:9;%5FG%&5<9)%I'FG7L'F7FD%;E,9)-

&"9?<B"0I<%0H."%/:%;/9JA$#1/$=% Θ = {θ1, θ2, . . . , θ2} m(∅) = 0 and
∑

X∈2Θ

m(X) = 1

Bel(X) =
∑

Z∈2Θ,Z⊆X

m(Z) WZ;9G787,7=<Y

Pl(X) =
∑

Z∈2Θ,Z∩X #=0

m(Z) WM,5E)787,7=<Y

885A
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Bel(X) ≤ P (X) ≤ Pl(X)

mDS(∅) = 0 and mDS(X) = [m1⊕m2](X) =

∑

X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2)

1 −
∑

X1,X2∈2Θ

X1∩X2=∅

m1(X1)m2(X2)

G6)N%0H."%/:%;/9JA$#1/$=%

∀X "= ∅

mPCR5(∅) = 0 and mPCR5(X) =
∑

X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2)+
∑

X2∈2Θ

X2∩X=∅

[
m1(X)2m2(X2)

m1(X) + m2(X2)
+

m2(X)2m1(X2)

m2(X) + m1(X2)
]

∀X "= ∅

5/$%D#E"<A#$%0H."%/:%;/$,A1/$A$K=%%MZb[%I'#87F5L'F%':%=>9%@;7';%885%#.W-Y%C7=>%=>9%I'FG7L'F5,%967G9FI9*%)5<%j%;9@;9)9F=9G%8<%5%)'E;I9%

#1W-Y%'F,<%:'IE)9G%'F%j*%=>5=%7)%)EI>%=>5=%#1WjYi.-%

Bel(X ‖ Y ) ≤ P (X ||Y ) ≤ Pl(X ||Y ) (11)

Bel(X ‖ Y ) =
∑

Z∈2Θ

Z⊆X

m(Z ‖ Y ) (9)

Pl(X ‖ Y ) =
∑

Z∈2Θ

Z∩X #=∅

m(Z ‖ Y ) (10)

m(X ‖ Y ) =
∑

X1∈2Θ

X1∩Y =X

m1(X1)+δ(X∩Y = ∅)·
m1(X)2

1 + m1(X)
+δ(X = Y )·

∑

X2∈2Θ

X2∩Y =∅

m1(X2)

1 + m1(X2)

Bayesian⊕ Non-Bayesian = Bayesian

Bayesian⊕ Non-Bayesian = Non-Bayesian (in general)

M;'@9;=<%':%!"%;E,9A

M;'@9;=<%':%MZb[%;E,9A

&";/$,A1/$A$K=%T=%7)%=>9%7F69;)9%WGE5,Y%@;'8,9#%':%I'FG7L'F7FD-%T=%I'F)7)=)%='%;9=;7969%=>9%@;7';%89,79:%:EFIL'F%:;'#%5%D769F%@')=9;7';B

I'FG7L'F5,%89,79:%:EFIL'F-%N)9:E,%:';%;967)7FDB;9I'FG7L'F7FD%(F'C,9GD9%C-;-=-%'=>9;%I'FG7L'F5,%><@'=>9)7)-%k';9%)7#@,<%)=5=9G*%C9%C5F=%='%

)99%7:%:';%5F<%D769F%I'FG7L'F5,%885%#W-eejY*%C9%I5F%I'#@E=9%#.W-Y%)EI>%=>5=%%#W-eejYiMZb[W#.W-Y*#1W-Y%C7=>%#1WjYi.-

Focal Elem. m1(.) m2(.) mDS(.) mPCR5(.)
A 0.1 0 0.0833 0.0642
B 0.2 0.3 0.1000 0.1941
C 0.7 0.2 0.8167 0.6703

A ∪ C 0 0.5 0 0.0714

Example: For focal elements A and B such that A ∩B = ∅ with m1(A) = 0.6
and m2(B) = 0.3. With PCR5 m1(A)m2(B) = 0.6 · 0.3 = 0.18 is redistributed
to A and B with proportions: xA = 0.12 and xB = 0.06 since

xA

m1(A)
=

xB

m2(B)
=

m1(A)m2(B)
m1(A) + m2(B)

=
0.18
0.9

= 0.2
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P (X |Y ) =
P (X ∩ Y )

P (Y )

m(X |Y ) = mDS(X) = [m1 ⊕ m2](X) with m2(Y ) = 1

Bel(X |Y ) =
∑

Z∈2Θ

Z⊆X

mDS(Z|Y ) =
Bel1(X ∪ Ȳ ) − Bel1(Ȳ )

1 − Bel1(Ȳ )

Pl(X |Y ) =
∑

Z∈2Θ

Z∩X #=∅

mDS(Z|Y ) =
Pl1(X ∩ Y )

Pl1(Y )
&5<9)75F%

@;7FI7@,9A

When Y = X and as soon as Bel(X̄) < 1, one gets Bel(X |X) = 1 because
Bel1(X ∪ Ȳ ) = Bel1(X ∪ X̄) = Bel1(Θ) = 1. For Bayesian belief, this implies
P (X |X) = 1 for any X such that P1(X) > 0.

Bel(X |Y ) ≤ P (X |Y ) ≤ Pl(X |Y ) (11)

TF%MZb[*%=>9%@5;L5,%I'Fa7I=)%5;9%;9G7)=;78E=9G%
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2Θ ∆(.|Y ) = ∆′(.|Y ) ∆(.||Y ) ∆′(.||Y )
∅ [0,0] [0,0] [0,0]
A [0.5,0.5] [0.4900, 0.5096] [ 0.0100, 0.5050]
B [0.5,0.5] [0.4900, 0.5096] [ 0.0100, 0.5050]
C [0,0] [0.0004, 0.0004] [0.4850,0.4850]

Y = A ∪ B [1,1] [0.9996,0.9996] [0.5150,0.5150]
A ∪ C [0.5,0.5] [ 0.4904, 0.5100] [0.4950, 0.9900]
B ∪ C [0.5,0.5] [ 0.4904, 0.5100] [0.4950, 0.9900]

A ∪ B ∪ C [1,1] [1,1] [1,1]

∆(.|Y ) = [Bel(.|Y ), P l(.|Y )]

Focal Elem. m1 m′
1(.)

A 0.49 0.01
B 0.49 0.01
C 0.02 0.98

Focal Elem. m(.|Y ) m′(.|Y )
A 0.5 0.5
B 0.5 0.5
C 0 0

A ∪ B 0 0

Focal Elem. m(.||Y ) m′(.||Y )
A 0.4900 0.0100
B 0.4900 0.0100
C 0.00039215 0.48505051

A ∪ B 0.01960785 0.49494949

`'F%&5<9)75F%I'FG7L'F7FD
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Bel(Y |Y ) = 1 Bel′(Y |Y ) = 1 Bel(Y ||Y ) = 0.99960785 < 1

Bel′(Y ||Y ) = 0, 51494949 < 1

Focal Elem. m1 m′
1(.)

A 0.20 0.20
B 0.30 0.30
C 0.10 0.10

A ∪ B 0.25 0.15
A ∪ B ∪ C 0.15 0.25

Let’s consider Θ = {A, B, C}, Shafer’s model, and the prior bba’s
) given in Table 4 and the conditional evidence

Y = A ∪ B

M;7';%885m)

Focal Elem. m(.|Y ) m′(.|Y )
A 0.222 0.222
B 0.333 0.333
C 0 0

A ∪ B 0.445 0.445

Focal Elem. m(. ‖ Y ) m′(. ‖ Y )
A 0.20 0.20
B 0.30 0.30
C 0.01 0.01

A ∪ B 0.49 0.49

`'F%&5<9)75F%I'FG7L'F7FD">5:9;%I'FG7L'F7FD

Bel(Y |Y ) = 1 Bel′(Y |Y ) = 1

2Θ ∆(.|Y ) = ∆′(.|Y ) ∆(.||Y ) = ∆′(.||Y )
∅ [0,0] [0,0]
A [0.2220,0.6670] [0.2000,0.6900]
B [0.3330,0.7780] [0.3000,0.7900]
C [0,0] [ 0.0100,0.0100]

Y = A ∪ B [1,1] [0.9900,0.9900]
A ∪ C [0.2220,0.6670] [ 0.2100,0.7000]
B ∪ C [0.3330,0.7780] [ 0.3100,0.8000]

A ∪ B ∪ C [1,1] [1,1]

∆(.|Y ) = [Bel(.|Y ), P l(.|Y )]
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)*"(#+*"#",'#2'"*:'3*22#45&'#"'
,&"&875';#:='"*"'>7?&2#7"'38#*8'
447@'%"5&22'7((#+*"75')*"2:87#":2'
78&'#":8*(%)&(A

Bel(Y ||Y ) = Bel′(Y ||Y ) = 0.99 < 1
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'>#9?."%+A%@ABC%D#E"<A#$%?0A/0 '>#9?."%8A%@ABC%5/$FD#E"<A#$%?0A/0Let’s consider Θ = {A, B, C}, Shafer’s model, and the prior bba’s
) given in Table 4 and the conditional evidence

Y = A ∪ B

GH0?/<"=%_9%@;'@')9%5%F9C%`'F/&5<9)75F%I'FG7L'F7FD%;E,9%:';%89,79:%;967)7'F%85)9G%'F%M;'@';L'F5,%Z'Fa7I=%b9G7)=;78EL'F%WMZbY%;E,9%':%
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_9%)>'C%=>5=%=>9%G9I'FG7L'F7FD%@;'8,9#%5G#7=)%5%EF7gE9%)',EL'F%C>9F%=>9%@;7';%7)%&5<9)75F%W:'I5,%9,9#9F=)%':%=>9%89,79:%5;9%)7FD,9='F)Yh%

EF7I7=<%':%=>9%)',EL'F%7)%F'=%@'))78,9%='%'8=57F%C7=>%I,5))7I5,%">5:9;%5FG%&5<9)%I'FG7L'F7FD%;E,9)-

&"9?<B"0I<%0H."%/:%;/9JA$#1/$=% Θ = {θ1, θ2, . . . , θ2} m(∅) = 0 and
∑

X∈2Θ

m(X) = 1

Bel(X) =
∑

Z∈2Θ,Z⊆X

m(Z) WZ;9G787,7=<Y

Pl(X) =
∑

Z∈2Θ,Z∩X #=0

m(Z) WM,5E)787,7=<Y
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Bel(X) ≤ P (X) ≤ Pl(X)

mDS(∅) = 0 and mDS(X) = [m1⊕m2](X) =

∑

X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2)

1 −
∑

X1,X2∈2Θ

X1∩X2=∅

m1(X1)m2(X2)

G6)N%0H."%/:%;/9JA$#1/$=%

∀X "= ∅

mPCR5(∅) = 0 and mPCR5(X) =
∑

X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2)+
∑

X2∈2Θ

X2∩X=∅

[
m1(X)2m2(X2)

m1(X) + m2(X2)
+

m2(X)2m1(X2)

m2(X) + m1(X2)
]

∀X "= ∅

5/$%D#E"<A#$%0H."%/:%;/$,A1/$A$K=%%MZb[%I'#87F5L'F%':%=>9%@;7';%885%#.W-Y%C7=>%=>9%I'FG7L'F5,%967G9FI9*%)5<%j%;9@;9)9F=9G%8<%5%)'E;I9%

#1W-Y%'F,<%:'IE)9G%'F%j*%=>5=%7)%)EI>%=>5=%#1WjYi.-%

Bel(X ‖ Y ) ≤ P (X ||Y ) ≤ Pl(X ||Y ) (11)

Bel(X ‖ Y ) =
∑

Z∈2Θ

Z⊆X

m(Z ‖ Y ) (9)

Pl(X ‖ Y ) =
∑

Z∈2Θ

Z∩X #=∅

m(Z ‖ Y ) (10)

m(X ‖ Y ) =
∑

X1∈2Θ

X1∩Y =X

m1(X1)+δ(X∩Y = ∅)·
m1(X)2

1 + m1(X)
+δ(X = Y )·

∑

X2∈2Θ

X2∩Y =∅

m1(X2)

1 + m1(X2)

Bayesian⊕ Non-Bayesian = Bayesian

Bayesian⊕ Non-Bayesian = Non-Bayesian (in general)

M;'@9;=<%':%!"%;E,9A

M;'@9;=<%':%MZb[%;E,9A
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Focal Elem. m1(.) m2(.) mDS(.) mPCR5(.)
A 0.1 0 0.0833 0.0642
B 0.2 0.3 0.1000 0.1941
C 0.7 0.2 0.8167 0.6703

A ∪ C 0 0.5 0 0.0714

Example: For focal elements A and B such that A ∩B = ∅ with m1(A) = 0.6
and m2(B) = 0.3. With PCR5 m1(A)m2(B) = 0.6 · 0.3 = 0.18 is redistributed
to A and B with proportions: xA = 0.12 and xB = 0.06 since

xA

m1(A)
=

xB

m2(B)
=

m1(A)m2(B)
m1(A) + m2(B)

=
0.18
0.9

= 0.2

*CA<%;/$,A1/$A$K%A<%B0H.E%$/$%
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P (X |Y ) =
P (X ∩ Y )

P (Y )

m(X |Y ) = mDS(X) = [m1 ⊕ m2](X) with m2(Y ) = 1

Bel(X |Y ) =
∑

Z∈2Θ

Z⊆X

mDS(Z|Y ) =
Bel1(X ∪ Ȳ ) − Bel1(Ȳ )

1 − Bel1(Ȳ )

Pl(X |Y ) =
∑

Z∈2Θ

Z∩X #=∅

mDS(Z|Y ) =
Pl1(X ∩ Y )

Pl1(Y )
&5<9)75F%

@;7FI7@,9A

When Y = X and as soon as Bel(X̄) < 1, one gets Bel(X |X) = 1 because
Bel1(X ∪ Ȳ ) = Bel1(X ∪ X̄) = Bel1(Θ) = 1. For Bayesian belief, this implies
P (X |X) = 1 for any X such that P1(X) > 0.

Bel(X |Y ) ≤ P (X |Y ) ≤ Pl(X |Y ) (11)

TF%MZb[*%=>9%@5;L5,%I'Fa7I=)%5;9%;9G7)=;78E=9G%

85I(%='%9,9#9F=)%7F6',69G%7F%=>9#%
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2Θ ∆(.|Y ) = ∆′(.|Y ) ∆(.||Y ) ∆′(.||Y )
∅ [0,0] [0,0] [0,0]
A [0.5,0.5] [0.4900, 0.5096] [ 0.0100, 0.5050]
B [0.5,0.5] [0.4900, 0.5096] [ 0.0100, 0.5050]
C [0,0] [0.0004, 0.0004] [0.4850,0.4850]

Y = A ∪ B [1,1] [0.9996,0.9996] [0.5150,0.5150]
A ∪ C [0.5,0.5] [ 0.4904, 0.5100] [0.4950, 0.9900]
B ∪ C [0.5,0.5] [ 0.4904, 0.5100] [0.4950, 0.9900]

A ∪ B ∪ C [1,1] [1,1] [1,1]

∆(.|Y ) = [Bel(.|Y ), P l(.|Y )]

Focal Elem. m1 m′
1(.)

A 0.49 0.01
B 0.49 0.01
C 0.02 0.98

Focal Elem. m(.|Y ) m′(.|Y )
A 0.5 0.5
B 0.5 0.5
C 0 0

A ∪ B 0 0

Focal Elem. m(.||Y ) m′(.||Y )
A 0.4900 0.0100
B 0.4900 0.0100
C 0.00039215 0.48505051

A ∪ B 0.01960785 0.49494949

`'F%&5<9)75F%I'FG7L'F7FD
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Bel(Y |Y ) = 1 Bel′(Y |Y ) = 1 Bel(Y ||Y ) = 0.99960785 < 1

Bel′(Y ||Y ) = 0, 51494949 < 1

Focal Elem. m1 m′
1(.)

A 0.20 0.20
B 0.30 0.30
C 0.10 0.10

A ∪ B 0.25 0.15
A ∪ B ∪ C 0.15 0.25

Let’s consider Θ = {A, B, C}, Shafer’s model, and the prior bba’s
) given in Table 4 and the conditional evidence

Y = A ∪ B

M;7';%885m)

Focal Elem. m(.|Y ) m′(.|Y )
A 0.222 0.222
B 0.333 0.333
C 0 0

A ∪ B 0.445 0.445

Focal Elem. m(. ‖ Y ) m′(. ‖ Y )
A 0.20 0.20
B 0.30 0.30
C 0.01 0.01

A ∪ B 0.49 0.49

`'F%&5<9)75F%I'FG7L'F7FD">5:9;%I'FG7L'F7FD

Bel(Y |Y ) = 1 Bel′(Y |Y ) = 1

2Θ ∆(.|Y ) = ∆′(.|Y ) ∆(.||Y ) = ∆′(.||Y )
∅ [0,0] [0,0]
A [0.2220,0.6670] [0.2000,0.6900]
B [0.3330,0.7780] [0.3000,0.7900]
C [0,0] [ 0.0100,0.0100]

Y = A ∪ B [1,1] [0.9900,0.9900]
A ∪ C [0.2220,0.6670] [ 0.2100,0.7000]
B ∪ C [0.3330,0.7780] [ 0.3100,0.8000]

A ∪ B ∪ C [1,1] [1,1]

∆(.|Y ) = [Bel(.|Y ), P l(.|Y )]

!"#$%&'(&)*"(#+*"#",'*-'./01'
)*"(#+*"#",'#2'"*:'3*22#45&'#"'
,&"&875';#:='"*"'>7?&2#7"'38#*8'
447@'%"5&22'7((#+*"75')*"2:87#":2'
78&'#":8*(%)&(A

Bel(Y ||Y ) = Bel′(Y ||Y ) = 0.99 < 1

!"#$%&"'(")(*&+(,&+"#-(".(/+01+.(23)45")%(
6'#10(789:(9;7;:(/#+%*:(2#<)4+=

see Smarandache-Dezert, Brest 2010 paper for details



Example of NBR with NON-Bayesian prior

see Smarandache-Dezert, Brest 2010 paper for details
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Non Bayesian Conditioning and Deconditioning
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'>#9?."%+A%@ABC%D#E"<A#$%?0A/0 '>#9?."%8A%@ABC%5/$FD#E"<A#$%?0A/0Let’s consider Θ = {A, B, C}, Shafer’s model, and the prior bba’s
) given in Table 4 and the conditional evidence

Y = A ∪ B

GH0?/<"=%_9%@;'@')9%5%F9C%`'F/&5<9)75F%I'FG7L'F7FD%;E,9%:';%89,79:%;967)7'F%85)9G%'F%M;'@';L'F5,%Z'Fa7I=%b9G7)=;78EL'F%WMZbY%;E,9%':%
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_9%)>'C%=>5=%=>9%G9I'FG7L'F7FD%@;'8,9#%5G#7=)%5%EF7gE9%)',EL'F%C>9F%=>9%@;7';%7)%&5<9)75F%W:'I5,%9,9#9F=)%':%=>9%89,79:%5;9%)7FD,9='F)Yh%

EF7I7=<%':%=>9%)',EL'F%7)%F'=%@'))78,9%='%'8=57F%C7=>%I,5))7I5,%">5:9;%5FG%&5<9)%I'FG7L'F7FD%;E,9)-

&"9?<B"0I<%0H."%/:%;/9JA$#1/$=% Θ = {θ1, θ2, . . . , θ2} m(∅) = 0 and
∑

X∈2Θ

m(X) = 1

Bel(X) =
∑

Z∈2Θ,Z⊆X

m(Z) WZ;9G787,7=<Y

Pl(X) =
∑

Z∈2Θ,Z∩X #=0

m(Z) WM,5E)787,7=<Y

885A
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Bel(X) ≤ P (X) ≤ Pl(X)

mDS(∅) = 0 and mDS(X) = [m1⊕m2](X) =

∑

X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2)

1 −
∑

X1,X2∈2Θ

X1∩X2=∅

m1(X1)m2(X2)

G6)N%0H."%/:%;/9JA$#1/$=%

∀X "= ∅

mPCR5(∅) = 0 and mPCR5(X) =
∑

X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2)+
∑

X2∈2Θ

X2∩X=∅

[
m1(X)2m2(X2)

m1(X) + m2(X2)
+

m2(X)2m1(X2)

m2(X) + m1(X2)
]

∀X "= ∅

5/$%D#E"<A#$%0H."%/:%;/$,A1/$A$K=%%MZb[%I'#87F5L'F%':%=>9%@;7';%885%#.W-Y%C7=>%=>9%I'FG7L'F5,%967G9FI9*%)5<%j%;9@;9)9F=9G%8<%5%)'E;I9%
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Bel(X ‖ Y ) ≤ P (X ||Y ) ≤ Pl(X ||Y ) (11)

Bel(X ‖ Y ) =
∑

Z∈2Θ

Z⊆X

m(Z ‖ Y ) (9)

Pl(X ‖ Y ) =
∑

Z∈2Θ

Z∩X #=∅

m(Z ‖ Y ) (10)

m(X ‖ Y ) =
∑

X1∈2Θ

X1∩Y =X

m1(X1)+δ(X∩Y = ∅)·
m1(X)2

1 + m1(X)
+δ(X = Y )·

∑

X2∈2Θ

X2∩Y =∅

m1(X2)

1 + m1(X2)

Bayesian⊕ Non-Bayesian = Bayesian

Bayesian⊕ Non-Bayesian = Non-Bayesian (in general)

M;'@9;=<%':%!"%;E,9A
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)99%7:%:';%5F<%D769F%I'FG7L'F5,%885%#W-eejY*%C9%I5F%I'#@E=9%#.W-Y%)EI>%=>5=%%#W-eejYiMZb[W#.W-Y*#1W-Y%C7=>%#1WjYi.-

Focal Elem. m1(.) m2(.) mDS(.) mPCR5(.)
A 0.1 0 0.0833 0.0642
B 0.2 0.3 0.1000 0.1941
C 0.7 0.2 0.8167 0.6703

A ∪ C 0 0.5 0 0.0714

Example: For focal elements A and B such that A ∩B = ∅ with m1(A) = 0.6
and m2(B) = 0.3. With PCR5 m1(A)m2(B) = 0.6 · 0.3 = 0.18 is redistributed
to A and B with proportions: xA = 0.12 and xB = 0.06 since

xA

m1(A)
=

xB

m2(B)
=

m1(A)m2(B)
m1(A) + m2(B)

=
0.18
0.9

= 0.2

*CA<%;/$,A1/$A$K%A<%B0H.E%$/$%
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P (X |Y ) =
P (X ∩ Y )

P (Y )

m(X |Y ) = mDS(X) = [m1 ⊕ m2](X) with m2(Y ) = 1

Bel(X |Y ) =
∑

Z∈2Θ

Z⊆X

mDS(Z|Y ) =
Bel1(X ∪ Ȳ ) − Bel1(Ȳ )

1 − Bel1(Ȳ )

Pl(X |Y ) =
∑

Z∈2Θ

Z∩X #=∅

mDS(Z|Y ) =
Pl1(X ∩ Y )

Pl1(Y )
&5<9)75F%

@;7FI7@,9A

When Y = X and as soon as Bel(X̄) < 1, one gets Bel(X |X) = 1 because
Bel1(X ∪ Ȳ ) = Bel1(X ∪ X̄) = Bel1(Θ) = 1. For Bayesian belief, this implies
P (X |X) = 1 for any X such that P1(X) > 0.

Bel(X |Y ) ≤ P (X |Y ) ≤ Pl(X |Y ) (11)

TF%MZb[*%=>9%@5;L5,%I'Fa7I=)%5;9%;9G7)=;78E=9G%
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2Θ ∆(.|Y ) = ∆′(.|Y ) ∆(.||Y ) ∆′(.||Y )
∅ [0,0] [0,0] [0,0]
A [0.5,0.5] [0.4900, 0.5096] [ 0.0100, 0.5050]
B [0.5,0.5] [0.4900, 0.5096] [ 0.0100, 0.5050]
C [0,0] [0.0004, 0.0004] [0.4850,0.4850]

Y = A ∪ B [1,1] [0.9996,0.9996] [0.5150,0.5150]
A ∪ C [0.5,0.5] [ 0.4904, 0.5100] [0.4950, 0.9900]
B ∪ C [0.5,0.5] [ 0.4904, 0.5100] [0.4950, 0.9900]

A ∪ B ∪ C [1,1] [1,1] [1,1]

∆(.|Y ) = [Bel(.|Y ), P l(.|Y )]

Focal Elem. m1 m′
1(.)

A 0.49 0.01
B 0.49 0.01
C 0.02 0.98

Focal Elem. m(.|Y ) m′(.|Y )
A 0.5 0.5
B 0.5 0.5
C 0 0

A ∪ B 0 0

Focal Elem. m(.||Y ) m′(.||Y )
A 0.4900 0.0100
B 0.4900 0.0100
C 0.00039215 0.48505051

A ∪ B 0.01960785 0.49494949

`'F%&5<9)75F%I'FG7L'F7FD
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Bel(Y |Y ) = 1 Bel′(Y |Y ) = 1 Bel(Y ||Y ) = 0.99960785 < 1

Bel′(Y ||Y ) = 0, 51494949 < 1

Focal Elem. m1 m′
1(.)

A 0.20 0.20
B 0.30 0.30
C 0.10 0.10

A ∪ B 0.25 0.15
A ∪ B ∪ C 0.15 0.25

Let’s consider Θ = {A, B, C}, Shafer’s model, and the prior bba’s
) given in Table 4 and the conditional evidence

Y = A ∪ B

M;7';%885m)

Focal Elem. m(.|Y ) m′(.|Y )
A 0.222 0.222
B 0.333 0.333
C 0 0

A ∪ B 0.445 0.445

Focal Elem. m(. ‖ Y ) m′(. ‖ Y )
A 0.20 0.20
B 0.30 0.30
C 0.01 0.01

A ∪ B 0.49 0.49

`'F%&5<9)75F%I'FG7L'F7FD">5:9;%I'FG7L'F7FD

Bel(Y |Y ) = 1 Bel′(Y |Y ) = 1

2Θ ∆(.|Y ) = ∆′(.|Y ) ∆(.||Y ) = ∆′(.||Y )
∅ [0,0] [0,0]
A [0.2220,0.6670] [0.2000,0.6900]
B [0.3330,0.7780] [0.3000,0.7900]
C [0,0] [ 0.0100,0.0100]

Y = A ∪ B [1,1] [0.9900,0.9900]
A ∪ C [0.2220,0.6670] [ 0.2100,0.7000]
B ∪ C [0.3330,0.7780] [ 0.3100,0.8000]

A ∪ B ∪ C [1,1] [1,1]

∆(.|Y ) = [Bel(.|Y ), P l(.|Y )]

!"#$%&'(&)*"(#+*"#",'*-'./01'
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Bel(Y ||Y ) = Bel′(Y ||Y ) = 0.99 < 1
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'>#9?."%+A%@ABC%D#E"<A#$%?0A/0 '>#9?."%8A%@ABC%5/$FD#E"<A#$%?0A/0Let’s consider Θ = {A, B, C}, Shafer’s model, and the prior bba’s
) given in Table 4 and the conditional evidence

Y = A ∪ B

GH0?/<"=%_9%@;'@')9%5%F9C%`'F/&5<9)75F%I'FG7L'F7FD%;E,9%:';%89,79:%;967)7'F%85)9G%'F%M;'@';L'F5,%Z'Fa7I=%b9G7)=;78EL'F%WMZbY%;E,9%':%

I'#87F5L'F%G969,'@9G%7F%!9c9;=/"#5;5FG5I>9%W!"#$Y%:;5#9C';(-%$>7)%;E,9%7)%=;E,<%`'F/&5<9)75F%)7FI9%7:%5%@;7';%89,79:%7)%&5<9)75F*%&9,WdedYf.-%

_9%)>'C%=>5=%=>9%G9I'FG7L'F7FD%@;'8,9#%5G#7=)%5%EF7gE9%)',EL'F%C>9F%=>9%@;7';%7)%&5<9)75F%W:'I5,%9,9#9F=)%':%=>9%89,79:%5;9%)7FD,9='F)Yh%

EF7I7=<%':%=>9%)',EL'F%7)%F'=%@'))78,9%='%'8=57F%C7=>%I,5))7I5,%">5:9;%5FG%&5<9)%I'FG7L'F7FD%;E,9)-

&"9?<B"0I<%0H."%/:%;/9JA$#1/$=% Θ = {θ1, θ2, . . . , θ2} m(∅) = 0 and
∑

X∈2Θ

m(X) = 1

Bel(X) =
∑

Z∈2Θ,Z⊆X

m(Z) WZ;9G787,7=<Y

Pl(X) =
∑

Z∈2Θ,Z∩X #=0

m(Z) WM,5E)787,7=<Y

885A
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8<%5%)'E;I9%#1W-Y%'F,<%:'IE)9G%'F%j*%=>5=%7)%)EI>%=>5=%#1WjYi.-%

Bel(X) ≤ P (X) ≤ Pl(X)

mDS(∅) = 0 and mDS(X) = [m1⊕m2](X) =

∑

X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2)

1 −
∑

X1,X2∈2Θ

X1∩X2=∅

m1(X1)m2(X2)

G6)N%0H."%/:%;/9JA$#1/$=%

∀X "= ∅

mPCR5(∅) = 0 and mPCR5(X) =
∑

X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2)+
∑

X2∈2Θ

X2∩X=∅

[
m1(X)2m2(X2)

m1(X) + m2(X2)
+

m2(X)2m1(X2)

m2(X) + m1(X2)
]

∀X "= ∅

5/$%D#E"<A#$%0H."%/:%;/$,A1/$A$K=%%MZb[%I'#87F5L'F%':%=>9%@;7';%885%#.W-Y%C7=>%=>9%I'FG7L'F5,%967G9FI9*%)5<%j%;9@;9)9F=9G%8<%5%)'E;I9%

#1W-Y%'F,<%:'IE)9G%'F%j*%=>5=%7)%)EI>%=>5=%#1WjYi.-%

Bel(X ‖ Y ) ≤ P (X ||Y ) ≤ Pl(X ||Y ) (11)

Bel(X ‖ Y ) =
∑

Z∈2Θ

Z⊆X

m(Z ‖ Y ) (9)

Pl(X ‖ Y ) =
∑

Z∈2Θ

Z∩X #=∅

m(Z ‖ Y ) (10)

m(X ‖ Y ) =
∑

X1∈2Θ

X1∩Y =X

m1(X1)+δ(X∩Y = ∅)·
m1(X)2

1 + m1(X)
+δ(X = Y )·

∑

X2∈2Θ

X2∩Y =∅

m1(X2)

1 + m1(X2)

Bayesian⊕ Non-Bayesian = Bayesian

Bayesian⊕ Non-Bayesian = Non-Bayesian (in general)

M;'@9;=<%':%!"%;E,9A

M;'@9;=<%':%MZb[%;E,9A

&";/$,A1/$A$K=%T=%7)%=>9%7F69;)9%WGE5,Y%@;'8,9#%':%I'FG7L'F7FD-%T=%I'F)7)=)%='%;9=;7969%=>9%@;7';%89,79:%:EFIL'F%:;'#%5%D769F%@')=9;7';B

I'FG7L'F5,%89,79:%:EFIL'F-%N)9:E,%:';%;967)7FDB;9I'FG7L'F7FD%(F'C,9GD9%C-;-=-%'=>9;%I'FG7L'F5,%><@'=>9)7)-%k';9%)7#@,<%)=5=9G*%C9%C5F=%='%

)99%7:%:';%5F<%D769F%I'FG7L'F5,%885%#W-eejY*%C9%I5F%I'#@E=9%#.W-Y%)EI>%=>5=%%#W-eejYiMZb[W#.W-Y*#1W-Y%C7=>%#1WjYi.-

Focal Elem. m1(.) m2(.) mDS(.) mPCR5(.)
A 0.1 0 0.0833 0.0642
B 0.2 0.3 0.1000 0.1941
C 0.7 0.2 0.8167 0.6703

A ∪ C 0 0.5 0 0.0714

Example: For focal elements A and B such that A ∩B = ∅ with m1(A) = 0.6
and m2(B) = 0.3. With PCR5 m1(A)m2(B) = 0.6 · 0.3 = 0.18 is redistributed
to A and B with proportions: xA = 0.12 and xB = 0.06 since

xA

m1(A)
=

xB

m2(B)
=

m1(A)m2(B)
m1(A) + m2(B)

=
0.18
0.9

= 0.2

*CA<%;/$,A1/$A$K%A<%B0H.E%$/$%
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P (X |Y ) =
P (X ∩ Y )

P (Y )

m(X |Y ) = mDS(X) = [m1 ⊕ m2](X) with m2(Y ) = 1

Bel(X |Y ) =
∑

Z∈2Θ

Z⊆X

mDS(Z|Y ) =
Bel1(X ∪ Ȳ ) − Bel1(Ȳ )

1 − Bel1(Ȳ )

Pl(X |Y ) =
∑

Z∈2Θ

Z∩X #=∅

mDS(Z|Y ) =
Pl1(X ∩ Y )

Pl1(Y )
&5<9)75F%

@;7FI7@,9A

When Y = X and as soon as Bel(X̄) < 1, one gets Bel(X |X) = 1 because
Bel1(X ∪ Ȳ ) = Bel1(X ∪ X̄) = Bel1(Θ) = 1. For Bayesian belief, this implies
P (X |X) = 1 for any X such that P1(X) > 0.

Bel(X |Y ) ≤ P (X |Y ) ≤ Pl(X |Y ) (11)

TF%MZb[*%=>9%@5;L5,%I'Fa7I=)%5;9%;9G7)=;78E=9G%

85I(%='%9,9#9F=)%7F6',69G%7F%=>9#%

@;'@';L'F5,,<%C7=>%;9)@9I=%='%=>97;%#5))9)%
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2Θ ∆(.|Y ) = ∆′(.|Y ) ∆(.||Y ) ∆′(.||Y )
∅ [0,0] [0,0] [0,0]
A [0.5,0.5] [0.4900, 0.5096] [ 0.0100, 0.5050]
B [0.5,0.5] [0.4900, 0.5096] [ 0.0100, 0.5050]
C [0,0] [0.0004, 0.0004] [0.4850,0.4850]

Y = A ∪ B [1,1] [0.9996,0.9996] [0.5150,0.5150]
A ∪ C [0.5,0.5] [ 0.4904, 0.5100] [0.4950, 0.9900]
B ∪ C [0.5,0.5] [ 0.4904, 0.5100] [0.4950, 0.9900]

A ∪ B ∪ C [1,1] [1,1] [1,1]

∆(.|Y ) = [Bel(.|Y ), P l(.|Y )]

Focal Elem. m1 m′
1(.)

A 0.49 0.01
B 0.49 0.01
C 0.02 0.98

Focal Elem. m(.|Y ) m′(.|Y )
A 0.5 0.5
B 0.5 0.5
C 0 0

A ∪ B 0 0

Focal Elem. m(.||Y ) m′(.||Y )
A 0.4900 0.0100
B 0.4900 0.0100
C 0.00039215 0.48505051

A ∪ B 0.01960785 0.49494949

`'F%&5<9)75F%I'FG7L'F7FD

!"#$%&'(&)*"(#+*"#",'
*-'./01')*"(#+*"#",
#2'3*22#45&'62&&'373&89'
)*":878#;#2&':*'</0

M;7';%&5<9)75F%885m) ">5:9;m)%I'FG7L'F7FD

Bel(Y |Y ) = 1 Bel′(Y |Y ) = 1 Bel(Y ||Y ) = 0.99960785 < 1

Bel′(Y ||Y ) = 0, 51494949 < 1

Focal Elem. m1 m′
1(.)

A 0.20 0.20
B 0.30 0.30
C 0.10 0.10

A ∪ B 0.25 0.15
A ∪ B ∪ C 0.15 0.25

Let’s consider Θ = {A, B, C}, Shafer’s model, and the prior bba’s
) given in Table 4 and the conditional evidence

Y = A ∪ B

M;7';%885m)

Focal Elem. m(.|Y ) m′(.|Y )
A 0.222 0.222
B 0.333 0.333
C 0 0

A ∪ B 0.445 0.445

Focal Elem. m(. ‖ Y ) m′(. ‖ Y )
A 0.20 0.20
B 0.30 0.30
C 0.01 0.01

A ∪ B 0.49 0.49

`'F%&5<9)75F%I'FG7L'F7FD">5:9;%I'FG7L'F7FD

Bel(Y |Y ) = 1 Bel′(Y |Y ) = 1

2Θ ∆(.|Y ) = ∆′(.|Y ) ∆(.||Y ) = ∆′(.||Y )
∅ [0,0] [0,0]
A [0.2220,0.6670] [0.2000,0.6900]
B [0.3330,0.7780] [0.3000,0.7900]
C [0,0] [ 0.0100,0.0100]

Y = A ∪ B [1,1] [0.9900,0.9900]
A ∪ C [0.2220,0.6670] [ 0.2100,0.7000]
B ∪ C [0.3330,0.7780] [ 0.3100,0.8000]

A ∪ B ∪ C [1,1] [1,1]

∆(.|Y ) = [Bel(.|Y ), P l(.|Y )]

!"#$%&'(&)*"(#+*"#",'*-'./01'
)*"(#+*"#",'#2'"*:'3*22#45&'#"'
,&"&875';#:='"*"'>7?&2#7"'38#*8'
447@'%"5&22'7((#+*"75')*"2:87#":2'
78&'#":8*(%)&(A

Bel(Y ||Y ) = Bel′(Y ||Y ) = 0.99 < 1

!"#$%&"'(")(*&+(,&+"#-(".(/+01+.(23)45")%(
6'#10(789:(9;7;:(/#+%*:(2#<)4+=
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'>#9?."%+A%@ABC%D#E"<A#$%?0A/0 '>#9?."%8A%@ABC%5/$FD#E"<A#$%?0A/0Let’s consider Θ = {A, B, C}, Shafer’s model, and the prior bba’s
) given in Table 4 and the conditional evidence

Y = A ∪ B

GH0?/<"=%_9%@;'@')9%5%F9C%`'F/&5<9)75F%I'FG7L'F7FD%;E,9%:';%89,79:%;967)7'F%85)9G%'F%M;'@';L'F5,%Z'Fa7I=%b9G7)=;78EL'F%WMZbY%;E,9%':%

I'#87F5L'F%G969,'@9G%7F%!9c9;=/"#5;5FG5I>9%W!"#$Y%:;5#9C';(-%$>7)%;E,9%7)%=;E,<%`'F/&5<9)75F%)7FI9%7:%5%@;7';%89,79:%7)%&5<9)75F*%&9,WdedYf.-%

_9%)>'C%=>5=%=>9%G9I'FG7L'F7FD%@;'8,9#%5G#7=)%5%EF7gE9%)',EL'F%C>9F%=>9%@;7';%7)%&5<9)75F%W:'I5,%9,9#9F=)%':%=>9%89,79:%5;9%)7FD,9='F)Yh%

EF7I7=<%':%=>9%)',EL'F%7)%F'=%@'))78,9%='%'8=57F%C7=>%I,5))7I5,%">5:9;%5FG%&5<9)%I'FG7L'F7FD%;E,9)-

&"9?<B"0I<%0H."%/:%;/9JA$#1/$=% Θ = {θ1, θ2, . . . , θ2} m(∅) = 0 and
∑

X∈2Θ

m(X) = 1

Bel(X) =
∑

Z∈2Θ,Z⊆X

m(Z) WZ;9G787,7=<Y

Pl(X) =
∑

Z∈2Θ,Z∩X #=0

m(Z) WM,5E)787,7=<Y

885A

2C#:"0I<%0H."%/:%;/$,A1/$A$K%L26)M=%%"Zb%i%!9#@)=9;S)%I'#87F5L'F%':%=>9%@;7';%885%#.W-Y%C7=>%=>9%I'FG7L'F5,%967G9FI9*%)5<%j%;9@;9)9F=9G%

8<%5%)'E;I9%#1W-Y%'F,<%:'IE)9G%'F%j*%=>5=%7)%)EI>%=>5=%#1WjYi.-%

Bel(X) ≤ P (X) ≤ Pl(X)

mDS(∅) = 0 and mDS(X) = [m1⊕m2](X) =

∑

X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2)

1 −
∑

X1,X2∈2Θ

X1∩X2=∅

m1(X1)m2(X2)

G6)N%0H."%/:%;/9JA$#1/$=%

∀X "= ∅

mPCR5(∅) = 0 and mPCR5(X) =
∑

X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2)+
∑

X2∈2Θ

X2∩X=∅

[
m1(X)2m2(X2)

m1(X) + m2(X2)
+

m2(X)2m1(X2)

m2(X) + m1(X2)
]

∀X "= ∅

5/$%D#E"<A#$%0H."%/:%;/$,A1/$A$K=%%MZb[%I'#87F5L'F%':%=>9%@;7';%885%#.W-Y%C7=>%=>9%I'FG7L'F5,%967G9FI9*%)5<%j%;9@;9)9F=9G%8<%5%)'E;I9%

#1W-Y%'F,<%:'IE)9G%'F%j*%=>5=%7)%)EI>%=>5=%#1WjYi.-%

Bel(X ‖ Y ) ≤ P (X ||Y ) ≤ Pl(X ||Y ) (11)

Bel(X ‖ Y ) =
∑

Z∈2Θ

Z⊆X

m(Z ‖ Y ) (9)

Pl(X ‖ Y ) =
∑

Z∈2Θ

Z∩X #=∅

m(Z ‖ Y ) (10)

m(X ‖ Y ) =
∑

X1∈2Θ

X1∩Y =X

m1(X1)+δ(X∩Y = ∅)·
m1(X)2

1 + m1(X)
+δ(X = Y )·

∑

X2∈2Θ

X2∩Y =∅

m1(X2)

1 + m1(X2)

Bayesian⊕ Non-Bayesian = Bayesian

Bayesian⊕ Non-Bayesian = Non-Bayesian (in general)

M;'@9;=<%':%!"%;E,9A

M;'@9;=<%':%MZb[%;E,9A

&";/$,A1/$A$K=%T=%7)%=>9%7F69;)9%WGE5,Y%@;'8,9#%':%I'FG7L'F7FD-%T=%I'F)7)=)%='%;9=;7969%=>9%@;7';%89,79:%:EFIL'F%:;'#%5%D769F%@')=9;7';B

I'FG7L'F5,%89,79:%:EFIL'F-%N)9:E,%:';%;967)7FDB;9I'FG7L'F7FD%(F'C,9GD9%C-;-=-%'=>9;%I'FG7L'F5,%><@'=>9)7)-%k';9%)7#@,<%)=5=9G*%C9%C5F=%='%

)99%7:%:';%5F<%D769F%I'FG7L'F5,%885%#W-eejY*%C9%I5F%I'#@E=9%#.W-Y%)EI>%=>5=%%#W-eejYiMZb[W#.W-Y*#1W-Y%C7=>%#1WjYi.-

Focal Elem. m1(.) m2(.) mDS(.) mPCR5(.)
A 0.1 0 0.0833 0.0642
B 0.2 0.3 0.1000 0.1941
C 0.7 0.2 0.8167 0.6703

A ∪ C 0 0.5 0 0.0714

Example: For focal elements A and B such that A ∩B = ∅ with m1(A) = 0.6
and m2(B) = 0.3. With PCR5 m1(A)m2(B) = 0.6 · 0.3 = 0.18 is redistributed
to A and B with proportions: xA = 0.12 and xB = 0.06 since

xA

m1(A)
=

xB

m2(B)
=

m1(A)m2(B)
m1(A) + m2(B)

=
0.18
0.9

= 0.2

*CA<%;/$,A1/$A$K%A<%B0H.E%$/$%
D#E"<A#$%<A$;"%D".LOPPOMQ%+
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P (X |Y ) =
P (X ∩ Y )

P (Y )

m(X |Y ) = mDS(X) = [m1 ⊕ m2](X) with m2(Y ) = 1

Bel(X |Y ) =
∑

Z∈2Θ

Z⊆X

mDS(Z|Y ) =
Bel1(X ∪ Ȳ ) − Bel1(Ȳ )

1 − Bel1(Ȳ )

Pl(X |Y ) =
∑

Z∈2Θ

Z∩X #=∅

mDS(Z|Y ) =
Pl1(X ∩ Y )

Pl1(Y )
&5<9)75F%

@;7FI7@,9A

When Y = X and as soon as Bel(X̄) < 1, one gets Bel(X |X) = 1 because
Bel1(X ∪ Ȳ ) = Bel1(X ∪ X̄) = Bel1(Θ) = 1. For Bayesian belief, this implies
P (X |X) = 1 for any X such that P1(X) > 0.

Bel(X |Y ) ≤ P (X |Y ) ≤ Pl(X |Y ) (11)

TF%MZb[*%=>9%@5;L5,%I'Fa7I=)%5;9%;9G7)=;78E=9G%

85I(%='%9,9#9F=)%7F6',69G%7F%=>9#%
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2Θ ∆(.|Y ) = ∆′(.|Y ) ∆(.||Y ) ∆′(.||Y )
∅ [0,0] [0,0] [0,0]
A [0.5,0.5] [0.4900, 0.5096] [ 0.0100, 0.5050]
B [0.5,0.5] [0.4900, 0.5096] [ 0.0100, 0.5050]
C [0,0] [0.0004, 0.0004] [0.4850,0.4850]

Y = A ∪ B [1,1] [0.9996,0.9996] [0.5150,0.5150]
A ∪ C [0.5,0.5] [ 0.4904, 0.5100] [0.4950, 0.9900]
B ∪ C [0.5,0.5] [ 0.4904, 0.5100] [0.4950, 0.9900]

A ∪ B ∪ C [1,1] [1,1] [1,1]

∆(.|Y ) = [Bel(.|Y ), P l(.|Y )]

Focal Elem. m1 m′
1(.)

A 0.49 0.01
B 0.49 0.01
C 0.02 0.98

Focal Elem. m(.|Y ) m′(.|Y )
A 0.5 0.5
B 0.5 0.5
C 0 0

A ∪ B 0 0

Focal Elem. m(.||Y ) m′(.||Y )
A 0.4900 0.0100
B 0.4900 0.0100
C 0.00039215 0.48505051

A ∪ B 0.01960785 0.49494949
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Bel(Y |Y ) = 1 Bel′(Y |Y ) = 1 Bel(Y ||Y ) = 0.99960785 < 1

Bel′(Y ||Y ) = 0, 51494949 < 1

Focal Elem. m1 m′
1(.)

A 0.20 0.20
B 0.30 0.30
C 0.10 0.10

A ∪ B 0.25 0.15
A ∪ B ∪ C 0.15 0.25

Let’s consider Θ = {A, B, C}, Shafer’s model, and the prior bba’s
) given in Table 4 and the conditional evidence

Y = A ∪ B

M;7';%885m)

Focal Elem. m(.|Y ) m′(.|Y )
A 0.222 0.222
B 0.333 0.333
C 0 0

A ∪ B 0.445 0.445

Focal Elem. m(. ‖ Y ) m′(. ‖ Y )
A 0.20 0.20
B 0.30 0.30
C 0.01 0.01

A ∪ B 0.49 0.49

`'F%&5<9)75F%I'FG7L'F7FD">5:9;%I'FG7L'F7FD

Bel(Y |Y ) = 1 Bel′(Y |Y ) = 1

2Θ ∆(.|Y ) = ∆′(.|Y ) ∆(.||Y ) = ∆′(.||Y )
∅ [0,0] [0,0]
A [0.2220,0.6670] [0.2000,0.6900]
B [0.3330,0.7780] [0.3000,0.7900]
C [0,0] [ 0.0100,0.0100]

Y = A ∪ B [1,1] [0.9900,0.9900]
A ∪ C [0.2220,0.6670] [ 0.2100,0.7000]
B ∪ C [0.3330,0.7780] [ 0.3100,0.8000]

A ∪ B ∪ C [1,1] [1,1]

∆(.|Y ) = [Bel(.|Y ), P l(.|Y )]
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Bel(Y ||Y ) = Bel′(Y ||Y ) = 0.99 < 1
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Non Bayesian Conditioning and Deconditioning
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'>#9?."%+A%@ABC%D#E"<A#$%?0A/0 '>#9?."%8A%@ABC%5/$FD#E"<A#$%?0A/0Let’s consider Θ = {A, B, C}, Shafer’s model, and the prior bba’s
) given in Table 4 and the conditional evidence

Y = A ∪ B
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&"9?<B"0I<%0H."%/:%;/9JA$#1/$=% Θ = {θ1, θ2, . . . , θ2} m(∅) = 0 and
∑

X∈2Θ

m(X) = 1

Bel(X) =
∑

Z∈2Θ,Z⊆X

m(Z) WZ;9G787,7=<Y

Pl(X) =
∑

Z∈2Θ,Z∩X #=0

m(Z) WM,5E)787,7=<Y
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Bel(X) ≤ P (X) ≤ Pl(X)

mDS(∅) = 0 and mDS(X) = [m1⊕m2](X) =

∑

X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2)

1 −
∑

X1,X2∈2Θ

X1∩X2=∅

m1(X1)m2(X2)

G6)N%0H."%/:%;/9JA$#1/$=%

∀X "= ∅

mPCR5(∅) = 0 and mPCR5(X) =
∑

X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2)+
∑

X2∈2Θ

X2∩X=∅

[
m1(X)2m2(X2)

m1(X) + m2(X2)
+

m2(X)2m1(X2)

m2(X) + m1(X2)
]

∀X "= ∅
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Bel(X ‖ Y ) ≤ P (X ||Y ) ≤ Pl(X ||Y ) (11)

Bel(X ‖ Y ) =
∑

Z∈2Θ

Z⊆X

m(Z ‖ Y ) (9)

Pl(X ‖ Y ) =
∑

Z∈2Θ

Z∩X #=∅

m(Z ‖ Y ) (10)

m(X ‖ Y ) =
∑

X1∈2Θ

X1∩Y =X

m1(X1)+δ(X∩Y = ∅)·
m1(X)2

1 + m1(X)
+δ(X = Y )·

∑

X2∈2Θ

X2∩Y =∅

m1(X2)

1 + m1(X2)

Bayesian⊕ Non-Bayesian = Bayesian

Bayesian⊕ Non-Bayesian = Non-Bayesian (in general)
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Focal Elem. m1(.) m2(.) mDS(.) mPCR5(.)
A 0.1 0 0.0833 0.0642
B 0.2 0.3 0.1000 0.1941
C 0.7 0.2 0.8167 0.6703

A ∪ C 0 0.5 0 0.0714

Example: For focal elements A and B such that A ∩B = ∅ with m1(A) = 0.6
and m2(B) = 0.3. With PCR5 m1(A)m2(B) = 0.6 · 0.3 = 0.18 is redistributed
to A and B with proportions: xA = 0.12 and xB = 0.06 since

xA

m1(A)
=

xB

m2(B)
=

m1(A)m2(B)
m1(A) + m2(B)

=
0.18
0.9

= 0.2
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P (X |Y ) =
P (X ∩ Y )

P (Y )

m(X |Y ) = mDS(X) = [m1 ⊕ m2](X) with m2(Y ) = 1

Bel(X |Y ) =
∑

Z∈2Θ

Z⊆X

mDS(Z|Y ) =
Bel1(X ∪ Ȳ ) − Bel1(Ȳ )

1 − Bel1(Ȳ )

Pl(X |Y ) =
∑

Z∈2Θ

Z∩X #=∅

mDS(Z|Y ) =
Pl1(X ∩ Y )

Pl1(Y )
&5<9)75F%

@;7FI7@,9A

When Y = X and as soon as Bel(X̄) < 1, one gets Bel(X |X) = 1 because
Bel1(X ∪ Ȳ ) = Bel1(X ∪ X̄) = Bel1(Θ) = 1. For Bayesian belief, this implies
P (X |X) = 1 for any X such that P1(X) > 0.

Bel(X |Y ) ≤ P (X |Y ) ≤ Pl(X |Y ) (11)
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2Θ ∆(.|Y ) = ∆′(.|Y ) ∆(.||Y ) ∆′(.||Y )
∅ [0,0] [0,0] [0,0]
A [0.5,0.5] [0.4900, 0.5096] [ 0.0100, 0.5050]
B [0.5,0.5] [0.4900, 0.5096] [ 0.0100, 0.5050]
C [0,0] [0.0004, 0.0004] [0.4850,0.4850]

Y = A ∪ B [1,1] [0.9996,0.9996] [0.5150,0.5150]
A ∪ C [0.5,0.5] [ 0.4904, 0.5100] [0.4950, 0.9900]
B ∪ C [0.5,0.5] [ 0.4904, 0.5100] [0.4950, 0.9900]

A ∪ B ∪ C [1,1] [1,1] [1,1]

∆(.|Y ) = [Bel(.|Y ), P l(.|Y )]

Focal Elem. m1 m′
1(.)

A 0.49 0.01
B 0.49 0.01
C 0.02 0.98

Focal Elem. m(.|Y ) m′(.|Y )
A 0.5 0.5
B 0.5 0.5
C 0 0

A ∪ B 0 0

Focal Elem. m(.||Y ) m′(.||Y )
A 0.4900 0.0100
B 0.4900 0.0100
C 0.00039215 0.48505051

A ∪ B 0.01960785 0.49494949
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Bel(Y |Y ) = 1 Bel′(Y |Y ) = 1 Bel(Y ||Y ) = 0.99960785 < 1

Bel′(Y ||Y ) = 0, 51494949 < 1

Focal Elem. m1 m′
1(.)

A 0.20 0.20
B 0.30 0.30
C 0.10 0.10

A ∪ B 0.25 0.15
A ∪ B ∪ C 0.15 0.25

Let’s consider Θ = {A, B, C}, Shafer’s model, and the prior bba’s
) given in Table 4 and the conditional evidence

Y = A ∪ B

M;7';%885m)

Focal Elem. m(.|Y ) m′(.|Y )
A 0.222 0.222
B 0.333 0.333
C 0 0

A ∪ B 0.445 0.445

Focal Elem. m(. ‖ Y ) m′(. ‖ Y )
A 0.20 0.20
B 0.30 0.30
C 0.01 0.01

A ∪ B 0.49 0.49
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Bel(Y |Y ) = 1 Bel′(Y |Y ) = 1

2Θ ∆(.|Y ) = ∆′(.|Y ) ∆(.||Y ) = ∆′(.||Y )
∅ [0,0] [0,0]
A [0.2220,0.6670] [0.2000,0.6900]
B [0.3330,0.7780] [0.3000,0.7900]
C [0,0] [ 0.0100,0.0100]

Y = A ∪ B [1,1] [0.9900,0.9900]
A ∪ C [0.2220,0.6670] [ 0.2100,0.7000]
B ∪ C [0.3330,0.7780] [ 0.3100,0.8000]

A ∪ B ∪ C [1,1] [1,1]

∆(.|Y ) = [Bel(.|Y ), P l(.|Y )]
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Bel(Y ||Y ) = Bel′(Y ||Y ) = 0.99 < 1
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Approach 2 : Direct Belief Conditioning Rules (BCR)

Justification : One makes a clear and fundamental distinction 
between fusion of a prior bba m1(.) with a source focused on a given 
set A (Shafer’s approach) and belief revision conditioned by the fact 
that absolute truth is in A (BCRs approach).

To compute m1(.|A), and because the conditioning event A contains 
the absolute truth, one proposes to revise the prior bba m1(.) based 
on NEW mass transfer, but NOT based on the fusion of m1(.) with 
specialized bba m2(A)=1. Many BCRs (BCR1-31) have been recently 
developed. 

BCR12 and BCR17 seems to be the most appealing so far (see 
justification in next slides).



Example: visual perception and subjective certainty

Question:  Is the color of squares A and B the same or different ?

Credit:  Example borrowed from Edward H.  Adelson



Letʼs check

Conclusion: 

Subjective certainty ≠ Objective (i.e. absolute) certainty
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Hyper-power set decomposition (HPSD)

BCRs are based on a particular hyper-power set decomposition 
imposed by the conditioning event, say A.

2

Bel1(A|B) =
Bel1(A ∪ B̄) − Bel1(B̄)

1 − Bel1(B̄)

Pl1(A|B) =
Pl1(A ∩ B)

Pl1(B)
where Pl(.) denotes the plausibility function.

m1(.|A) = [m1 ⊕ m2](.)

where 



m2(A) = 1

⊕ = Dempster’s rule

We could replace ⊕ Dempster’s rule by any other ⊕ fusion rules.

2 BCRBCRBCR

Let Θ = {θ1, θ2, . . . , θn}, n ≥ 2, the hyper-power set DΘ and a bba m(.) : DΘ &→ [0, 1].
Suppose one finds out (or one assumes) that the truth is in the set A ∈ DΘ \ {∅}.
We split DΘ \ {∅} into 3 subsets which have no element in common, i.e.

DΘ \ {∅} = D1 ∪ D2 ∪ D3

D1 ! PD(A) = 2A ∩ DΘ \ {∅} = all non-empty parts of A which are included in DΘ.

Let’s consider the normal cases when A *= ∅ and
∑

Y ∈PD(A) m(Y ) > 0. For the degenerate case
when the truth is in A = ∅, we consider Smets’ open-world, which means that there are other hy-
potheses Θ′ = {θn+1, θn+2, . . . θn+m}, m ≥ 1, and the truth is in A ∈ DΘ′ \ {∅}. If A = ∅ and we
consider a close-world, then it means that the problem is impossible. For another degenerate case,
when

∑
Y ∈PD(A) m(Y ) = 0, i.e. when the source gave us a totally (100%) wrong information m(.),

then, we define: m(A|A) ! 1 and, as a consequence, m(X|A) = 0 for any X *= A.

Let s(A) = {θi1 , θi2 , . . . , θip}, 1 ≤ p ≤ n, be the singletons/atoms that compose A (For example, if
A = θ1 ∪ (θ3 ∩ θ4) then s(A) = {θ1, θ3, θ4}.). We consider three subsets of DΘ \ ∅, generated by A:

• D1 ! PD(A) = 2A ∩ DΘ \ {∅} = all non-empty parts of A which are included in DΘ;

• D2 ! {(Θ \ s(A)),∪,∩} \ {∅} = the sub-hyper-power set generated by Θ \ s(A) under ∪ and ∩,
without the empty set.

• D3 ! (DΘ \ {∅}) \ (D1 ∪ D2).

where
s(A) = {θi1 , θi2 , . . . , θip}, 1 ≤ p ≤ n, be the singletons/atoms that compose A.
Example:

if A = θ1 ∪ (θ3 ∩ θ4) then s(A) = {θ1, θ3, θ4}.).
D1, D2 and D3 have no element in common two by two and their union is DΘ \ {∅}.

where

2

Bel1(A|B) =
Bel1(A ∪ B̄) − Bel1(B̄)

1 − Bel1(B̄)

Pl1(A|B) =
Pl1(A ∩ B)

Pl1(B)

where Pl(.) denotes the plausibility function.

m1(.|A) = [m1 ⊕ m2](.)

where 



m2(A) = 1

⊕ = Dempster’s rule

We could replace ⊕ Dempster’s rule by any other ⊕ fusion rules.

2 BCRBCRBCR

Let Θ = {θ1, θ2, . . . , θn}, n ≥ 2, the hyper-power set DΘ and a bba m(.) : DΘ &→ [0, 1].
Suppose one finds out (or one assumes) that the truth is in the set A ∈ DΘ \ {∅}.
We split DΘ \ {∅} into 3 subsets which have no element in common, i.e.

DΘ \ {∅} = D1 ∪ D2 ∪ D3

Let PD(A) = 2A ∩ DΘ \ {∅}, i.e. all non-empty parts (subsets) of A which are included in DΘ.
Let’s consider the normal cases when A *= ∅ and

∑
Y ∈PD(A) m(Y ) > 0. For the degenerate case when

the truth is in A = ∅, we consider Smets’ open-world, which means that there are other hypotheses
Θ′ = {θn+1, θn+2, . . . θn+m}, m ≥ 1, and the truth is in A ∈ DΘ′ \ {∅}. If A = ∅ and we consider
a close-world, then it means that the problem is impossible. For another degenerate case, when
∑

Y ∈PD(A) m(Y ) = 0, i.e. when the source gave us a totally (100%) wrong information m(.), then, we
define: m(A|A) ! 1 and, as a consequence, m(X|A) = 0 for any X *= A.

Let s(A) = {θi1 , θi2 , . . . , θip}, 1 ≤ p ≤ n, be the singletons/atoms that compose A (For example, if
A = θ1 ∪ (θ3 ∩ θ4) then s(A) = {θ1, θ3, θ4}.). We consider three subsets of DΘ \ ∅, generated by A:

• D1 = PD(A), the parts of A which are included in the hyper-power set, except the empty set;

• D2 = {(Θ \ s(A)),∪,∩} \ {∅}, i.e. the sub-hyper-power set generated by Θ \ s(A) under ∪ and
∩, without the empty set.

• D3 = (DΘ \ {∅}) − (D1 ∪ D2); each set from D3 has in its formula singletons from both s(A)
and Θ \ s(A) in the case when Θ \ s(A) is different from empty set.

D1, D2 and D3 have no element in common two by two and their union is DΘ \ {∅}.

Example:

2

Bel1(A|B) =
Bel1(A ∪ B̄) − Bel1(B̄)

1 − Bel1(B̄)

Pl1(A|B) =
Pl1(A ∩ B)

Pl1(B)
where Pl(.) denotes the plausibility function.

m1(.|A) = [m1 ⊕ m2](.)

where 



m2(A) = 1

⊕ = Dempster’s rule

We could replace ⊕ Dempster’s rule by any other ⊕ fusion rules.

2 BCRBCRBCR

Let Θ = {θ1, θ2, . . . , θn}, n ≥ 2, the hyper-power set DΘ and a bba m(.) : DΘ &→ [0, 1].
Suppose one finds out (or one assumes) that the truth is in the set A ∈ DΘ \ {∅}.
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D1 ! PD(A) = 2A ∩ DΘ \ {∅} = all non-empty parts of A which are included in DΘ.

Let’s consider the normal cases when A *= ∅ and
∑

Y ∈PD(A) m(Y ) > 0. For the degenerate case
when the truth is in A = ∅, we consider Smets’ open-world, which means that there are other hy-
potheses Θ′ = {θn+1, θn+2, . . . θn+m}, m ≥ 1, and the truth is in A ∈ DΘ′ \ {∅}. If A = ∅ and we
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when

∑
Y ∈PD(A) m(Y ) = 0, i.e. when the source gave us a totally (100%) wrong information m(.),

then, we define: m(A|A) ! 1 and, as a consequence, m(X|A) = 0 for any X *= A.
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3 Examples

Let’s consider Θ = {A,B,C} and the free DSm model.

• If one supposes the truth is in A, then

D1 = {A,A ∩ B,A ∩ C,A ∩ B ∩ C} ≡ P(A) ∩ (DΘ \ ∅)

D1 contains all the parts of A which are included in DΘ, except the empty set.

D2 contains all elements which do not contain the letter A.

D2 = ({B,C},∪,∩) = D{B,C} = {B,C,B ∪ C,B ∩ C}

D3 = {A ∪ B,A ∪ C,A ∪ B ∪ C,A ∪ (B ∩ C)}

D3 contains sets whose formulas contain both the letters A and at least a letter from {B,C}.

• If one supposes the truth is in A ∩ B, then one has D1 = {A ∩ B,A ∩ B ∩ C}, D2 = {C}; i.e.
D2 elements do not contain the letters A, B; and D3 = {A,B,A ∪B,A∩C,B ∩C}, i.e. what’s
left from DΘ \ {∅} after removing D1 and D2.

• If one supposes the truth is in A ∪ B, then one has D1 = {A,B,A ∩ B,A ∪ B}, and all other
sets included in these four ones, i.e. A ∩ C, B ∩ C, A ∩ B ∩ C, A ∪ (B ∩ C), B ∪ (A ∩ C),
(A ∩ C) ∪ (B ∩ C), etc; D2 = {C}, i.e. D2 elements do not contain the letters A, B and
D3 = {A ∪ C,B ∪ C,A ∪ B ∪ C,C ∪ (A ∩ B)}.

• If one supposes the truth is in A ∪B ∪C, then one has D1 = DΘ \ {∅}. D2 does not exist since
s(A∪B ∪C) = {A,B,C} and Θ \ {A,B,C} = ∅; i.e. D2 elements do not contain the letters A,
B, C. D3 does not exist since (DΘ \ {∅}) \ D1 = ∅.

• If one supposes the truth is in A ∩ B ∩ C, then one has D1 = {A ∩ B ∩ C}; D2 does not
exist; i.e. D2 elements do not contain the letters A, B, C and D3 equals everything else, i.e.
(DΘ \{∅})\D1 = {A,B,C,A∩B,A∩C,B ∩C,A∪B,A∪C,B ∪C,A∪B∪C,A∪ (B ∩C), . . .};
D3 has 19 − 1 − 1 = 17 elements.
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Example 4 :

4

• If the truth is in A ∪ B ∪ C

D1 = DΘ \ {∅}

D2

does not exist since s(A ∪ B ∪ C) = {A,B,C} and Θ \ {A,B,C} = ∅;

i.e. D2 elements do not contain the letters A, B, C. D3 does not exist since (DΘ \{∅})\D1 = ∅.

• If one supposes the truth is in A ∩ B ∩ C, then one has D1 = {A ∩ B ∩ C}; D2 does not exist;
i.e. D2 elements do not contain the letters A, B, C

D3 = (DΘ\{∅})\D1 = {A,B,C,A∩B,A∩C,B∩C,A∪B,A∪C,B∪C,A∪B∪C,A∪(B∩C), . . .}

; D3 has 19 − 1 − 1 = 17 elements.
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Figure 1: Venn Diagram for the 3D free DSm model

4

• If the truth is in A ∪ B ∪ C

D1 = DΘ \ {∅}

D2

does not exist since s(A ∪ B ∪ C) = {A,B,C} and Θ \ {A,B,C} = ∅;

i.e. D2 elements do not contain the letters A, B, C. D3 does not exist since (DΘ \{∅})\D1 = ∅.

• If one supposes the truth is in A ∩ B ∩ C, then one has D1 = {A ∩ B ∩ C}; D2 does not exist;
i.e. D2 elements do not contain the letters A, B, C

D3 = (DΘ\{∅})\D1 = {A,B,C,A∩B,A∩C,B∩C,A∪B,A∪C,B∪C,A∪B∪C,A∪(B∩C), . . .}

; D3 has 19 − 1 − 1 = 17 elements.

!"
#$

!"
#$

!"
#$!"

A
#$

B

!%C

Figure 1: Venn Diagram for the 3D free DSm model

4

• If the truth is in A ∪ B ∪ C

D1 = DΘ \ {∅}

D2 and D3 do not exist.

since s(A ∪ B ∪ C) = {A,B,C} and Θ \ {A,B,C} = ∅;

i.e. D2 elements do not contain the letters A, B, C. D3 does not exist since (DΘ \{∅})\D1 = ∅.

• If one supposes the truth is in A ∩ B ∩ C, then one has D1 = {A ∩ B ∩ C}; D2 does not exist;
i.e. D2 elements do not contain the letters A, B, C

D3 = (DΘ\{∅})\D1 = {A,B,C,A∩B,A∩C,B∩C,A∪B,A∪C,B∪C,A∪B∪C,A∪(B∩C), . . .}

; D3 has 19 − 1 − 1 = 17 elements.

!"
#$

!"
#$

!"
#$!"

A
#$

B

!%C

Figure 1: Venn Diagram for the 3D free DSm model



53

BCR #17

BCR17 does the most refined/precise redistribution among all possible BCR, i.e. 

- the mass m(W) of each element W in D2UD3 is transferred to the elements X in D1 which 
are included in W (if any) proportionally with respect to their non-empty masses;

- if no such X exists, the mass m(W) is transferred in a pessimistic/prudent way to the k-
largest elements from D1 which are included in W (in equal parts) if any;

- if neither this way is possible, then m(W) is indiscriminately distributed to all X in D1 
proportionally with respect to their nonzero masses.

1 Introduction

mBCR12(X|A) = m(X) +
�
m(X) ·

�

Z∈D2

�Y ∈D1 with Y⊂Z

m(Z)
�
/

�

Y ∈D1

m(Y )

+
�

Z∈D2

X⊂Z, X is k-largest

m(Z)/k +
�

W∈D3

X⊂W, X is k-largest

m(W )/k (1)

mBCR17(X|A) = m(X) ·
�
� �

Z∈D1,

or Z∈D2 | �Y ∈D1 with Y⊂Z

m(Z)
�
/

�

Y ∈D1

m(Y ) +
�

W∈D2∪D3

X⊂W

S(W ) �=0

m(W )
S(W )

�

+
�

W∈D2∪D3

X⊂W, X is k-largest
S(W )=0

m(W )/k (2)

• (DS) is not defined when conflict is 1

• (DS) provides questionable results when k12 increases

• No way to trust (DS) result beforehand

• Justification/necessity of working with Shafer’s model ?



Example #1 for BCR17

free DSm model with non-Bayesian bba
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• If the truth is in A ∪ B ∪ C
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D2 and D3 do not exist.
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4 Examples

4.1 Example no. 1 (free DSm model with non-Bayesian bba)

Let’s consider Θ = {A,B,C}, the free DSm model (no intersection is empty) and the following
prior bba

m1(A) = 0.2 m1(B) = 0.1 m1(C) = 0.2 m1(A ∪ B) = 0.1 m1(B ∪ C) = 0.1

m1(A ∪ (B ∩ C)) = 0.1 m1(A ∩ B) = 0.1 m1(A ∪ B ∪ C) = 0.1

and let’s assume that the truth is in B ∪ C, i.e. the conditioning term is B ∪ C. Then:

D1 = {B ∩ C ∩ A︸ ︷︷ ︸
CardDSm=1

, B ∩ C,B ∩ A,C ∩ A︸ ︷︷ ︸
CardDSm=2

,

(B ∩ C) ∪ (B ∩ A), (B ∩ C) ∪ (C ∩ A), (B ∩ A) ∪ (C ∩ A)︸ ︷︷ ︸
CardDSm=3

,

(B ∩ C) ∪ (B ∩ A) ∪ (C ∩ A), B,C︸ ︷︷ ︸
CardDSm=4

, B ∪ (C ∩ A), C ∪ (B ∩ A)︸ ︷︷ ︸
CardDSm=5

, B ∪ C︸ ︷︷ ︸
CardDSm=6

}
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Let’s assume that the truth is in B ∪ C, i.e. the conditioning term is B ∪ C

PCR5 versus Bayes’ formula
for combining probability densities

(working notes V3)

1 Principles of estimation

m(A) = 0.2 m(B) = 0.1 m(C) = 0.2

m(A ∩ B) = 0.1 m(A ∪ B) = 0.1 m(B ∪ C) = 0.1

m(A ∪ (B ∩ C)) = 0.1 m(A ∪ B ∪ C) = 0.1

In BCR12, m(D2) = m1(A) = 0.2 is transferred to (A ∩ B) ∪ (A ∩ C)
since (A ∩ B) ∪ (A ∩ C) is the 1-largest element of D1 included in A.
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∑
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HPSD:
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BCR17 conditioning:
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for combining probability densities

(working notes V3)
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BCR17 result:

1.1 Example no. 1 (free DSm model with non-Bayesian bba)
In BCR7,

m(D2) is also indiscriminately redistributed, but m(D3) is redistributed in a different more refined way.

• m(A∪B) = 0.1 is transferred to B and B∩A since these are the only D1 elements included in A∪B whose masses
are non-zero, proportionally to their corresponding masses, i.e.

xB

0.1
=

wB∩A

0.1
=

0.1
0.2

= 0.5

whence xB = 0.05 and wB∩A = 0.05.

• m(A ∪ (B ∩ C)) = 0.1 is transferred to B ∩ A only since no other D1 element with non-zero mass is included in
A ∪ (B ∩ C).

• m(A ∪B ∪ C) = 0.1 is transferred to B, C, B ∩A, B ∪ C, i.e.

xB

0.1
=

yC

0.2
=

zB∪C

0.1
=

wB∩A

0.1
=

0.1
0.5

= 0.2

whence xB = 0.02, yC = 0.04, zB∪C = 0.02 and wB∩A = 0.02.

Totalizing, one finally gets:

mBCR7(B|B ∪ C) = 0.21
mBCR7(C|B ∪ C) = 0.32
mBCR7(B ∪ C|B ∪ C) = 0.16
mBCR7(B ∩A|B ∪ C) = 0.31

In BCR17,

m(A) = 0.2, where A ∈ D2, is transferred to B ∩A since B ∩A ⊂ A and m(B ∩A) > 0.

No other D1 element with non-zero mass is included in A.

m(D3) is redistributed as in BCR7.

Therefore one gets:

mBCR17(B|B ∪ C) = 0.17
mBCR17(C|B ∪ C) = 0.24
mBCR17(B ∪ C|B ∪ C) = 0.12
mBCR17(B ∩A|B ∪ C) = 0.47
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1.1 Example no. 1 (free DSm model with non-Bayesian bba)
In BCR7,

For elements in D2:

For elements in D3:

For D2:

For D3:

m(D2) is also indiscriminately redistributed, but m(D3) is redistributed in a different more refined way.

• m(A∪B) = 0.1 is transferred to B and B∩A since these are the only D1 elements included in A∪B whose masses
are non-zero, proportionally to their corresponding masses, i.e.

xB

0.1
=

wB∩A

0.1
=

0.1
0.2

= 0.5

whence xB = 0.05 and wB∩A = 0.05.
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m(A) = 0.2, where A ∈ D2, is transferred to B ∩A since B ∩A ⊂ A and m(B ∩A) > 0.

No other D1 element with non-zero mass is included in A.
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Therefore one gets:
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mBCR17(B ∪ C|B ∪ C) = 0.10 + 0.02 = 0.12
mBCR17(B ∩A|B ∪ C) = 0.1 + 0.2 + 0.05 + 0.02 + 0.1 = 0.47 54
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free DSm model with non-Bayesian bba
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• If the truth is in A ∪ B ∪ C

D1 = DΘ \ {∅}

D2 and D3 do not exist.

since s(A ∪ B ∪ C) = {A,B,C} and Θ \ {A,B,C} = ∅;

i.e. D2 elements do not contain the letters A, B, C. D3 does not exist since (DΘ \{∅})\D1 = ∅.

• If the truth is in A ∩ B ∩ C

D1 = {A ∩ B ∩ C}

D2 does not exist;

D3 = (DΘ\{∅})\D1 = {A,B,C,A∩B,A∩C,B∩C,A∪B,A∪C,B∪C,A∪B∪C,A∪(B∩C), . . .}

; D3 has 19 − 1 − 1 = 17 elements.
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Figure 1: Venn Diagram for the 3D free DSm model

4 Examples

4.1 Example no. 1 (free DSm model with non-Bayesian bba)

Let’s consider Θ = {A,B,C}, the free DSm model (no intersection is empty) and the following
prior bba

m1(A) = 0.2 m1(B) = 0.1 m1(C) = 0.2 m1(A ∪ B) = 0.1 m1(B ∪ C) = 0.1

m1(A ∪ (B ∩ C)) = 0.1 m1(A ∩ B) = 0.1 m1(A ∪ B ∪ C) = 0.1

and let’s assume that the truth is in B ∪ C, i.e. the conditioning term is B ∪ C. Then:

D1 = {B ∩ C ∩ A︸ ︷︷ ︸
CardDSm=1

, B ∩ C,B ∩ A,C ∩ A︸ ︷︷ ︸
CardDSm=2

,

(B ∩ C) ∪ (B ∩ A), (B ∩ C) ∪ (C ∩ A), (B ∩ A) ∪ (C ∩ A)︸ ︷︷ ︸
CardDSm=3

,

(B ∩ C) ∪ (B ∩ A) ∪ (C ∩ A), B,C︸ ︷︷ ︸
CardDSm=4

, B ∪ (C ∩ A), C ∪ (B ∩ A)︸ ︷︷ ︸
CardDSm=5

, B ∪ C︸ ︷︷ ︸
CardDSm=6

}
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4 Examples

4.1 Example no. 1 (free DSm model with non-Bayesian bba)

Let’s consider Θ = {A,B,C}, the free DSm model (no intersection is empty) and the following
prior bba

m1(A) = 0.2 m1(B) = 0.1 m1(C) = 0.2 m1(A ∪ B) = 0.1 m1(B ∪ C) = 0.1

m1(A ∪ (B ∩ C)) = 0.1 m1(A ∩ B) = 0.1 m1(A ∪ B ∪ C) = 0.1

Let’s assume that the truth is in B ∪ C, i.e. the conditioning term is B ∪ C

PCR5 versus Bayes’ formula
for combining probability densities

(working notes V3)

1 Principles of estimation

m(A) = 0.2 m(B) = 0.1 m(C) = 0.2

m(A ∩ B) = 0.1 m(A ∪ B) = 0.1 m(B ∪ C) = 0.1

m(A ∪ (B ∩ C)) = 0.1 m(A ∪ B ∪ C) = 0.1

In BCR12, m(D2) = m1(A) = 0.2 is transferred to (A ∩ B) ∪ (A ∩ C)
since (A ∩ B) ∪ (A ∩ C) is the 1-largest element of D1 included in A.

W ∈ D2 ∪ D3

m(θ1)

m(θ2)

m(θ3)

ε

m(θ1 ∪ θ2)

m(θ1 ∪ θ3)

m(θ2 ∪ θ3)

mPCR5(X) = m12(X) +
∑

Y ∈G\{X}
X∩Y =∅

m2
1(X)m2(Y )

m1(X) + m2(Y )
+

m2
2(X)m1(Y )

m2(X) + m1(Y )

1
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PCR5 versus Bayes’ formula
for combining probability densities

(working notes V3)

1 Principles of estimation

m(A) = 0.2 m(B) = 0.1 m(C) = 0.2

m(A ∩ B) = 0.1 m(A ∪ B) = 0.1 m(B ∪ C) = 0.1

m(A ∪ (B ∩ C)) = 0.1 m(A ∪ B ∪ C) = 0.1

In BCR12, m(D2) = m1(A) = 0.2 is transferred to (A ∩ B) ∪ (A ∩ C)
since (A ∩ B) ∪ (A ∩ C) is the 1-largest element of D1 included in A.

D1 = {A ∩ B ∩ C, B ∩ C A ∩ B, A ∩ C, (B ∩ C) ∪ (A ∩ B), (B ∩ C) ∪ (A ∩ C), (A ∩ B) ∪ (A ∩ C)

(A ∩ B) ∪ (A ∩ C) ∪ (B ∩ C), B, C, (A ∩ C) ∪ B, (A ∩ B) ∪ C, B ∪ C}

W ∈ D2 ∪ D3

m(θ1)

m(θ2)

m(θ3)

ε

m(θ1 ∪ θ2)

1

HPSD:

PCR5 versus Bayes’ formula
for combining probability densities

(working notes V3)

1 Principles of estimation

m(A) = 0.2 m(B) = 0.1 m(C) = 0.2

m(A ∩ B) = 0.1 m(A ∪ B) = 0.1 m(B ∪ C) = 0.1

m(A ∪ (B ∩ C)) = 0.1 m(A ∪ B ∪ C) = 0.1

In BCR12, m(D2) = m1(A) = 0.2 is transferred to (A ∩ B) ∪ (A ∩ C)
since (A ∩ B) ∪ (A ∩ C) is the 1-largest element of D1 included in A.

D1 = {A ∩ B ∩ C, B ∩ C A ∩ B, A ∩ C, (B ∩ C) ∪ (A ∩ B), (B ∩ C) ∪ (A ∩ C), (A ∩ B) ∪ (A ∩ C)

(A ∩ B) ∪ (A ∩ C) ∪ (B ∩ C), B, C, (A ∩ C) ∪ B, (A ∩ B) ∪ C, B ∪ C}

D2 = {A}

D3 = {A ∪ (B ∩ C), A ∪ B, A ∪ C, A ∪ B ∪ C}

W ∈ D2 ∪ D3

m(θ1)

m(θ2)

m(θ3)

1

PCR5 versus Bayes’ formula
for combining probability densities

(working notes V3)

1 Principles of estimation

m(A) = 0.2 m(B) = 0.1 m(C) = 0.2

m(A ∩ B) = 0.1 m(A ∪ B) = 0.1 m(B ∪ C) = 0.1

m(A ∪ (B ∩ C)) = 0.1 m(A ∪ B ∪ C) = 0.1

In BCR12, m(D2) = m1(A) = 0.2 is transferred to (A ∩ B) ∪ (A ∩ C)
since (A ∩ B) ∪ (A ∩ C) is the 1-largest element of D1 included in A.

D1 = {A ∩ B ∩ C, B ∩ C A ∩ B, A ∩ C, (B ∩ C) ∪ (A ∩ B), (B ∩ C) ∪ (A ∩ C), (A ∩ B) ∪ (A ∩ C)

(A ∩ B) ∪ (A ∩ C) ∪ (B ∩ C), B, C, (A ∩ C) ∪ B, (A ∩ B) ∪ C, B ∪ C}

D2 = {A}

D3 = {A ∪ (B ∩ C), A ∪ B, A ∪ C, A ∪ B ∪ C}

W ∈ D2 ∪ D3

m(θ1)

m(θ2)

m(θ3)

1

BCR17 conditioning:

PCR5 versus Bayes’ formula
for combining probability densities

(working notes V3)

1 Principles of estimation

m(A) = 0.2 m(B) = 0.1 m(C) = 0.2

m(A ∩ B) = 0.1 m(A ∪ B) = 0.1 m(B ∪ C) = 0.1

m(A ∪ (B ∩ C)) = 0.1 m(A ∪ B ∪ C) = 0.1

m(A) = 0.2 is transferred to (A ∩ B) ∪ (A ∩ C) since it is the 1-largest element of D1 included in A.

D1 = {A ∩ B ∩ C, B ∩ C A ∩ B, A ∩ C, (A ∩ B) ∪ (B ∩ C), (B ∩ C) ∪ (A ∩ C), (A ∩ B) ∪ (A ∩ C)

(A ∩ B) ∪ (A ∩ C) ∪ (B ∩ C), B, C, (A ∩ C) ∪ B, (A ∩ B) ∪ C, B ∪ C}

D2 = {A}

D3 = {A ∪ (B ∩ C), A ∪ B, A ∪ C, A ∪ B ∪ C}

W ∈ D2 ∪ D3

m(θ1)

m(θ2)

m(θ3)

1

PCR5 versus Bayes’ formula
for combining probability densities

(working notes V3)

1 Principles of estimation

m(A) = 0.2 m(B) = 0.1 m(C) = 0.2

m(A ∩ B) = 0.1 m(A ∪ B) = 0.1 m(B ∪ C) = 0.1

m(A ∪ (B ∩ C)) = 0.1 m(A ∪ B ∪ C) = 0.1

m(A) = 0.2 is transferred to (A ∩ B) ∪ (A ∩ C) since it is the 1-largest element of D1 included in A.

m(A ∪ B) = 0.1 is transferred to (A ∩ C) ∪ B since it is the 1-largest element of D1 included in A ∪ B.

m(A ∪ C) = 0.1 is transferred to (A ∩ B) ∪ C since it is the 1-largest element of D1 included in A ∪ C.

m(A ∪ C) = 0

m(A ∪ (B ∩ C)) = 0.1 is transferred to (A ∩ B) ∪ (A ∩ C) ∪ (B ∩ C) since it is the 1-largest element
of D1 included in A ∪ (B ∩ C).

m(A ∪ B ∪ C) = 0.1 is transferred to B ∪ C since it is the 1-largest element of D1 included in A ∪ B ∪ C.

D1 = {A ∩ B ∩ C, B ∩ C A ∩ B, A ∩ C, (A ∩ B) ∪ (B ∩ C), (B ∩ C) ∪ (A ∩ C), (A ∩ B) ∪ (A ∩ C)

(A ∩ B) ∪ (A ∩ C) ∪ (B ∩ C), B, C, (A ∩ C) ∪ B, (A ∩ B) ∪ C, B ∪ C}

D2 = {A}

1

BCR17 result:

1.1 Example no. 1 (free DSm model with non-Bayesian bba)
In BCR7,

m(D2) is also indiscriminately redistributed, but m(D3) is redistributed in a different more refined way.

• m(A∪B) = 0.1 is transferred to B and B∩A since these are the only D1 elements included in A∪B whose masses
are non-zero, proportionally to their corresponding masses, i.e.

xB

0.1
=

wB∩A

0.1
=

0.1
0.2

= 0.5

whence xB = 0.05 and wB∩A = 0.05.

• m(A ∪ (B ∩ C)) = 0.1 is transferred to B ∩ A only since no other D1 element with non-zero mass is included in
A ∪ (B ∩ C).

• m(A ∪B ∪ C) = 0.1 is transferred to B, C, B ∩A, B ∪ C, i.e.

xB

0.1
=

yC

0.2
=

zB∪C

0.1
=

wB∩A

0.1
=

0.1
0.5

= 0.2

whence xB = 0.02, yC = 0.04, zB∪C = 0.02 and wB∩A = 0.02.

Totalizing, one finally gets:

mBCR7(B|B ∪ C) = 0.21
mBCR7(C|B ∪ C) = 0.32
mBCR7(B ∪ C|B ∪ C) = 0.16
mBCR7(B ∩A|B ∪ C) = 0.31

In BCR17,

m(A) = 0.2, where A ∈ D2, is transferred to B ∩A since B ∩A ⊂ A and m(B ∩A) > 0.

No other D1 element with non-zero mass is included in A.

m(D3) is redistributed as in BCR7.

Therefore one gets:

mBCR17(B|B ∪ C) = 0.17
mBCR17(C|B ∪ C) = 0.24
mBCR17(B ∪ C|B ∪ C) = 0.12
mBCR17(B ∩A|B ∪ C) = 0.47
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• If the truth is in A ∪ B ∪ C

D1 = DΘ \ {∅}

D2 and D3 do not exist.

since s(A ∪ B ∪ C) = {A,B,C} and Θ \ {A,B,C} = ∅;

i.e. D2 elements do not contain the letters A, B, C. D3 does not exist since (DΘ \{∅})\D1 = ∅.

• If the truth is in A ∩ B ∩ C

D1 = {A ∩ B ∩ C}

D2 does not exist;

D3 = (DΘ\{∅})\D1 = {A,B,C,A∩B,A∩C,B∩C,A∪B,A∪C,B∪C,A∪B∪C,A∪(B∩C), . . .}

; D3 has 19 − 1 − 1 = 17 elements.
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Figure 1: Venn Diagram for the 3D free DSm model

4 Examples

4.1 Example no. 1 (free DSm model with non-Bayesian bba)

Let’s consider Θ = {A,B,C}, the free DSm model (no intersection is empty) and the following
prior bba

m1(A) = 0.2 m1(B) = 0.1 m1(C) = 0.2 m1(A ∪ B) = 0.1 m1(B ∪ C) = 0.1

m1(A ∪ (B ∩ C)) = 0.1 m1(A ∩ B) = 0.1 m1(A ∪ B ∪ C) = 0.1

and let’s assume that the truth is in B ∪ C, i.e. the conditioning term is B ∪ C. Then:

D1 = {B ∩ C ∩ A︸ ︷︷ ︸
CardDSm=1

, B ∩ C,B ∩ A,C ∩ A︸ ︷︷ ︸
CardDSm=2

,

(B ∩ C) ∪ (B ∩ A), (B ∩ C) ∪ (C ∩ A), (B ∩ A) ∪ (C ∩ A)︸ ︷︷ ︸
CardDSm=3

,

(B ∩ C) ∪ (B ∩ A) ∪ (C ∩ A), B,C︸ ︷︷ ︸
CardDSm=4

, B ∪ (C ∩ A), C ∪ (B ∩ A)︸ ︷︷ ︸
CardDSm=5

, B ∪ C︸ ︷︷ ︸
CardDSm=6

}
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2. In BCR17, m1(A) = 0.2 is transferred to

B ∩ A since B ∩ A ⊂ A

and m1(B ∩ A) > 0.

No other D1 element with non-zero mass is included in A.

mBCR17(B|B ∪ C) = 0.17

mBCR17(C|B ∪ C) = 0.24

mBCR17(B ∪ C|B ∪ C) = 0.12

mBCR17(B ∩ A|B ∪ C) = 0.47

In the free DSm model, if the truth is in A, BCR12 gives the same result as m1(.) fusioned
with m2(A) = 1 using the classic DSm rule.

4.2 Example no. 2 (Shafer’s model with non-Bayesian bba)

Θ = {A,B,C} with Shafer’s model and the prior bba:

m1(A) = 0.2 m1(B) = 0.1 m1(C) = 0.2

m1(A ∪ B) = 0.1 m1(B ∪ C) = 0.1 m1(A ∪ B ∪ C) = 0.3

Let’s assume as conditioning constraint that the truth is in B ∪ C.

DΘ is decomposed into
D1 = {B,C,B ∪ C}

D2 = {A}

D3 = {A ∪ B,A ∪ C,A ∪ B ∪ C}

The Venn Diagram corresponding to Shafer’s model for this example is given in Figure 3 below.
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Figure 3: Venn Diagram for the 3D Shafer’s model

1. In BCR12: For D2, m1(A) = 0.2 is redistributed to B, C, B ∪ C as in BCR2. m(D3) is
redistributed as in BCR2.

mBCR12(B|B ∪ C) = 0.25

mBCR12(C|B ∪ C) = 0.30

mBCR12(B ∪ C|B ∪ C) = 0.45
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2. BCR17: For D3, m1(A ∪ B) = 0.1 is transferred to B (no case of k-elements herein);
m1(A ∪ B ∪ C) = 0.3 is transferred to B, C, B ∪ C proportionally to their corresponding
masses.

mBCR17(B|B ∪ C) = 0.325

mBCR17(C|B ∪ C) = 0.450

mBCR17(B ∪ C|B ∪ C) = 0.225

o) If one applies the SCR, i.e. one combines with Dempster’s rule m1(.) with m2(B ∪C) = 1,
because the truth is in B ∪ C as Glenn Shafer proposes, one gets:

mSCR(B|B ∪ C) = 0.25

mSCR(C|B ∪ C) = 0.25

mSCR(B ∪ C|B ∪ C) = 0.50

4.3 Example no. 3 (Shafer’s model with Bayesian bba)

Let’s consider Θ = {A,B,C,D} with Shafer’s model and the following prior Bayesian bba:

m1(A) = 0.4 m1(B) = 0.1 m1(C) = 0.2 m1(D) = 0.3

Let’s assume that one finds out that the truth is in C ∪D. From formulas of BCRs conditioning
rules one gets the same result for all the BCRs in such example according to the following table

A B C D

m1(.) 0.4 0.1 0.2 0.3
mBCR1−31(.|C ∪ D) 0 0 0.40 0.60

Table 1: Conditioning results based on BCRs given the truth is in C ∪ D.

Let’s examine the conditional bba obtained directly from the fusion of the prior bba m1(.) with
the belief assignment focused only on C ∪ D, say m2(C ∪ D) = 1 using three main rules of
combination (Dempster’s rule, DSmH and PCR5). After elementary derivations, one gets final
results given in Table 2. In the Bayesian case, all BCRs and Shafer’s conditioning rule (with
Dempster’s rule) give the same result.

A B C D C ∪ D A ∪ C ∪ D B ∪ C ∪ D

mDS(.|C ∪ D) 0 0 0.40 0.60 0 0 0
mDSmH(.|C ∪ D) 0 0 0.20 0.30 0 0.40 0.10
mPCR5(.|C ∪ D) 0.114286 0.009091 0.20 0.30 0.376623 0 0

Table 2: Conditioning results based on Dempster’s, DSmH and PCR5 fusion rules.

PCR5 versus Bayes’ formula
for combining probability densities

(working notes V3)
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PCR5 versus Bayes’ formula
for combining probability densities

(working notes V3)

1 Principles of estimation

!=

mBCR12(B | B ∪ C) = 0.1 + 0.1 + 0.05 = 0.25

mBCR12(C | B ∪ C) = 0.2 + 0.1 = 0.20

mBCR12(B ∪ C | B ∪ C) = 0.1 + 0.05 + 0.3 = 0.45
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m(A) = 0.2 m(B) = 0.1 m(C) = 0.2

m(A ∪ B) = 0.1 m(B ∪ C) = 0.1 m(A ∪ B ∪ C) = 0.3

m(A) = 0.2 is distributed to B, C and B ∪ C proportionally to their corresponding masses, i.e.

xB

0.1
=

yC

0.2
=

zB∪C

0.1
=

0.2
0.1 + 0.2 + 0.1

= 0.5

whence xB = 0.05, yC = 0.10 ans zB∪C = 0.05.

m(A)

m(A ∪ B) = 0.1 is transferred to B, i.e. the 1-largest element of D1 included in A ∪ B.

m(A ∪ B ∪ C) = 0.3 is transferred to B ∪ C, i.e. the 1-largest element of D1 included in A ∪ B ∪ C.

mBCR12(B | B ∪ C) = 0.1

1

Result with BCR17

1.2 Example no. 2 (Shafer’s model with non-Bayesian bba)
BCR17-21:

For D3, m(A ∪B) = 0.1 is transferred to B (no case of k-elements herein);

m(A ∪B ∪ C) = 0.3 is transferred to B, C, B ∪ C proportionally to their corresponding masses:

xB

0.1
=

yC

0.2
=

zB∪C

0.1
=

0.3
0.4

= 0.75

whence xB = 0.075, yC = 0.15, and zB∪C = 0.075.

Finally, one gets

mBCR7(B|B ∪ C) = 0.325
mBCR7(C|B ∪ C) = 0.450
mBCR7(B ∪ C|B ∪ C) = 0.225

Therefore one gets same result as in BCR7, i.e.

mBCR17(B|B ∪ C) = 0.325
mBCR17(C|B ∪ C) = 0.450
mBCR17(B ∪ C|B ∪ C) = 0.225

The main purpose of information fusion is to produce reasonably aggregated, refined and/or complete granule of

data obtained from a single or multiple sources with consequent reasoning process, consisting in using evidence to

choose the best hypothesis, supported by it. Data Association (DA) with its main goal to partitioning observations into

available tracks becomes a key function of any surveillance system. An issue to improve track maintenance performances

of modern Multi Target Trackers (MTT) [1, 2], is to incorporate Generalized Data
1

Association (GDA) in tracking

algorithms [13]. At each time step, GDA consists in associating current (attribute and kinematics) measurements with

predicted measurements (attributes and kinematics) for each target. GDA can be actually decomposed into two parts

[13]: Attribute-based Data Association (ADA) and Kinematics-based Data Association (KDA). Once ADA is obtained,

the estimation of the attribute/type of each target must be updated using a proper and an efficient fusion rule. This process

is called attribute tracking and consists in combining information collected over time from one (or more sensors) to

refine the knowledge about the possible changes of the attributes of the targets. We consider here the possibility that the

attributes tracked by the system can change over time, like the color of a chameleon moving in a variable environment.

In some military applications, target attribute can change since for example it can be declared as neutral at a given

scan and can become a foe several scans later; or like in the example considered in this paper, a tracker can become

mistaken when tracking several closely-spaced targets and thus could eventually track sequentially different targets and

thus observes a true sequence of different types of targets. In such case, although the attribute of each target is invariant

over time, at the attribute-tracking level the type of the target committed to the (hidden unresolved) track varies with

time and must be tracked efficiently to help to discriminate how many different targets are hidden in the same unresolved

track. Our motivation for attribute fusion is inspired from the necessity to ascertain the targets’ types, information, that

in consequence has an important implication to enhance the tracking performance. Combination rules are special types

of the aggregation methods. To be useful, one system has to provide a way to capture, analyze and utilize through the

fusion process the new available data (evidence) in order to update the current state of knowledge about the problem

under consideration.

Dempster-Shafer Theory (DST) [8] is one of the widely framework used in the area of target tracking when one wants

to deal with uncertain information and take into account attribute data and/or human-based information into modern

tracking systems. DST, thanks to belief functions, is well suited for representing uncertainty and combining information,

especially in case of low conflicts between the sources (bodies of evidence) with high beliefs. When the conflict

increases
2

and becomes very high (close to 1), Dempster’s rule yields unfortunately unexpected or what authors feel

counter-intuitive results [14, 9]. Dempster’s rule also presents difficulties in its implementation/programming because of

unavoidable numerical rounding errors due to the finite precision arithmetic of our computers.

To overcome the drawbacks of Dempster’s fusion rule and in the meantime extend the domain of application of

the belief functions, we have proposed recently a new mathematical framework, called Dezert-Smarandache Theory

(DSmT) with a new set of combination rules, among them the Proportional Conflict Redistribution no. 5 which proposes

1
Data being kinematics and attribute.

2
Which often occurs in Target Type Tracking problem as it will be showed in the sequel.
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tracking systems. DST, thanks to belief functions, is well suited for representing uncertainty and combining information,

especially in case of low conflicts between the sources (bodies of evidence) with high beliefs. When the conflict
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and becomes very high (close to 1), Dempster’s rule yields unfortunately unexpected or what authors feel

counter-intuitive results [14, 9]. Dempster’s rule also presents difficulties in its implementation/programming because of

unavoidable numerical rounding errors due to the finite precision arithmetic of our computers.

To overcome the drawbacks of Dempster’s fusion rule and in the meantime extend the domain of application of

the belief functions, we have proposed recently a new mathematical framework, called Dezert-Smarandache Theory

(DSmT) with a new set of combination rules, among them the Proportional Conflict Redistribution no. 5 which proposes
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Data being kinematics and attribute.
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Which often occurs in Target Type Tracking problem as it will be showed in the sequel.

1.2 Example no. 2 (Shafer’s model with non-Bayesian bba)

mBCR12(B|B ∪ C) = 0.10 + 0.10 + 0.05 = 0.25
mBCR12(C|B ∪ C) = 0.20 + 0.10 = 0.30
mBCR12(B ∪ C|B ∪ C) = 0.10 + 0.05 + 0.30 = 0.45

BCR17-21:

For D2, m(A) = 0.2 is transferred proportionally to all elements of D1, i.e.

xB

0.1
=

yC

0.2
=

zB∪C

0.1
=

0.2
0.4

= 0.5

whence xB = 0.05, yC = 0.10, and zB∪C = 0.05.

For D3, m(A ∪B) = 0.1 is transferred to B (no case of k-elements herein);

m(A ∪B ∪ C) = 0.3 is transferred to B, C, B ∪ C proportionally to their corresponding masses:

xB

0.1
=

yC

0.2
=

zB∪C

0.1
=

0.3
0.4

= 0.75

whence xB = 0.075, yC = 0.15, and zB∪C = 0.075.

Finally, one gets

mBCR7(B|B ∪ C) = 0.325
mBCR7(C|B ∪ C) = 0.450
mBCR7(B ∪ C|B ∪ C) = 0.225

Therefore one gets same result as in BCR7, i.e.

mBCR17(B|B ∪ C) = 0.325
mBCR17(C|B ∪ C) = 0.450
mBCR17(B ∪ C|B ∪ C) = 0.225
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References
[1] Bar-Shalom Y., Multitarget-Multisensor Tracking: Advanced Applications, Artech House,1990.

1.2 Example no. 2 (Shafer’s model with non-Bayesian bba)

mBCR12(B|B ∪ C) = 0.10 + 0.10 + 0.05 = 0.25
mBCR12(C|B ∪ C) = 0.20 + 0.10 = 0.30
mBCR12(B ∪ C|B ∪ C) = 0.10 + 0.05 + 0.30 = 0.45

BCR17-21:

For D2, m(A) = 0.2 is transferred proportionally to all elements of D1, i.e.

xB

0.1
=

yC

0.2
=

zB∪C

0.1
=

0.2
0.4

= 0.5

whence xB = 0.05, yC = 0.10, and zB∪C = 0.05.

For D3, m(A ∪B) = 0.1 is transferred to B (no case of k-elements herein);

m(A ∪B ∪ C) = 0.3 is transferred to B, C, B ∪ C proportionally to their corresponding masses:

xB

0.1
=

yC

0.2
=

zB∪C

0.1
=

0.3
0.4

= 0.75

whence xB = 0.075, yC = 0.15, and zB∪C = 0.075.

Finally, one gets

mBCR7(B|B ∪ C) = 0.325
mBCR7(C|B ∪ C) = 0.450
mBCR7(B ∪ C|B ∪ C) = 0.225

Therefore one gets same result as in BCR7, i.e.

mBCR17(B|B ∪ C) = 0.10 + 0.05 + 0.10 + 0.075 = 0.325
mBCR17(C|B ∪ C) = 0.2 + 0.10 + 0.15 = 0.450
mBCR17(B ∪ C|B ∪ C) = 0.10 + 0.05 + 0.075 = 0.225

References
[1] Bar-Shalom Y., Multitarget-Multisensor Tracking: Advanced Applications, Artech House,1990.
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• If the truth is in A ∪ B ∪ C

D1 = DΘ \ {∅}

D2 and D3 do not exist.

since s(A ∪ B ∪ C) = {A,B,C} and Θ \ {A,B,C} = ∅;

i.e. D2 elements do not contain the letters A, B, C. D3 does not exist since (DΘ \{∅})\D1 = ∅.

• If the truth is in A ∩ B ∩ C

D1 = {A ∩ B ∩ C}

D2 does not exist;

D3 = (DΘ\{∅})\D1 = {A,B,C,A∩B,A∩C,B∩C,A∪B,A∪C,B∪C,A∪B∪C,A∪(B∩C), . . .}

; D3 has 19 − 1 − 1 = 17 elements.
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Figure 1: Venn Diagram for the 3D free DSm model

4 Examples

4.1 Example no. 1 (free DSm model with non-Bayesian bba)

Let’s consider Θ = {A,B,C}, the free DSm model (no intersection is empty) and the following
prior bba

m1(A) = 0.2 m1(B) = 0.1 m1(C) = 0.2 m1(A ∪ B) = 0.1 m1(B ∪ C) = 0.1

m1(A ∪ (B ∩ C)) = 0.1 m1(A ∩ B) = 0.1 m1(A ∪ B ∪ C) = 0.1

and let’s assume that the truth is in B ∪ C, i.e. the conditioning term is B ∪ C. Then:

D1 = {B ∩ C ∩ A︸ ︷︷ ︸
CardDSm=1

, B ∩ C,B ∩ A,C ∩ A︸ ︷︷ ︸
CardDSm=2

,

(B ∩ C) ∪ (B ∩ A), (B ∩ C) ∪ (C ∩ A), (B ∩ A) ∪ (C ∩ A)︸ ︷︷ ︸
CardDSm=3

,

(B ∩ C) ∪ (B ∩ A) ∪ (C ∩ A), B,C︸ ︷︷ ︸
CardDSm=4

, B ∪ (C ∩ A), C ∪ (B ∩ A)︸ ︷︷ ︸
CardDSm=5

, B ∪ C︸ ︷︷ ︸
CardDSm=6

}
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2. In BCR17, m1(A) = 0.2 is transferred to

B ∩ A since B ∩ A ⊂ A

and m1(B ∩ A) > 0.

No other D1 element with non-zero mass is included in A.

mBCR17(B|B ∪ C) = 0.17

mBCR17(C|B ∪ C) = 0.24

mBCR17(B ∪ C|B ∪ C) = 0.12

mBCR17(B ∩ A|B ∪ C) = 0.47

In the free DSm model, if the truth is in A, BCR12 gives the same result as m1(.) fusioned
with m2(A) = 1 using the classic DSm rule.

4.2 Example no. 2 (Shafer’s model with non-Bayesian bba)

Θ = {A,B,C} with Shafer’s model and the prior bba:

m1(A) = 0.2 m1(B) = 0.1 m1(C) = 0.2

m1(A ∪ B) = 0.1 m1(B ∪ C) = 0.1 m1(A ∪ B ∪ C) = 0.3

Let’s assume as conditioning constraint that the truth is in B ∪ C.

DΘ is decomposed into
D1 = {B,C,B ∪ C}

D2 = {A}

D3 = {A ∪ B,A ∪ C,A ∪ B ∪ C}

The Venn Diagram corresponding to Shafer’s model for this example is given in Figure 3 below.
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Figure 3: Venn Diagram for the 3D Shafer’s model

1. In BCR12: For D2, m1(A) = 0.2 is redistributed to B, C, B ∪ C as in BCR2. m(D3) is
redistributed as in BCR2.

mBCR12(B|B ∪ C) = 0.25

mBCR12(C|B ∪ C) = 0.30

mBCR12(B ∪ C|B ∪ C) = 0.45
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redistributed as in BCR2.
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Result with SCR
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2. BCR17: For D3, m1(A ∪ B) = 0.1 is transferred to B (no case of k-elements herein);
m1(A ∪ B ∪ C) = 0.3 is transferred to B, C, B ∪ C proportionally to their corresponding
masses.

mBCR17(B|B ∪ C) = 0.325

mBCR17(C|B ∪ C) = 0.450

mBCR17(B ∪ C|B ∪ C) = 0.225

o) If one applies the SCR, i.e. one combines with Dempster’s rule m1(.) with m2(B ∪C) = 1,
because the truth is in B ∪ C as Glenn Shafer proposes, one gets:

mSCR(B|B ∪ C) = 0.25

mSCR(C|B ∪ C) = 0.25

mSCR(B ∪ C|B ∪ C) = 0.50

4.3 Example no. 3 (Shafer’s model with Bayesian bba)

Let’s consider Θ = {A,B,C,D} with Shafer’s model and the following prior Bayesian bba:

m1(A) = 0.4 m1(B) = 0.1 m1(C) = 0.2 m1(D) = 0.3

Let’s assume that one finds out that the truth is in C ∪D. From formulas of BCRs conditioning
rules one gets the same result for all the BCRs in such example according to the following table

A B C D

m1(.) 0.4 0.1 0.2 0.3
mBCR1−31(.|C ∪ D) 0 0 0.40 0.60

Table 1: Conditioning results based on BCRs given the truth is in C ∪ D.

Let’s examine the conditional bba obtained directly from the fusion of the prior bba m1(.) with
the belief assignment focused only on C ∪ D, say m2(C ∪ D) = 1 using three main rules of
combination (Dempster’s rule, DSmH and PCR5). After elementary derivations, one gets final
results given in Table 2. In the Bayesian case, all BCRs and Shafer’s conditioning rule (with
Dempster’s rule) give the same result.

A B C D C ∪ D A ∪ C ∪ D B ∪ C ∪ D

mDS(.|C ∪ D) 0 0 0.40 0.60 0 0 0
mDSmH(.|C ∪ D) 0 0 0.20 0.30 0 0.40 0.10
mPCR5(.|C ∪ D) 0.114286 0.009091 0.20 0.30 0.376623 0 0

Table 2: Conditioning results based on Dempster’s, DSmH and PCR5 fusion rules.

PCR5 versus Bayes’ formula
for combining probability densities

(working notes V3)

1 Principles of estimation

D3 = {A ∪ (B ∩ C), A ∪ B, A ∪ C, A ∪ B ∪ C}

mBCR12(B | B ∪ C) = 0.1

mBCR12(C | B ∪ C) = 0.2

mBCR12(B ∪ C | B ∪ C) = 0.1 + 0.1 = 0.2

mBCR12(A ∪ B | B ∪ C) = 0.1

mBCR12((A ∩ B) ∪ (A ∩ C) ∪ (B ∩ C) | B ∪ C) = 0.1

mBCR12((A ∩ B) ∪ (A ∩ C) | B ∪ C) = 0.2

mBCR12((A ∩ C) ∪ B | B ∪ C) = 0.1

mBCR12(A ∩ B | B ∪ C) = 0.1

m(A) = 0.2 m(B) = 0.1 m(C) = 0.2

m(A ∩ B) = 0.1 m(A ∪ B) = 0.1 m(B ∪ C) = 0.1

m(A ∪ (B ∩ C)) = 0.1 m(A ∪ B ∪ C) = 0.1

m(A) = 0.2 is transferred to (A ∩ B) ∪ (A ∩ C) since it is the 1-largest element of D1 included in A.

m(A ∪ B) = 0.1 is transferred to (A ∩ C) ∪ B since it is the 1-largest element of D1 included in A ∪ B.

1

HPSD:

BCR17 conditioning:
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for combining probability densities
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PCR5 versus Bayes’ formula
for combining probability densities

(working notes V3)

1 Principles of estimation

!=

mBCR12(B | B ∪ C) = 0.1 + 0.1 + 0.05 = 0.25

mBCR12(C | B ∪ C) = 0.2 + 0.1 = 0.20

mBCR12(B ∪ C | B ∪ C) = 0.1 + 0.05 + 0.3 = 0.45

D3 = {A ∪ (B ∩ C), A ∪ B, A ∪ C, A ∪ B ∪ C}

m(A) = 0.2 m(B) = 0.1 m(C) = 0.2

m(A ∪ B) = 0.1 m(B ∪ C) = 0.1 m(A ∪ B ∪ C) = 0.3

m(A) = 0.2 is distributed to B, C and B ∪ C proportionally to their corresponding masses, i.e.

xB

0.1
=

yC

0.2
=

zB∪C

0.1
=

0.2
0.1 + 0.2 + 0.1

= 0.5

whence xB = 0.05, yC = 0.10 ans zB∪C = 0.05.

m(A)

m(A ∪ B) = 0.1 is transferred to B, i.e. the 1-largest element of D1 included in A ∪ B.

m(A ∪ B ∪ C) = 0.3 is transferred to B ∪ C, i.e. the 1-largest element of D1 included in A ∪ B ∪ C.

mBCR12(B | B ∪ C) = 0.1

1

Result with BCR17

1.2 Example no. 2 (Shafer’s model with non-Bayesian bba)
BCR17-21:

For D3, m(A ∪B) = 0.1 is transferred to B (no case of k-elements herein);

m(A ∪B ∪ C) = 0.3 is transferred to B, C, B ∪ C proportionally to their corresponding masses:

xB

0.1
=

yC

0.2
=

zB∪C

0.1
=

0.3
0.4

= 0.75

whence xB = 0.075, yC = 0.15, and zB∪C = 0.075.

Finally, one gets

mBCR7(B|B ∪ C) = 0.325
mBCR7(C|B ∪ C) = 0.450
mBCR7(B ∪ C|B ∪ C) = 0.225

Therefore one gets same result as in BCR7, i.e.

mBCR17(B|B ∪ C) = 0.325
mBCR17(C|B ∪ C) = 0.450
mBCR17(B ∪ C|B ∪ C) = 0.225

The main purpose of information fusion is to produce reasonably aggregated, refined and/or complete granule of

data obtained from a single or multiple sources with consequent reasoning process, consisting in using evidence to

choose the best hypothesis, supported by it. Data Association (DA) with its main goal to partitioning observations into

available tracks becomes a key function of any surveillance system. An issue to improve track maintenance performances

of modern Multi Target Trackers (MTT) [1, 2], is to incorporate Generalized Data
1

Association (GDA) in tracking

algorithms [13]. At each time step, GDA consists in associating current (attribute and kinematics) measurements with

predicted measurements (attributes and kinematics) for each target. GDA can be actually decomposed into two parts

[13]: Attribute-based Data Association (ADA) and Kinematics-based Data Association (KDA). Once ADA is obtained,

the estimation of the attribute/type of each target must be updated using a proper and an efficient fusion rule. This process

is called attribute tracking and consists in combining information collected over time from one (or more sensors) to

refine the knowledge about the possible changes of the attributes of the targets. We consider here the possibility that the

attributes tracked by the system can change over time, like the color of a chameleon moving in a variable environment.

In some military applications, target attribute can change since for example it can be declared as neutral at a given

scan and can become a foe several scans later; or like in the example considered in this paper, a tracker can become

mistaken when tracking several closely-spaced targets and thus could eventually track sequentially different targets and

thus observes a true sequence of different types of targets. In such case, although the attribute of each target is invariant

over time, at the attribute-tracking level the type of the target committed to the (hidden unresolved) track varies with

time and must be tracked efficiently to help to discriminate how many different targets are hidden in the same unresolved

track. Our motivation for attribute fusion is inspired from the necessity to ascertain the targets’ types, information, that

in consequence has an important implication to enhance the tracking performance. Combination rules are special types

of the aggregation methods. To be useful, one system has to provide a way to capture, analyze and utilize through the

fusion process the new available data (evidence) in order to update the current state of knowledge about the problem

under consideration.

Dempster-Shafer Theory (DST) [8] is one of the widely framework used in the area of target tracking when one wants

to deal with uncertain information and take into account attribute data and/or human-based information into modern

tracking systems. DST, thanks to belief functions, is well suited for representing uncertainty and combining information,

especially in case of low conflicts between the sources (bodies of evidence) with high beliefs. When the conflict

increases
2

and becomes very high (close to 1), Dempster’s rule yields unfortunately unexpected or what authors feel

counter-intuitive results [14, 9]. Dempster’s rule also presents difficulties in its implementation/programming because of

unavoidable numerical rounding errors due to the finite precision arithmetic of our computers.

To overcome the drawbacks of Dempster’s fusion rule and in the meantime extend the domain of application of

the belief functions, we have proposed recently a new mathematical framework, called Dezert-Smarandache Theory

(DSmT) with a new set of combination rules, among them the Proportional Conflict Redistribution no. 5 which proposes

1
Data being kinematics and attribute.

2
Which often occurs in Target Type Tracking problem as it will be showed in the sequel.
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The main purpose of information fusion is to produce reasonably aggregated, refined and/or complete granule of

data obtained from a single or multiple sources with consequent reasoning process, consisting in using evidence to

choose the best hypothesis, supported by it. Data Association (DA) with its main goal to partitioning observations into

available tracks becomes a key function of any surveillance system. An issue to improve track maintenance performances

of modern Multi Target Trackers (MTT) [1, 2], is to incorporate Generalized Data
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Association (GDA) in tracking

algorithms [13]. At each time step, GDA consists in associating current (attribute and kinematics) measurements with

predicted measurements (attributes and kinematics) for each target. GDA can be actually decomposed into two parts

[13]: Attribute-based Data Association (ADA) and Kinematics-based Data Association (KDA). Once ADA is obtained,

the estimation of the attribute/type of each target must be updated using a proper and an efficient fusion rule. This process

is called attribute tracking and consists in combining information collected over time from one (or more sensors) to

refine the knowledge about the possible changes of the attributes of the targets. We consider here the possibility that the

attributes tracked by the system can change over time, like the color of a chameleon moving in a variable environment.

In some military applications, target attribute can change since for example it can be declared as neutral at a given

scan and can become a foe several scans later; or like in the example considered in this paper, a tracker can become

mistaken when tracking several closely-spaced targets and thus could eventually track sequentially different targets and

thus observes a true sequence of different types of targets. In such case, although the attribute of each target is invariant

over time, at the attribute-tracking level the type of the target committed to the (hidden unresolved) track varies with

time and must be tracked efficiently to help to discriminate how many different targets are hidden in the same unresolved

track. Our motivation for attribute fusion is inspired from the necessity to ascertain the targets’ types, information, that

in consequence has an important implication to enhance the tracking performance. Combination rules are special types

of the aggregation methods. To be useful, one system has to provide a way to capture, analyze and utilize through the

fusion process the new available data (evidence) in order to update the current state of knowledge about the problem

under consideration.

Dempster-Shafer Theory (DST) [8] is one of the widely framework used in the area of target tracking when one wants

to deal with uncertain information and take into account attribute data and/or human-based information into modern

tracking systems. DST, thanks to belief functions, is well suited for representing uncertainty and combining information,

especially in case of low conflicts between the sources (bodies of evidence) with high beliefs. When the conflict

increases
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and becomes very high (close to 1), Dempster’s rule yields unfortunately unexpected or what authors feel

counter-intuitive results [14, 9]. Dempster’s rule also presents difficulties in its implementation/programming because of

unavoidable numerical rounding errors due to the finite precision arithmetic of our computers.

To overcome the drawbacks of Dempster’s fusion rule and in the meantime extend the domain of application of

the belief functions, we have proposed recently a new mathematical framework, called Dezert-Smarandache Theory

(DSmT) with a new set of combination rules, among them the Proportional Conflict Redistribution no. 5 which proposes
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Belief Conditioning Rule #12

BCR12 does the most pessimistic/prudent redistribution among all possible BCR:

- the mass m(W) of each W in D2UD3 is transferred in a pessimistic/prudent way to the k-largest 
elements X from D1 which are included in W (in equal parts) if any;
- if this way is not possible, then m(W) is indiscriminately distributed to all X from D1 
proportionally with respect their nonzero masses.

BCR12 can be regarded as a generalization of SCR from the power set to the hyper-
power set in the free DSm free model (all intersections non-empty).  In this case the 
result of BCR12 is equal to that of m1(.) combined with m2(A)=1, when the truth is in A, 
using (DSmC).

220 BELIEF CONDITIONING RULES

redistributed the masses of D2 indiscriminately to D1, but for the free and some hybrid DSm
models of DΘ we can do a more exact redistribution.

There are elements in D2 that don’t include any element from D1; the mass of these elements
will be redistributed identically as in BCR1-. But other elements from D2 that include at least
one element from D1 will be redistributed as we did before with D3. So we can improve the
last ten BCRs for any X ∈ D1 as follows:

mBCR12(X|A) = m(X) +
[
m(X) ·

∑

Z∈D2

!Y ∈D1 with Y ⊂Z

m(Z)
]
/

∑

Y ∈D1

m(Y )

+
∑

Z∈D2

X⊂Z,X is k-largest

m(Z)/k +
∑

W∈D3

X⊂W,X is k-largest

m(W )/k (8.15)

or equivalently

mBCR12(X|A) =
[
m(X) ·

∑

Z∈D1,

or Z∈D2 |!Y ∈D1 with Y ⊂Z

m(Z)
]
/

∑

Y ∈D1

m(Y )

+
∑

W∈D2∪D3

X⊂W,X is k-largest

m(W )/k (8.16)

mBCR13(X|A) =
[
m(X) ·

∑

Z∈D1,

or Z∈D2 |!Y ∈D1 with Y ⊂Z

m(Z)
]
/

∑

Y ∈D1

m(Y )

+
∑

W∈D2∪D3

X⊂W,X is k-smallest

m(W )/k (8.17)

mBCR14(X|A) =
[
m(X) ·

∑

Z∈D1,

or Z∈D2 |!Y ∈D1 with Y ⊂Z

m(Z)
]
/

∑

Y ∈D1

m(Y )

+
∑

W∈D2∪D3

X⊂W,X is k-median

m(W )/k (8.18)
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Example #1 for BCR12
free DSm model with non-Bayesian bba

4

• If the truth is in A ∪ B ∪ C

D1 = DΘ \ {∅}

D2 and D3 do not exist.

since s(A ∪ B ∪ C) = {A,B,C} and Θ \ {A,B,C} = ∅;

i.e. D2 elements do not contain the letters A, B, C. D3 does not exist since (DΘ \{∅})\D1 = ∅.

• If the truth is in A ∩ B ∩ C

D1 = {A ∩ B ∩ C}

D2 does not exist;

D3 = (DΘ\{∅})\D1 = {A,B,C,A∩B,A∩C,B∩C,A∪B,A∪C,B∪C,A∪B∪C,A∪(B∩C), . . .}

; D3 has 19 − 1 − 1 = 17 elements.

!"
#$
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#$
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#$!"

A
#$

B

!%C

Figure 1: Venn Diagram for the 3D free DSm model

4 Examples

4.1 Example no. 1 (free DSm model with non-Bayesian bba)

Let’s consider Θ = {A,B,C}, the free DSm model (no intersection is empty) and the following
prior bba

m1(A) = 0.2 m1(B) = 0.1 m1(C) = 0.2 m1(A ∪ B) = 0.1 m1(B ∪ C) = 0.1

m1(A ∪ (B ∩ C)) = 0.1 m1(A ∩ B) = 0.1 m1(A ∪ B ∪ C) = 0.1

and let’s assume that the truth is in B ∪ C, i.e. the conditioning term is B ∪ C. Then:

D1 = {B ∩ C ∩ A︸ ︷︷ ︸
CardDSm=1

, B ∩ C,B ∩ A,C ∩ A︸ ︷︷ ︸
CardDSm=2

,

(B ∩ C) ∪ (B ∩ A), (B ∩ C) ∪ (C ∩ A), (B ∩ A) ∪ (C ∩ A)︸ ︷︷ ︸
CardDSm=3

,

(B ∩ C) ∪ (B ∩ A) ∪ (C ∩ A), B,C︸ ︷︷ ︸
CardDSm=4

, B ∪ (C ∩ A), C ∪ (B ∩ A)︸ ︷︷ ︸
CardDSm=5

, B ∪ C︸ ︷︷ ︸
CardDSm=6

}
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PCR5 versus Bayes’ formula
for combining probability densities

(working notes V3)

1 Principles of estimation

m(A) = 0.2 m(B) = 0.1 m(C) = 0.2

m(A ∩ B) = 0.1 m(A ∪ B) = 0.1 m(B ∪ C) = 0.1

m(A ∪ (B ∩ C)) = 0.1 m(A ∪ B ∪ C) = 0.1

In BCR12, m(D2) = m1(A) = 0.2 is transferred to (A ∩ B) ∪ (A ∩ C)
since (A ∩ B) ∪ (A ∩ C) is the 1-largest element of D1 included in A.
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m(A ∪ (B ∩ C)) = 0.1 m(A ∪ B ∪ C) = 0.1

In BCR12, m(D2) = m1(A) = 0.2 is transferred to (A ∩ B) ∪ (A ∩ C)
since (A ∩ B) ∪ (A ∩ C) is the 1-largest element of D1 included in A.

D1 = {A ∩ B ∩ C, B ∩ C A ∩ B, A ∩ C, (B ∩ C) ∪ (A ∩ B), (B ∩ C) ∪ (A ∩ C), (A ∩ B) ∪ (A ∩ C)

(A ∩ B) ∪ (A ∩ C) ∪ (B ∩ C), B, C, (A ∩ C) ∪ B, (A ∩ B) ∪ C, B ∪ C}

D2 = {A}

D3 = {A ∪ (B ∩ C), A ∪ B, A ∪ C, A ∪ B ∪ C}

W ∈ D2 ∪ D3

m(θ1)

m(θ2)

m(θ3)

1

PCR5 versus Bayes’ formula
for combining probability densities

(working notes V3)

1 Principles of estimation

m(A) = 0.2 m(B) = 0.1 m(C) = 0.2

m(A ∩ B) = 0.1 m(A ∪ B) = 0.1 m(B ∪ C) = 0.1

m(A ∪ (B ∩ C)) = 0.1 m(A ∪ B ∪ C) = 0.1

In BCR12, m(D2) = m1(A) = 0.2 is transferred to (A ∩ B) ∪ (A ∩ C)
since (A ∩ B) ∪ (A ∩ C) is the 1-largest element of D1 included in A.

D1 = {A ∩ B ∩ C, B ∩ C A ∩ B, A ∩ C, (B ∩ C) ∪ (A ∩ B), (B ∩ C) ∪ (A ∩ C), (A ∩ B) ∪ (A ∩ C)

(A ∩ B) ∪ (A ∩ C) ∪ (B ∩ C), B, C, (A ∩ C) ∪ B, (A ∩ B) ∪ C, B ∪ C}

D2 = {A}

D3 = {A ∪ (B ∩ C), A ∪ B, A ∪ C, A ∪ B ∪ C}

W ∈ D2 ∪ D3

m(θ1)

m(θ2)

m(θ3)

1

BCR12 conditioning:

PCR5 versus Bayes’ formula
for combining probability densities

(working notes V3)

1 Principles of estimation

m(A) = 0.2 m(B) = 0.1 m(C) = 0.2

m(A ∩ B) = 0.1 m(A ∪ B) = 0.1 m(B ∪ C) = 0.1

m(A ∪ (B ∩ C)) = 0.1 m(A ∪ B ∪ C) = 0.1

m(A) = 0.2 is transferred to (A ∩ B) ∪ (A ∩ C) since it is the 1-largest element of D1 included in A.

D1 = {A ∩ B ∩ C, B ∩ C A ∩ B, A ∩ C, (B ∩ C) ∪ (A ∩ B), (B ∩ C) ∪ (A ∩ C), (A ∩ B) ∪ (A ∩ C)

(A ∩ B) ∪ (A ∩ C) ∪ (B ∩ C), B, C, (A ∩ C) ∪ B, (A ∩ B) ∪ C, B ∪ C}

D2 = {A}

D3 = {A ∪ (B ∩ C), A ∪ B, A ∪ C, A ∪ B ∪ C}

W ∈ D2 ∪ D3

m(θ1)

m(θ2)

m(θ3)

1

PCR5 versus Bayes’ formula
for combining probability densities

(working notes V3)

1 Principles of estimation

m(A) = 0.2 m(B) = 0.1 m(C) = 0.2

m(A ∩ B) = 0.1 m(A ∪ B) = 0.1 m(B ∪ C) = 0.1

m(A ∪ (B ∩ C)) = 0.1 m(A ∪ B ∪ C) = 0.1

m(A) = 0.2 is transferred to (A ∩ B) ∪ (A ∩ C) since it is the 1-largest element of D1 included in A.

D1 = {A ∩ B ∩ C, B ∩ C A ∩ B, A ∩ C, (A ∩ B) ∪ (B ∩ C), (B ∩ C) ∪ (A ∩ C), (A ∩ B) ∪ (A ∩ C)

(A ∩ B) ∪ (A ∩ C) ∪ (B ∩ C), B, C, (A ∩ C) ∪ B, (A ∩ B) ∪ C, B ∪ C}

D2 = {A}

D3 = {A ∪ (B ∩ C), A ∪ B, A ∪ C, A ∪ B ∪ C}

W ∈ D2 ∪ D3

m(θ1)

m(θ2)

m(θ3)

1

PCR5 versus Bayes’ formula
for combining probability densities

(working notes V3)

1 Principles of estimation

m(A) = 0.2 m(B) = 0.1 m(C) = 0.2

m(A ∩ B) = 0.1 m(A ∪ B) = 0.1 m(B ∪ C) = 0.1

m(A ∪ (B ∩ C)) = 0.1 m(A ∪ B ∪ C) = 0.1

m(A) = 0.2 is transferred to (A ∩ B) ∪ (A ∩ C) since it is the 1-largest element of D1 included in A.

m(A ∪ B) = 0.1 is transferred to (A ∩ C) ∪ B since it is the 1-largest element of D1 included in A ∪ B.

m(A ∪ (B ∩ C)) = 0.1 is transferred to (A ∩ B) ∪ (A ∩ C) ∪ (B ∩ C) since it is the 1-largest element
of D1 included in A ∪ (B ∩ C).

m(A ∪ B ∪ C) = 0.1 is transferred to B ∪ C since it is the 1-largest element of D1 included in A ∪ B ∪ C.

D1 = {A ∩ B ∩ C, B ∩ C A ∩ B, A ∩ C, (A ∩ B) ∪ (B ∩ C), (B ∩ C) ∪ (A ∩ C), (A ∩ B) ∪ (A ∩ C)

(A ∩ B) ∪ (A ∩ C) ∪ (B ∩ C), B, C, (A ∩ C) ∪ B, (A ∩ B) ∪ C, B ∪ C}

D2 = {A}

D3 = {A ∪ (B ∩ C), A ∪ B, A ∪ C, A ∪ B ∪ C}

W ∈ D2 ∪ D3

1

PCR5 versus Bayes’ formula
for combining probability densities

(working notes V3)

1 Principles of estimation

m(A) = 0.2 m(B) = 0.1 m(C) = 0.2

m(A ∩ B) = 0.1 m(A ∪ B) = 0.1 m(B ∪ C) = 0.1

m(A ∪ (B ∩ C)) = 0.1 m(A ∪ B ∪ C) = 0.1

m(A) = 0.2 is transferred to (A ∩ B) ∪ (A ∩ C) since it is the 1-largest element of D1 included in A.

m(A ∪ B) = 0.1 is transferred to (A ∩ C) ∪ B since it is the 1-largest element of D1 included in A ∪ B.

m(A ∪ (B ∩ C)) = 0.1 is transferred to (A ∩ B) ∪ (A ∩ C) ∪ (B ∩ C) since it is the 1-largest element of D1

included in A ∪ (B ∩ C).

m(A ∪ B ∪ C) = 0.1 is transferred to B ∪ C since it is the 1-largest element of D1 included in B ∪ C.

D1 = {A ∩ B ∩ C, B ∩ C A ∩ B, A ∩ C, (A ∩ B) ∪ (B ∩ C), (B ∩ C) ∪ (A ∩ C), (A ∩ B) ∪ (A ∩ C)

(A ∩ B) ∪ (A ∩ C) ∪ (B ∩ C), B, C, (A ∩ C) ∪ B, (A ∩ B) ∪ C, B ∪ C}

D2 = {A}

D3 = {A ∪ (B ∩ C), A ∪ B, A ∪ C, A ∪ B ∪ C}

W ∈ D2 ∪ D3

1

PCR5 versus Bayes’ formula
for combining probability densities

(working notes V3)

1 Principles of estimation

m(A) = 0.2 m(B) = 0.1 m(C) = 0.2

m(A ∩ B) = 0.1 m(A ∪ B) = 0.1 m(B ∪ C) = 0.1

m(A ∪ (B ∩ C)) = 0.1 m(A ∪ B ∪ C) = 0.1

m(A) = 0.2 is transferred to (A ∩ B) ∪ (A ∩ C) since it is the 1-largest element of D1 included in A.

m(A ∪ B) = 0.1 is transferred to (A ∩ C) ∪ B since it is the 1-largest element of D1 included in A ∪ B.

m(A ∪ (B ∩ C)) = 0.1 is transferred to (A ∩ B) ∪ (A ∩ C) ∪ (B ∩ C) since it is the 1-largest element
of D1 included in A ∪ (B ∩ C).

m(A ∪ B ∪ C) = 0.1 is transferred to B ∪ C since it is the 1-largest element of D1 included in B ∪ C.

D1 = {A ∩ B ∩ C, B ∩ C A ∩ B, A ∩ C, (A ∩ B) ∪ (B ∩ C), (B ∩ C) ∪ (A ∩ C), (A ∩ B) ∪ (A ∩ C)

(A ∩ B) ∪ (A ∩ C) ∪ (B ∩ C), B, C, (A ∩ C) ∪ B, (A ∩ B) ∪ C, B ∪ C}

D2 = {A}

D3 = {A ∪ (B ∩ C), A ∪ B, A ∪ C, A ∪ B ∪ C}

W ∈ D2 ∪ D3

1

PCR5 versus Bayes’ formula
for combining probability densities

(working notes V3)

1 Principles of estimation

m(A) = 0.2 m(B) = 0.1 m(C) = 0.2

m(A ∩ B) = 0.1 m(A ∪ B) = 0.1 m(B ∪ C) = 0.1

m(A ∪ (B ∩ C)) = 0.1 m(A ∪ B ∪ C) = 0.1

m(A) = 0.2 is transferred to (A ∩ B) ∪ (A ∩ C) since it is the 1-largest element of D1 included in A.

m(A ∪ B) = 0.1 is transferred to (A ∩ C) ∪ B since it is the 1-largest element of D1 included in A ∪ B.

m(A ∪ C) = 0.1 is transferred to (A ∩ B) ∪ C since it is the 1-largest element of D1 included in A ∪ C.

m(A ∪ C) = 0

m(A ∪ (B ∩ C)) = 0.1 is transferred to (A ∩ B) ∪ (A ∩ C) ∪ (B ∩ C) since it is the 1-largest element
of D1 included in A ∪ (B ∩ C).

m(A ∪ B ∪ C) = 0.1 is transferred to B ∪ C since it is the 1-largest element of D1 included in A ∪ B ∪ C.

D1 = {A ∩ B ∩ C, B ∩ C A ∩ B, A ∩ C, (A ∩ B) ∪ (B ∩ C), (B ∩ C) ∪ (A ∩ C), (A ∩ B) ∪ (A ∩ C)

(A ∩ B) ∪ (A ∩ C) ∪ (B ∩ C), B, C, (A ∩ C) ∪ B, (A ∩ B) ∪ C, B ∪ C}

D2 = {A}

1

BCR12 result:

PCR5 versus Bayes’ formula
for combining probability densities

(working notes V3)

1 Principles of estimation

mBCR12(B | B ∪ C) = 0.1

mBCR12(C | B ∪ C) = 0.2

mBCR12(B ∪ C | B ∪ C) = 0.2

mBCR12(A ∪ B | B ∪ C) = 0.1

mBCR12((A ∩ B) ∪ (A ∩ C) ∪ (B ∩ C) | B ∪ C) = 0.1

mBCR12((A ∩ B) ∪ (A ∩ C) | B ∪ C) = 0.1

mBCR12((A ∩ C) ∪ B | B ∪ C) = 0.1

m(A) = 0.2 m(B) = 0.1 m(C) = 0.2

m(A ∩ B) = 0.1 m(A ∪ B) = 0.1 m(B ∪ C) = 0.1

m(A ∪ (B ∩ C)) = 0.1 m(A ∪ B ∪ C) = 0.1

m(A) = 0.2 is transferred to (A ∩ B) ∪ (A ∩ C) since it is the 1-largest element of D1 included in A.

m(A ∪ B) = 0.1 is transferred to (A ∩ C) ∪ B since it is the 1-largest element of D1 included in A ∪ B.

m(A ∪ C) = 0.1 is transferred to (A ∩ B) ∪ C since it is the 1-largest element of D1 included in A ∪ C.

m(A ∪ C) = 0

m(A ∪ (B ∩ C)) = 0.1 is transferred to (A ∩ B) ∪ (A ∩ C) ∪ (B ∩ C) since it is the 1-largest element
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PCR5 versus Bayes’ formula
for combining probability densities

(working notes V3)

1 Principles of estimation

mBCR12(B | B ∪ C) = 0.1

mBCR12(C | B ∪ C) = 0.2

mBCR12(B ∪ C | B ∪ C) = 0.2

mBCR12(A ∪ B | B ∪ C) = 0.1

mBCR12((A ∩ B) ∪ (A ∩ C) ∪ (B ∩ C) | B ∪ C) = 0.1

mBCR12((A ∩ B) ∪ (A ∩ C) | B ∪ C) = 0.1

mBCR12((A ∩ C) ∪ B | B ∪ C) = 0.1

m(A) = 0.2 m(B) = 0.1 m(C) = 0.2

m(A ∩ B) = 0.1 m(A ∪ B) = 0.1 m(B ∪ C) = 0.1

m(A ∪ (B ∩ C)) = 0.1 m(A ∪ B ∪ C) = 0.1

m(A) = 0.2 is transferred to (A ∩ B) ∪ (A ∩ C) since it is the 1-largest element of D1 included in A.

m(A ∪ B) = 0.1 is transferred to (A ∩ C) ∪ B since it is the 1-largest element of D1 included in A ∪ B.

m(A ∪ C) = 0.1 is transferred to (A ∩ B) ∪ C since it is the 1-largest element of D1 included in A ∪ C.

m(A ∪ C) = 0

m(A ∪ (B ∩ C)) = 0.1 is transferred to (A ∩ B) ∪ (A ∩ C) ∪ (B ∩ C) since it is the 1-largest element

1

PCR5 versus Bayes’ formula
for combining probability densities

(working notes V3)

1 Principles of estimation

mBCR12(B | B ∪ C) = 0.1

mBCR12(C | B ∪ C) = 0.2

mBCR12(B ∪ C | B ∪ C) = 0.2

mBCR12(A ∪ B | B ∪ C) = 0.1

mBCR12((A ∩ B) ∪ (A ∩ C) ∪ (B ∩ C) | B ∪ C) = 0.1

mBCR12((A ∩ B) ∪ (A ∩ C) | B ∪ C) = 0.1

mBCR12((A ∩ C) ∪ B | B ∪ C) = 0.1

m(A) = 0.2 m(B) = 0.1 m(C) = 0.2

m(A ∩ B) = 0.1 m(A ∪ B) = 0.1 m(B ∪ C) = 0.1

m(A ∪ (B ∩ C)) = 0.1 m(A ∪ B ∪ C) = 0.1

m(A) = 0.2 is transferred to (A ∩ B) ∪ (A ∩ C) since it is the 1-largest element of D1 included in A.

m(A ∪ B) = 0.1 is transferred to (A ∩ C) ∪ B since it is the 1-largest element of D1 included in A ∪ B.

m(A ∪ C) = 0.1 is transferred to (A ∩ B) ∪ C since it is the 1-largest element of D1 included in A ∪ C.

m(A ∪ C) = 0

m(A ∪ (B ∩ C)) = 0.1 is transferred to (A ∩ B) ∪ (A ∩ C) ∪ (B ∩ C) since it is the 1-largest element

1

PCR5 versus Bayes’ formula
for combining probability densities

(working notes V3)

1 Principles of estimation

mBCR12(B | B ∪ C) = 0.1

mBCR12(C | B ∪ C) = 0.2

mBCR12(B ∪ C | B ∪ C) = 0.2

mBCR12(A ∪ B | B ∪ C) = 0.1

mBCR12((A ∩ B) ∪ (A ∩ C) ∪ (B ∩ C) | B ∪ C) = 0.1

mBCR12((A ∩ B) ∪ (A ∩ C) | B ∪ C) = 0.1

mBCR12((A ∩ C) ∪ B | B ∪ C) = 0.1

m(A) = 0.2 m(B) = 0.1 m(C) = 0.2

m(A ∩ B) = 0.1 m(A ∪ B) = 0.1 m(B ∪ C) = 0.1

m(A ∪ (B ∩ C)) = 0.1 m(A ∪ B ∪ C) = 0.1

m(A) = 0.2 is transferred to (A ∩ B) ∪ (A ∩ C) since it is the 1-largest element of D1 included in A.

m(A ∪ B) = 0.1 is transferred to (A ∩ C) ∪ B since it is the 1-largest element of D1 included in A ∪ B.

m(A ∪ C) = 0.1 is transferred to (A ∩ B) ∪ C since it is the 1-largest element of D1 included in A ∪ C.

m(A ∪ C) = 0

m(A ∪ (B ∩ C)) = 0.1 is transferred to (A ∩ B) ∪ (A ∩ C) ∪ (B ∩ C) since it is the 1-largest element

1

PCR5 versus Bayes’ formula
for combining probability densities

(working notes V3)

1 Principles of estimation

mBCR12(B | B ∪ C) = 0.1

mBCR12(C | B ∪ C) = 0.2

mBCR12(B ∪ C | B ∪ C) = 0.2

mBCR12(A ∪ B | B ∪ C) = 0.1

mBCR12((A ∩ B) ∪ (A ∩ C) ∪ (B ∩ C) | B ∪ C) = 0.1

mBCR12((A ∩ B) ∪ (A ∩ C) | B ∪ C) = 0.1

mBCR12((A ∩ C) ∪ B | B ∪ C) = 0.1

mBCR12(A ∩ B | B ∪ C) = 0.1

m(A) = 0.2 m(B) = 0.1 m(C) = 0.2

m(A ∩ B) = 0.1 m(A ∪ B) = 0.1 m(B ∪ C) = 0.1

m(A ∪ (B ∩ C)) = 0.1 m(A ∪ B ∪ C) = 0.1

m(A) = 0.2 is transferred to (A ∩ B) ∪ (A ∩ C) since it is the 1-largest element of D1 included in A.

m(A ∪ B) = 0.1 is transferred to (A ∩ C) ∪ B since it is the 1-largest element of D1 included in A ∪ B.

m(A ∪ C) = 0.1 is transferred to (A ∩ B) ∪ C since it is the 1-largest element of D1 included in A ∪ C.

m(A ∪ C) = 0

1

PCR5 versus Bayes’ formula
for combining probability densities

(working notes V3)

1 Principles of estimation

mBCR12(B | B ∪ C) = 0.1

mBCR12(C | B ∪ C) = 0.2

mBCR12(B ∪ C | B ∪ C) = 0.2

mBCR12(A ∪ B | B ∪ C) = 0.1

mBCR12((A ∩ B) ∪ (A ∩ C) ∪ (B ∩ C) | B ∪ C) = 0.1

mBCR12((A ∩ B) ∪ (A ∩ C) | B ∪ C) = 0.2

mBCR12((A ∩ C) ∪ B | B ∪ C) = 0.1

mBCR12(A ∩ B | B ∪ C) = 0.1

m(A) = 0.2 m(B) = 0.1 m(C) = 0.2

m(A ∩ B) = 0.1 m(A ∪ B) = 0.1 m(B ∪ C) = 0.1

m(A ∪ (B ∩ C)) = 0.1 m(A ∪ B ∪ C) = 0.1

m(A) = 0.2 is transferred to (A ∩ B) ∪ (A ∩ C) since it is the 1-largest element of D1 included in A.

m(A ∪ B) = 0.1 is transferred to (A ∩ C) ∪ B since it is the 1-largest element of D1 included in A ∪ B.

m(A ∪ C) = 0.1 is transferred to (A ∩ B) ∪ C since it is the 1-largest element of D1 included in A ∪ C.

m(A ∪ C) = 0

1

PCR5 versus Bayes’ formula
for combining probability densities

(working notes V3)

1 Principles of estimation

mBCR12(B | B ∪ C) = 0.1

mBCR12(C | B ∪ C) = 0.2

mBCR12(B ∪ C | B ∪ C) = 0.1 + 0.1 = 0.2

mBCR12(A ∪ B | B ∪ C) = 0.1

mBCR12((A ∩ B) ∪ (A ∩ C) ∪ (B ∩ C) | B ∪ C) = 0.1

mBCR12((A ∩ B) ∪ (A ∩ C) | B ∪ C) = 0.2

mBCR12((A ∩ C) ∪ B | B ∪ C) = 0.1

mBCR12(A ∩ B | B ∪ C) = 0.1

m(A) = 0.2 m(B) = 0.1 m(C) = 0.2

m(A ∩ B) = 0.1 m(A ∪ B) = 0.1 m(B ∪ C) = 0.1

m(A ∪ (B ∩ C)) = 0.1 m(A ∪ B ∪ C) = 0.1

m(A) = 0.2 is transferred to (A ∩ B) ∪ (A ∩ C) since it is the 1-largest element of D1 included in A.

m(A ∪ B) = 0.1 is transferred to (A ∩ C) ∪ B since it is the 1-largest element of D1 included in A ∪ B.

m(A ∪ C) = 0.1 is transferred to (A ∩ B) ∪ C since it is the 1-largest element of D1 included in A ∪ C.

m(A ∪ C) = 0

1



Example #2 for BCR12
Shafer’s model with non-Bayesian bba
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• If the truth is in A ∪ B ∪ C

D1 = DΘ \ {∅}

D2 and D3 do not exist.

since s(A ∪ B ∪ C) = {A,B,C} and Θ \ {A,B,C} = ∅;

i.e. D2 elements do not contain the letters A, B, C. D3 does not exist since (DΘ \{∅})\D1 = ∅.

• If the truth is in A ∩ B ∩ C

D1 = {A ∩ B ∩ C}

D2 does not exist;

D3 = (DΘ\{∅})\D1 = {A,B,C,A∩B,A∩C,B∩C,A∪B,A∪C,B∪C,A∪B∪C,A∪(B∩C), . . .}

; D3 has 19 − 1 − 1 = 17 elements.
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Figure 1: Venn Diagram for the 3D free DSm model

4 Examples

4.1 Example no. 1 (free DSm model with non-Bayesian bba)

Let’s consider Θ = {A,B,C}, the free DSm model (no intersection is empty) and the following
prior bba

m1(A) = 0.2 m1(B) = 0.1 m1(C) = 0.2 m1(A ∪ B) = 0.1 m1(B ∪ C) = 0.1

m1(A ∪ (B ∩ C)) = 0.1 m1(A ∩ B) = 0.1 m1(A ∪ B ∪ C) = 0.1

and let’s assume that the truth is in B ∪ C, i.e. the conditioning term is B ∪ C. Then:

D1 = {B ∩ C ∩ A︸ ︷︷ ︸
CardDSm=1

, B ∩ C,B ∩ A,C ∩ A︸ ︷︷ ︸
CardDSm=2

,

(B ∩ C) ∪ (B ∩ A), (B ∩ C) ∪ (C ∩ A), (B ∩ A) ∪ (C ∩ A)︸ ︷︷ ︸
CardDSm=3

,

(B ∩ C) ∪ (B ∩ A) ∪ (C ∩ A), B,C︸ ︷︷ ︸
CardDSm=4

, B ∪ (C ∩ A), C ∪ (B ∩ A)︸ ︷︷ ︸
CardDSm=5

, B ∪ C︸ ︷︷ ︸
CardDSm=6

}
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2. In BCR17, m1(A) = 0.2 is transferred to

B ∩ A since B ∩ A ⊂ A

and m1(B ∩ A) > 0.

No other D1 element with non-zero mass is included in A.

mBCR17(B|B ∪ C) = 0.17

mBCR17(C|B ∪ C) = 0.24

mBCR17(B ∪ C|B ∪ C) = 0.12

mBCR17(B ∩ A|B ∪ C) = 0.47

In the free DSm model, if the truth is in A, BCR12 gives the same result as m1(.) fusioned
with m2(A) = 1 using the classic DSm rule.

4.2 Example no. 2 (Shafer’s model with non-Bayesian bba)

Θ = {A,B,C} with Shafer’s model and the prior bba:

m1(A) = 0.2 m1(B) = 0.1 m1(C) = 0.2

m1(A ∪ B) = 0.1 m1(B ∪ C) = 0.1 m1(A ∪ B ∪ C) = 0.3

Let’s assume as conditioning constraint that the truth is in B ∪ C.

DΘ is decomposed into
D1 = {B,C,B ∪ C}

D2 = {A}

D3 = {A ∪ B,A ∪ C,A ∪ B ∪ C}

The Venn Diagram corresponding to Shafer’s model for this example is given in Figure 3 below.
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Figure 3: Venn Diagram for the 3D Shafer’s model

1. In BCR12: For D2, m1(A) = 0.2 is redistributed to B, C, B ∪ C as in BCR2. m(D3) is
redistributed as in BCR2.

mBCR12(B|B ∪ C) = 0.25

mBCR12(C|B ∪ C) = 0.30

mBCR12(B ∪ C|B ∪ C) = 0.45
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2. In BCR17, m1(A) = 0.2 is transferred to

B ∩ A since B ∩ A ⊂ A

and m1(B ∩ A) > 0.

No other D1 element with non-zero mass is included in A.

mBCR17(B|B ∪ C) = 0.17

mBCR17(C|B ∪ C) = 0.24

mBCR17(B ∪ C|B ∪ C) = 0.12

mBCR17(B ∩ A|B ∪ C) = 0.47

In the free DSm model, if the truth is in A, BCR12 gives the same result as m1(.) fusioned
with m2(A) = 1 using the classic DSm rule.

4.2 Example no. 2 (Shafer’s model with non-Bayesian bba)

Θ = {A,B,C} with Shafer’s model and the prior bba:
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m1(A ∪ B) = 0.1 m1(B ∪ C) = 0.1 m1(A ∪ B ∪ C) = 0.3

Let’s assume as conditioning constraint that the truth is in B ∪ C.
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2. BCR17: For D3, m1(A ∪ B) = 0.1 is transferred to B (no case of k-elements herein);
m1(A ∪ B ∪ C) = 0.3 is transferred to B, C, B ∪ C proportionally to their corresponding
masses.

mBCR17(B|B ∪ C) = 0.325

mBCR17(C|B ∪ C) = 0.450

mBCR17(B ∪ C|B ∪ C) = 0.225

o) If one applies the SCR, i.e. one combines with Dempster’s rule m1(.) with m2(B ∪C) = 1,
because the truth is in B ∪ C as Glenn Shafer proposes, one gets:

mSCR(B|B ∪ C) = 0.25

mSCR(C|B ∪ C) = 0.25

mSCR(B ∪ C|B ∪ C) = 0.50

4.3 Example no. 3 (Shafer’s model with Bayesian bba)

Let’s consider Θ = {A,B,C,D} with Shafer’s model and the following prior Bayesian bba:

m1(A) = 0.4 m1(B) = 0.1 m1(C) = 0.2 m1(D) = 0.3

Let’s assume that one finds out that the truth is in C ∪D. From formulas of BCRs conditioning
rules one gets the same result for all the BCRs in such example according to the following table

A B C D

m1(.) 0.4 0.1 0.2 0.3
mBCR1−31(.|C ∪ D) 0 0 0.40 0.60

Table 1: Conditioning results based on BCRs given the truth is in C ∪ D.

Let’s examine the conditional bba obtained directly from the fusion of the prior bba m1(.) with
the belief assignment focused only on C ∪ D, say m2(C ∪ D) = 1 using three main rules of
combination (Dempster’s rule, DSmH and PCR5). After elementary derivations, one gets final
results given in Table 2. In the Bayesian case, all BCRs and Shafer’s conditioning rule (with
Dempster’s rule) give the same result.

A B C D C ∪ D A ∪ C ∪ D B ∪ C ∪ D

mDS(.|C ∪ D) 0 0 0.40 0.60 0 0 0
mDSmH(.|C ∪ D) 0 0 0.20 0.30 0 0.40 0.10
mPCR5(.|C ∪ D) 0.114286 0.009091 0.20 0.30 0.376623 0 0

Table 2: Conditioning results based on Dempster’s, DSmH and PCR5 fusion rules.

PCR5 versus Bayes’ formula
for combining probability densities

(working notes V3)

1 Principles of estimation

D3 = {A ∪ (B ∩ C), A ∪ B, A ∪ C, A ∪ B ∪ C}

mBCR12(B | B ∪ C) = 0.1

mBCR12(C | B ∪ C) = 0.2

mBCR12(B ∪ C | B ∪ C) = 0.1 + 0.1 = 0.2

mBCR12(A ∪ B | B ∪ C) = 0.1

mBCR12((A ∩ B) ∪ (A ∩ C) ∪ (B ∩ C) | B ∪ C) = 0.1

mBCR12((A ∩ B) ∪ (A ∩ C) | B ∪ C) = 0.2

mBCR12((A ∩ C) ∪ B | B ∪ C) = 0.1

mBCR12(A ∩ B | B ∪ C) = 0.1

m(A) = 0.2 m(B) = 0.1 m(C) = 0.2

m(A ∩ B) = 0.1 m(A ∪ B) = 0.1 m(B ∪ C) = 0.1

m(A ∪ (B ∩ C)) = 0.1 m(A ∪ B ∪ C) = 0.1

m(A) = 0.2 is transferred to (A ∩ B) ∪ (A ∩ C) since it is the 1-largest element of D1 included in A.

m(A ∪ B) = 0.1 is transferred to (A ∩ C) ∪ B since it is the 1-largest element of D1 included in A ∪ B.
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1

1.2 Example no. 2 (Shafer’s model with non-Bayesian bba)

mBCR12(B|B ∪ C) = 0.10 + 0.10 + 0.05 = 0.25
mBCR12(C|B ∪ C) = 0.20 + 0.10 = 0.30
mBCR12(B ∪ C|B ∪ C) = 0.10 + 0.05 + 0.30 = 0.45

BCR17-21:

For D3, m(A ∪B) = 0.1 is transferred to B (no case of k-elements herein);

m(A ∪B ∪ C) = 0.3 is transferred to B, C, B ∪ C proportionally to their corresponding masses:

xB

0.1
=

yC

0.2
=

zB∪C

0.1
=

0.3
0.4

= 0.75

whence xB = 0.075, yC = 0.15, and zB∪C = 0.075.

Finally, one gets

mBCR7(B|B ∪ C) = 0.325
mBCR7(C|B ∪ C) = 0.450
mBCR7(B ∪ C|B ∪ C) = 0.225

Therefore one gets same result as in BCR7, i.e.

mBCR17(B|B ∪ C) = 0.325
mBCR17(C|B ∪ C) = 0.450
mBCR17(B ∪ C|B ∪ C) = 0.225

References
[1] Bar-Shalom Y., Multitarget-Multisensor Tracking: Advanced Applications, Artech House,1990.



Example #3 for BCR12
Shafer’s model with Bayesian bba

Actually we get same Result with all BCR

Result with SCR, based on Dempster’s, DSmH and PCR5 fusion rules
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2. BCR17: For D3, m1(A ∪ B) = 0.1 is transferred to B (no case of k-elements herein);
m1(A ∪ B ∪ C) = 0.3 is transferred to B, C, B ∪ C proportionally to their corresponding
masses.

mBCR17(B|B ∪ C) = 0.325

mBCR17(C|B ∪ C) = 0.450

mBCR17(B ∪ C|B ∪ C) = 0.225

o) If one applies the SCR, i.e. one combines with Dempster’s rule m1(.) with m2(B ∪C) = 1,
because the truth is in B ∪ C as Glenn Shafer proposes, one gets:

mSCR(B|B ∪ C) = 0.25

mSCR(C|B ∪ C) = 0.25

mSCR(B ∪ C|B ∪ C) = 0.50

4.3 Example no. 3 (Shafer’s model with Bayesian bba)

Let’s consider Θ = {A,B,C,D} with Shafer’s model and the following prior Bayesian bba:

m1(A) = 0.4 m1(B) = 0.1 m1(C) = 0.2 m1(D) = 0.3

Let’s assume that one finds out that the truth is in C ∪D. From formulas of BCRs conditioning
rules one gets the same result for all the BCRs in such example according to the following table

A B C D

m1(.) 0.4 0.1 0.2 0.3
mBCR1−31(.|C ∪ D) 0 0 0.40 0.60

Table 1: Conditioning results based on BCRs given the truth is in C ∪ D.

Let’s examine the conditional bba obtained directly from the fusion of the prior bba m1(.) with
the belief assignment focused only on C ∪ D, say m2(C ∪ D) = 1 using three main rules of
combination (Dempster’s rule, DSmH and PCR5). After elementary derivations, one gets final
results given in Table 2. In the Bayesian case, all BCRs and Shafer’s conditioning rule (with
Dempster’s rule) give the same result.

A B C D C ∪ D A ∪ C ∪ D B ∪ C ∪ D

mDS(.|C ∪ D) 0 0 0.40 0.60 0 0 0
mDSmH(.|C ∪ D) 0 0 0.20 0.30 0 0.40 0.10
mPCR5(.|C ∪ D) 0.114286 0.009091 0.20 0.30 0.376623 0 0

Table 2: Conditioning results based on Dempster’s, DSmH and PCR5 fusion rules.
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4.3 Example no. 3 (Shafer’s model with Bayesian bba)

The Venn Diagram corresponding to Shafer’s model for this example is given in Figure 4 below.
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Figure 4: Venn Diagram for the 4D Shafer’s model
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combination (Dempster’s rule, DSmH and PCR5). After elementary derivations, one gets final
results given in Table 2. In the Bayesian case, all BCRs and Shafer’s conditioning rule (with
Dempster’s rule) give the same result.

A B C D C ∪ D A ∪ C ∪ D B ∪ C ∪ D

mDS(.|C ∪ D) 0 0 0.40 0.60 0 0 0
mDSmH(.|C ∪ D) 0 0 0.20 0.30 0 0.40 0.10
mPCR5(.|C ∪ D) 0.114286 0.009091 0.20 0.30 0.376623 0 0

Table 2: Conditioning results based on Dempster’s, DSmH and PCR5 fusion rules.



60

Open questions

SCR and Dempster’s combination rules commute because SCR is based on 
Dempster’s rule and Dempster’s rule is associative, but SCR is a special 
case of fusion, not a real conditioning dealing with absolute truth. 

In general (but in Shafer’s model with Bayesian bba’s), BCRs do not 
commute with fusion operators, i.e. 9

2. Answer 2 (Conditioning followed by the fusion (CF)):

mCF (.|A) = Cond(m1(.))︸ ︷︷ ︸
m1(.|A)

⊕Cond(m2(.))︸ ︷︷ ︸
m2(.|A)

(2)

mCF (.|A) "= mFC(.|A)

Since in general3 the conditioning and the fusion do not commute, mFC(.|A) "= mCF (.|A), the
fundamental open question arises: How to justify the choice for one answer with respect to
the other one (or maybe with respect to some other answers if any) to compute the combined
conditional bba from m1(.), m2(.) and any conditioning subset A?

The only argumentation (maybe) for justifying the choice of mFC(.|A) or mCF (.|A) is only
imposed by the possible temporal/sequential processing of sources and extra knowledge one
receives, i.e. if one gets first m1(.) and m2(.) and later one knows that the truth is in A then
mFC(.|A) seems intuitively suitable, but if one gets first m1(.) and A, and later m2(.), then
mCF (.|A) looks in better agreement with the chronology of information one has received in that
case. If we make abstraction of temporal processing, then this fundamental and very difficult
question remains unfortunately totally open.

3Because none of the new fusion and conditioning rules developed up to now satisfies the commutativity, but Demp-

ster’s rule.
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5 Open question on conditioning versus fusion

It is not to difficult too verify that fusion rules and conditioning rules do not commute in general,
except in Dempster-Shafer Theory because Shafer’s fusion and conditioning rules are based on
the same operator1 (Dempster’s rule), which make derivation very simple and appealing.

We however think that things may be much more complex in reality than what has been pro-
posed up to now if we follow our interpretation of belief conditioning and do not see the belief
conditioning as just a simple fusion of the prior bba with a bba focused on the conditioning event
where the truth is (subjectively) supposed to be. From our belief conditioning interpretation,
we make a strong difference between the fusion of several sources of evidences (i.e. combination
of bba’s) and the conditioning of a given belief assignment according some extra knowledge
(carrying some objective/absolute truth on a given subset) on the model itself. In our opinion,
the conditioning must be interpreted as a revision of bba according to new integrity constraint
on the truth of the space of the solutions. Based on this new idea on conditioning, we are face
to a new and very important open question which can be stated as follows2:

Let’s consider two prior bba’s m1(.) and m2(.) provided by two (cognitively) independent sources
of evidences defined on DΘ for a given model M (free, hybrid or Shafer’s model) and then let’s
assume that the truth is known to be later on in a subset A ∈ DΘ, how to compute the combined
conditional belief?

There are basically two possible answers to this question depending on the order the fusion and
the conditioning are carried out. Let’s denote by ⊕ the generic symbol for fusion operator (PCR5,
DSmH or whatever) and by Cond(.) the generic symbol for conditioning operator (typically
BCRs).

1. Answer 1 (Fusion followed by conditioning (FC)):

mFC(.|A) = Cond(m1(.) ⊕ m2(.)) (1)
1Proof of commutation between the Shafer’s conditioning rule and Dempster’s rule: Let m1(.) be a bba and mS(A) = 1.

Then, because Dempster’s rule, denoted ⊕, is associative we have (m1 ⊕mS)⊕ (m2 ⊕mS) = m1 ⊕ (mS ⊕m2)⊕mS and

because it is commutative we get m1⊕(m2⊕mS)⊕mS and again because it is associative we have: (m1⊕m2)⊕(mS⊕mS);

hence, since mS ⊕ mS = mS, it is equal to: (m1 ⊕ m2) ⊕ mS = m1 ⊕ m2 ⊕ mS, QED.
2The question can be extended for more than two sources actually.

Q1: How to compute m(.|A) from m1(.) and m2(.) ?

Q2: How to justify if m(.|A)=mFC(.|A) or if m(.|A)=mCF(.|A)?
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