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Extension to qualitative beliefs

The frame and the DSm models are the same as for quantitative beliefs

The (qualitative) masses/bba’s are now defined by linguistic values (labels)
taking values in L = {L0, L1, L2, . . . , Lm, Lm+1} in such a way that

L0 ≺ L1 ≺ L2 ≺ . . . ≺ Lm ≺ Lm+1
very low, low,

Assumption : We consider linguistic labels as equidistant

Idea : Define operators on labels by mapping L within [0,1], and works 
also with refined labels to avoid approximations in results.
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Basic qualitative operators for labels

• Label addition :
La + Lb = La+b

since a
m+1 + b

m+1 = a+b
m+1 .

• Label multiplication :

La × Lb = L(ab)/(m+1)

since a
m+1 · b

m+1 = (ab)/(m+1)
m+1 .

• Label division (when Lb �= L0):

La ÷ Lb = L(a/b)(m+1)

since a
m+1 ÷ b

m+1 = a
b = (a/b)(m+1)

m+1 .

More operators have been defined 

in the Field and Linear Algebra of 

Refined Labels (FLARL) [Chap 2, 

DSmT Book 3].

Qualitative bba: qm(.) : GΘ �→ L

Normalized Qualitative bba:

qm(∅) = L0 � Lmin and
�

X∈GΘ qm(X) = Lm+1 � Lmax
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Fusion of qualitative beliefs

All quantitative fusion rules can be easily exented/adapted for the 
fusion of qualitative belief thanks to FLARL and qualitative operators 
for labels.

Qualitative conjunctive rule: 

3 Qualitative Belief Assignment

We define a qualitative belief assignment (qba),
and we call it qualitative mass, a mapping function
qm(.) : GΘ !→ L where GΘ corresponds the space
of propositions generated with ∩ and ∪ operators
and elements of Θ taking into account the integrity
constraints of the model. For example if Shafer’s
model is chosen for Θ, then GΘ is nothing but the
classical power set 2Θ [26], whereas if free DSm
model is adopted GΘ will correspond to Dedekind’s
lattice (hyper-power set) DΘ [27]. Note that in this
qualitative framework, there is no way to define
normalized qm(.), but qualitative quasi-normalization
is still possible as seen further. Using the qualitative
operations defined previously we can easily extend the
combination rules from quantitative to qualitative. In
the sequel we will consider s ≥ 2 qualitative belief
assignments qm1(.), . . . , qms(.) defined over the same
space GΘ and provided by s independent3 sources
S1, . . . , Ss of evidence.

Important note: The addition and multiplication op-
erators used in all qualitative fusion formulas in next
sections correspond to qualitative addition and quali-
tative multiplication operators defined in (1) and (2)
and must not be confused with classical addition and
multiplication operators for numbers.

4 Qualitative Conjunctive Rule

The qualitative Conjunctive Rule (qCR) of s ≥ 2
sources is defined similarly to the quantitative conjunc-
tive consensus rule, i.e.

qmqCR(X) =
∑

X1,...,Xs∈2Θ

X1∩...∩Xs=X

s
∏

i=1

qmi(Xi) (3)

The total qualitative conflicting mass is given by

K1...s =
∑

X1,...,Xs∈2Θ

X1∩...∩Xs=∅

s
∏

i=1

qmi(Xi)

5 Qualitative DSm Classic rule

The qualitative DSm Classic rule (qDSmC) for s ≥ 2
is defined similarly to DSm Classic fusion rule [27] as
follows : qmqDSmC(∅) = L0 and for all X ∈ DΘ \ {∅},

qmqDSmC(X) =
∑

X1,,...,Xs∈DΘ

X1∩...∩Xs=X

s
∏

i=1

qmi(Xi) (4)

3We consider that several sources of evidence are in-
dependent (i.e. distinct and non-interacting) if each leaves
one totally ignorant about the particular (qualitative) value
the others will provide.

6 Qualitative DSm Hybrid rule

The qualitative DSm Hybrid rule (qDSmH) is defined
similarly to quantitative DSm hybrid rule [27] as fol-
lows: qmqDSmH(∅) = L0 and for all X ∈ GΘ \ {∅}

qmqDSmH(X) ! φ(X) ·
[

qS1(X) + qS2(X) + qS3(X)
]

(5)
where φ(X) is the characteristic non-emptiness func-
tion of a set X , i.e. φ(X) = Lm+1 if X /∈ ∅ and
φ(X) = L0 otherwise, where ∅ ! {∅M, ∅}. ∅M is
the set of all elements of DΘ which have been forced
to be empty through the constraints of the model M
and ∅ is the classical/universal empty set. qS1(X) ≡
qmqDSmC(X), qS2(X), qS3(X) are defined by

qS1(X) !
∑

X1,X2,...,Xs∈DΘ

(X1∩X2∩...∩Xs)=X

s
∏

i=1

qmi(Xi) (6)

qS2(X) !
∑

X1,X2,...,Xs∈∅
[U=X]∨[(U∈∅)∧(X=It)]

s
∏

i=1

qmi(Xi) (7)

qS3(X) !
∑

X1,X2,...,Xk∈DΘ

u(c(X1∩X2∩...∩Xs))=X
(X1∩X2∩...∩Xs)∈∅

s
∏

i=1

qmi(Xi) (8)

with U ! u(X1)∪ . . .∪u(Xs) where u(X) is the union
of all θi that compose X , It ! θ1 ∪ . . .∪ θn is the total
ignorance, and c(X) is the canonical form of X , i.e. its
simplest form (for example if X = (A∩B)∩(A∪B∪C),
c(X) = A∩B). qS1(X) is nothing but the qDSmC rule
for s independent sources based on Mf (Θ); qS2(X)
is the qualitative mass of all relatively and absolutely
empty sets which is transferred to the total or relative
ignorances associated with non existential constraints
(if any, like in some dynamic problems); qS3(X) trans-
fers the sum of relatively empty sets directly onto the
canonical disjunctive form of non-empty sets. qDSmH
generalizes qDSmC works for any models (free DSm
model, Shafer’s model or any hybrid models) when ma-
nipulating qualitative belief assignments.

7 Qualitative Average Operator

The Qualitative Average Operator (QAO) is an exten-
sion of Murphy’s numerical average operator [13]. But
here we define two types of QAO’s:

a) A pessimistic (cautious) one :

QAOp(Li, Lj) = L& i+j
2

' (9)

where )x* means the lower integer part of x, i.e.
the greatest integer less than or equal to x;

a) An optimistic one :

QAOo(Li, Lj) = L( i+j
2

) (10)

where +x, means the upper integer part of x, i.e.
the smallest integer greater than or equal to x.

QAO can be generalized for s ≥ 2 qualitative sources.

3 Qualitative Belief Assignment
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classical power set 2Θ [26], whereas if free DSm
model is adopted GΘ will correspond to Dedekind’s
lattice (hyper-power set) DΘ [27]. Note that in this
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is still possible as seen further. Using the qualitative
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the sequel we will consider s ≥ 2 qualitative belief
assignments qm1(.), . . . , qms(.) defined over the same
space GΘ and provided by s independent3 sources
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and must not be confused with classical addition and
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of all θi that compose X , It ! θ1 ∪ . . .∪ θn is the total
ignorance, and c(X) is the canonical form of X , i.e. its
simplest form (for example if X = (A∩B)∩(A∪B∪C),
c(X) = A∩B). qS1(X) is nothing but the qDSmC rule
for s independent sources based on Mf (Θ); qS2(X)
is the qualitative mass of all relatively and absolutely
empty sets which is transferred to the total or relative
ignorances associated with non existential constraints
(if any, like in some dynamic problems); qS3(X) trans-
fers the sum of relatively empty sets directly onto the
canonical disjunctive form of non-empty sets. qDSmH
generalizes qDSmC works for any models (free DSm
model, Shafer’s model or any hybrid models) when ma-
nipulating qualitative belief assignments.

7 Qualitative Average Operator

The Qualitative Average Operator (QAO) is an exten-
sion of Murphy’s numerical average operator [13]. But
here we define two types of QAO’s:

a) A pessimistic (cautious) one :

QAOp(Li, Lj) = L& i+j
2

' (9)

where )x* means the lower integer part of x, i.e.
the greatest integer less than or equal to x;

a) An optimistic one :

QAOo(Li, Lj) = L( i+j
2

) (10)

where +x, means the upper integer part of x, i.e.
the smallest integer greater than or equal to x.

QAO can be generalized for s ≥ 2 qualitative sources.
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∏
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∏
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∏

i=1
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1 Introduction
qS1(X), qS2(X) and qS3(X) are qualitative counterparts of quantitative functions S1(X), S2(X) and S3(X).

With Dempster’s rule
mDS(A) ≈ 0.579
mDS(B) ≈ 0.355

mDS(A ∪B) ≈ 0.066

κ

φ

ψ

∆

χ

mDS(.) = mminC(.)

With DSmH and Dubois & Prade’s rules With Dempster’s and minC rules
mDSmH(A) = mDP (A) = 0.42 mDS(A) = mminC(A) = 0.512196
mDSmH(B) = mDP (B) = 0.12 mDS(B) = mminC(B) = 0.146341

mDSmH(A ∪B) = mDP (A ∪B) = 0.46 mDS(A ∪B) = mminC(A ∪B) = 0.341463

Qualitative PCR5rule: 
q-PCR5 has the same expression as classical/quantitative PCR5 formula except that all operators 
involved in q-PCR5 are qualitative operators on labels defined previously.
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Example of qualitative fusion

(m = 4)L = {L0, L1 = very poor, L2 = poor, L3 = good, L4 = very good, L5}

qm1(θ1) = L1, qm1(θ2) = L3, qm1(θ1 ∪ θ2) = L1

qm2(θ1) = L2, qm2(θ2) = L1, qm2(θ1 ∪ θ2) = L2

Normalized inputs

Θ = {θ1, θ2} with Shafer’s model

Conjunctive consensus

qm12(θ1) = qm1(θ1)qm2(θ1) + qm1(θ1)qm2(θ1 ∪ θ2) + qm1(θ1 ∪ θ2)qm2(θ1)
= L1 × L2 + L1 × L2 + L1 × L2

= L 1·2
5

+ L 1·2
5

+ L 1·2
5

= L 2
5+ 2

5+ 2
5

= L 6
5

= L1.2

Similarly, one will obtain

qm12(θ1 ∪ θ2) = qm1(θ1 ∪ θ2)qm2(θ1 ∪ θ2) = L0.4

qm12(θ1 ∩ θ2) = qm1(θ1)qm2(θ2) + qm1(θ2)qm2(θ1) = L1.4

qm12(θ2) = qm1(θ2)qm2(θ2) + qm1(θ2)qm2(θ1 ∪ θ2) + qm1(θ1 ∪ θ2)qm2(θ2) = L2

and the conflicting qualitative mass to redistribute
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Example of qualitative fusion (cont’d)

For the fusion with qDSmH, the mass of θ1∩ θ2 is transferred to θ1∪ θ2. Hence:

qmqDSmH(θ1) = L1.2 qmqDSmH(θ2) = L2 qmqDSmH(θ1 ∩ θ2) = L0

qmqDSmH(θ1 ∪ θ2) = L0.4 + L1.4 = L1.8

Fusion with qDSmH

Fusion with qPCR5 The conflicting mass qm12(θ1 ∩ θ2) = L1.4 is transferred to θ1 and to θ2 in the
following way:

qm12(θ1 ∩ θ2) = qm1(θ1)qm2(θ2) + qm2(θ1)qm1(θ2)

Then, qm1(θ1)qm2(θ2) = L1×L1 = L 1·1
5

= L 1
5

= L0.2 is redistributed to θ1 and
θ2 proportionally with respect to their qualitative masses put in the conflict L1

and respectively L1:

xθ1

L1
=

yθ2

L1
=

L0.2

L1 + L1
=

L0.2

L1+1
=

L0.2

L2
= L 0.2

2 ·5 = L 1
2

= L0.5

whence xθ1 = yθ2 = L1 × L0.5 = L 1·0.5
5

= L 0.5
5

= L0.1
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Example of qualitative fusion (cont’d)

Fusion with qPCR5 (cont’d)

Similarly, qm2(θ1)qm1(θ2) = L2 × L3 = L 2·3
5

= L 6
5

= L1.2 has to be redis-
tributed to θ1 and θ2 proportionally with L2 and L3 respectively :

x�
θ1

L2
=

y�
θ2

L3
=

L1.2

L2 + L3
=

L1.2

L2+3
=

L1.2

L5
= L 1.2

5 ·5 = L1.2

whence

�
x�

θ1
= L2 × L1.2 = L 2·1.2

5
= L 2.4

5
= L0.48

y�
θ2

= L3 × L1.2 = L 3·1.2
5

= L 3.6
5

= L0.72

qm12(θ1 ∩ θ2) = qm1(θ1)qm2(θ2) + qm2(θ1)qm1(θ2) = L0.2 + L1.2 = L1.4

Adding all these redistibutions to the qualitative masses of θ1 and θ2 respec-
tively, one gets:

qmqPCR5(θ1) = qm12(θ1)+xθ1+x�
θ1

= L1.2+L0.1+L0.48 = L1.2+0.1+0.48 = L1.78

qmqPCR5(θ2) = qm12(θ2) + yθ2 + y�
θ2

= L2 + L0.1 + L0.72 = L2+0.1+0.72 = L2.82

qmqPCR5(θ1 ∪ θ2) = qm12(θ1 ∪ θ2) = L0.4

qmqPCR5(θ1 ∩ θ2) = L0 which is normalized
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Example for qBCR17 (hybrid model)

qBCR17 is the direct extension of BCR17 for qualitative belief based on operators on 

labels (FLARL). It formula is given in DSmT Book 3.

Example Θ = {A, B,C, D} L = {L0, L1, L2, L3, L4, L5, L6}

qm(A) = L1, qm(C) = L1, qm(D) = L4Input:

Conditioning event = A ∪B

qm(D) = L4 is transferred in a prudent way to (A∪B)∩D = B ∩D according
to our hybrid model, because B ∩D is the 1-largest element from A ∪B which
is included in D

qm(C) = L1 is transferred to A only, since it is the only element in A∪B whose
qualitative mass qm(A) is different from L0 (zero).

Result :
qmqBCR17(A|A ∪B) = L2

qmqBCR17(C|A ∪B) = L0

qmqBCR17(D|A ∪B) = L0

qmqBCR17(B ∩D|A ∪B) = L4

✫✪
✬✩

✫✪
✬✩

✫✪
✬✩✫✪

✬✩
❅❘

A
�✠

B

✛ C

✛ D



Fusion of sources with different importance
The importance of a source is different of  its reliability and is specially 
important in Multicriteria Decision Making (see example in part 4)

Answer: Use importance discounting with PCR5 (or PCR6) fusion rule

Question: How to deal with importance ?

The importance discounting keeps the specificity of original information contrariwise to 
classical reliability discounting approach.

The fusion of (importance) discounted bba’s is done using

The importance discounting cannot be used efficiently with Dempster’s rule since it doesn’t 
respond to the discounting towards the empty set - see [Smarandache-Dezert Fusion 2010]



Example of importance discounting with PCR5 fusion

where m123(A) is the mass of the conjunctive consensus
on A and P (1, 2, 3) is the set of all permutations of the
elements {1, 2, 3}. It should be observed that X may
be different or equal to Y .

The difference between formulas (3) and (6) is that
mPCR5(∅) = 0 whereas mPCR5∅

(∅) ≥ 0. Of course,
since we usually need to work with normal bba’s for
decision-making support, the result mPCR5∅

(.) , or
mPCR6∅

(.), of the fusion of discounted masses mβi(.)
will be normalized by redistributing the mass of belief
committed to the empty set to the other focal elements
and proportionally to their masses (see next example
for details).

5 Example
For convenience and simplicity, and due to space

limitation constraint, we give a very simple example
working on the classical power set 2Θ since most of
readers familiar belief functions usually work with this
fusion space.

Example 1: Let’s consider Θ = {A, B}, Shafer’s
model, and two sources with respectively bba’s m1(.)
and m2(.) given by m1(A) = 0.8, m1(B) = 0.2 and
m2(A) = 0.4, m2(B) = 0.6.

• Case 1 (no importance discounting): Let’s con-
sider that β1 = 1 and β2 = 1, i.e. the sources
must have the same maximal importance in the
fusion rule. In that case, one gets: mβ1(.) =
m1(.) and mβ2(.) = m2(.) and the bba’s are ac-
tually not discounted. The conjunctive rule gives
m12(A) = 0.32, m12(B) = 0.12 and the mass
m12(A ∩ B = ∅) = 0.56 is redistributed back to
A and B proportionally to their masses following
the PCR5 principle explained in section 2. We get
the following result:

mβ1=1(.) mβ2=1(.) m12(.) mPCR5(.)

∅ 0 0 0.56 0
A 0.8 0.4 0.32 0.64
B 0.2 0.6 0.12 0.36

Table 1: PCR5 fusion of mβ1=1(.) with mβ2=1(.).

• Case 2 (with importance discounting): Let’s take
now the importances factors β1 = 0.2 and β2 = 0.8
(note that in general we don’t need to force the
sum of βi to be one, unless one wants to deal with
relative importances between sources). Applying
importance discounting technique and normaliza-
tion of mPCR5∅

, denoted mnorm
PCR5∅

(.), one gets:

Clearly, one sees the strong impact of the impor-
tance discounting on the result with respect to
what we obtain in Table 1 (i.e. without impor-
tance discounting). Note also that the difference
is very different to what we would have obtained

mβ1=0.2(.) mβ2=0.8(.) m12(.) mnorm
PCR5∅

(.)

∅ 0.80 0.20 0.9296 0
A 0.16 0.32 0.0512 0.43
B 0.04 0.48 0.0192 0.57

Table 2: PCR5 fusion of mβ1=0.2(.) with mβ2=0.8(.).

by taking α1 = 0.2 and α2 = 0.8 and using the
reliability discounting approach as shown in Table
3.

mα1=0.2(.) mα2=0.8(.) m12(.) mPCR5(.)

∅ 0 0 0.0896 0
A 0.16 0.32 0.3392 0.3698
B 0.04 0.48 0.4112 0.4702
A ∪ B 0.80 0.20 0.1600 0.1600

Table 3: PCR5 fusion of mα1=0.2(.) with mα2=0.8(.).

By comparing Table 2 with Table 3, one sees the
clear difference in results obtained by these two
discounting techniques which is normal.

6 Reliability and importance
In this section, we examine the possibility to take into

account both the reliabilities αi and the importances
βi of given sources of evidence characterized by their
bba’s mi(.), i = 1, 2, . . . , s. The main question is how
to deal with these two distinct discounting factors since
in general, but when αi = βi = 1, the reliability and
importance discounting approaches do not commute.
Indeed, it can be easily verified (see in next example)
that mαi,βi(.) $= mβi,αi(.) whenever αi $= 1 and βi $= 1.
mαi,βi(.) denotes the reliability discounting of mi(.)by
αi followed by the importance discounting of mαi(.)
by βi which explains the notation αi, βi used in index.
Similarly, mβi,αi(.) denotes the importance discounting
of mi(.) by βi followed by the reliability discounting of
mβi(.) by αi.

To deal both with reliabilities and importances
factors and because of the non commutativity of these
discountings, we propose to proceed the fusion of the
sources in a three-steps process as follows:

Method 1: Step 1: Apply reliability and then impor-
tance discountings to get mαi,βi(.), i = 1, . . . , s and
combine them with PCR5∅ or PCR6∅ and normalize
the resulting bba; Step 2: Apply importance and then
reliability discountings to get mβi,αi(.), i = 1, . . . , s
and combine them with PCR5∅ or PCR6∅ and nor-
malize the resulting bba; Step 3 (mixing/averaging):
Combine the resulting bba’s of Steps 1 and 2 using the
arithmetic mean operator8.

8Other combination rules could be used also like PCR5 or
PCR6, etc., but we don’t see solid justification to use them again
and they require more computations than the simple arithmetic
mean.
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8Other combination rules could be used also like PCR5 or
PCR6, etc., but we don’t see solid justification to use them again
and they require more computations than the simple arithmetic
mean.

Case 1 : No discounting

Case 2 : Importance discounting with

where m123(A) is the mass of the conjunctive consensus
on A and P (1, 2, 3) is the set of all permutations of the
elements {1, 2, 3}. It should be observed that X may
be different or equal to Y .

The difference between formulas (3) and (6) is that
mPCR5(∅) = 0 whereas mPCR5∅

(∅) ≥ 0. Of course,
since we usually need to work with normal bba’s for
decision-making support, the result mPCR5∅

(.) , or
mPCR6∅

(.), of the fusion of discounted masses mβi(.)
will be normalized by redistributing the mass of belief
committed to the empty set to the other focal elements
and proportionally to their masses (see next example
for details).

5 Example
For convenience and simplicity, and due to space

limitation constraint, we give a very simple example
working on the classical power set 2Θ since most of
readers familiar belief functions usually work with this
fusion space.

Example 1: Let’s consider Θ = {A, B}, Shafer’s
model, and two sources with respectively bba’s m1(.)
and m2(.) given by m1(A) = 0.8, m1(B) = 0.2 and
m2(A) = 0.4, m2(B) = 0.6.

• Case 1 (no importance discounting): Let’s con-
sider that β1 = 1 and β2 = 1, i.e. the sources
must have the same maximal importance in the
fusion rule. In that case, one gets: mβ1(.) =
m1(.) and mβ2(.) = m2(.) and the bba’s are ac-
tually not discounted. The conjunctive rule gives
m12(A) = 0.32, m12(B) = 0.12 and the mass
m12(A ∩ B = ∅) = 0.56 is redistributed back to
A and B proportionally to their masses following
the PCR5 principle explained in section 2. We get
the following result:

mβ1=1(.) mβ2=1(.) m12(.) mPCR5(.)

∅ 0 0 0.56 0
A 0.8 0.4 0.32 0.64
B 0.2 0.6 0.12 0.36

Table 1: PCR5 fusion of mβ1=1(.) with mβ2=1(.).

• Case 2 (with importance discounting): Let’s take
now the importances factors β1 = 0.2 and β2 = 0.8
(note that in general we don’t need to force the
sum of βi to be one, unless one wants to deal with
relative importances between sources). Applying
importance discounting technique and normaliza-
tion of mPCR5∅

, denoted mnorm
PCR5∅

(.), one gets:

Clearly, one sees the strong impact of the impor-
tance discounting on the result with respect to
what we obtain in Table 1 (i.e. without impor-
tance discounting). Note also that the difference
is very different to what we would have obtained

mβ1=0.2(.) mβ2=0.8(.) m12(.) mnorm
PCR5∅

(.)

∅ 0.80 0.20 0.9296 0
A 0.16 0.32 0.0512 0.43
B 0.04 0.48 0.0192 0.57

Table 2: PCR5 fusion of mβ1=0.2(.) with mβ2=0.8(.).

by taking α1 = 0.2 and α2 = 0.8 and using the
reliability discounting approach as shown in Table
3.

mα1=0.2(.) mα2=0.8(.) m12(.) mPCR5(.)

∅ 0 0 0.0896 0
A 0.16 0.32 0.3392 0.3698
B 0.04 0.48 0.4112 0.4702
A ∪ B 0.80 0.20 0.1600 0.1600

Table 3: PCR5 fusion of mα1=0.2(.) with mα2=0.8(.).

By comparing Table 2 with Table 3, one sees the
clear difference in results obtained by these two
discounting techniques which is normal.

6 Reliability and importance
In this section, we examine the possibility to take into

account both the reliabilities αi and the importances
βi of given sources of evidence characterized by their
bba’s mi(.), i = 1, 2, . . . , s. The main question is how
to deal with these two distinct discounting factors since
in general, but when αi = βi = 1, the reliability and
importance discounting approaches do not commute.
Indeed, it can be easily verified (see in next example)
that mαi,βi(.) $= mβi,αi(.) whenever αi $= 1 and βi $= 1.
mαi,βi(.) denotes the reliability discounting of mi(.)by
αi followed by the importance discounting of mαi(.)
by βi which explains the notation αi, βi used in index.
Similarly, mβi,αi(.) denotes the importance discounting
of mi(.) by βi followed by the reliability discounting of
mβi(.) by αi.

To deal both with reliabilities and importances
factors and because of the non commutativity of these
discountings, we propose to proceed the fusion of the
sources in a three-steps process as follows:

Method 1: Step 1: Apply reliability and then impor-
tance discountings to get mαi,βi(.), i = 1, . . . , s and
combine them with PCR5∅ or PCR6∅ and normalize
the resulting bba; Step 2: Apply importance and then
reliability discountings to get mβi,αi(.), i = 1, . . . , s
and combine them with PCR5∅ or PCR6∅ and nor-
malize the resulting bba; Step 3 (mixing/averaging):
Combine the resulting bba’s of Steps 1 and 2 using the
arithmetic mean operator8.

8Other combination rules could be used also like PCR5 or
PCR6, etc., but we don’t see solid justification to use them again
and they require more computations than the simple arithmetic
mean.

where m123(A) is the mass of the conjunctive consensus
on A and P (1, 2, 3) is the set of all permutations of the
elements {1, 2, 3}. It should be observed that X may
be different or equal to Y .

The difference between formulas (3) and (6) is that
mPCR5(∅) = 0 whereas mPCR5∅

(∅) ≥ 0. Of course,
since we usually need to work with normal bba’s for
decision-making support, the result mPCR5∅

(.) , or
mPCR6∅

(.), of the fusion of discounted masses mβi(.)
will be normalized by redistributing the mass of belief
committed to the empty set to the other focal elements
and proportionally to their masses (see next example
for details).

5 Example
For convenience and simplicity, and due to space

limitation constraint, we give a very simple example
working on the classical power set 2Θ since most of
readers familiar belief functions usually work with this
fusion space.

Example 1: Let’s consider Θ = {A, B}, Shafer’s
model, and two sources with respectively bba’s m1(.)
and m2(.) given by m1(A) = 0.8, m1(B) = 0.2 and
m2(A) = 0.4, m2(B) = 0.6.

• Case 1 (no importance discounting): Let’s con-
sider that β1 = 1 and β2 = 1, i.e. the sources
must have the same maximal importance in the
fusion rule. In that case, one gets: mβ1(.) =
m1(.) and mβ2(.) = m2(.) and the bba’s are ac-
tually not discounted. The conjunctive rule gives
m12(A) = 0.32, m12(B) = 0.12 and the mass
m12(A ∩ B = ∅) = 0.56 is redistributed back to
A and B proportionally to their masses following
the PCR5 principle explained in section 2. We get
the following result:

mβ1=1(.) mβ2=1(.) m12(.) mPCR5(.)

∅ 0 0 0.56 0
A 0.8 0.4 0.32 0.64
B 0.2 0.6 0.12 0.36

Table 1: PCR5 fusion of mβ1=1(.) with mβ2=1(.).

• Case 2 (with importance discounting): Let’s take
now the importances factors β1 = 0.2 and β2 = 0.8
(note that in general we don’t need to force the
sum of βi to be one, unless one wants to deal with
relative importances between sources). Applying
importance discounting technique and normaliza-
tion of mPCR5∅

, denoted mnorm
PCR5∅

(.), one gets:

Clearly, one sees the strong impact of the impor-
tance discounting on the result with respect to
what we obtain in Table 1 (i.e. without impor-
tance discounting). Note also that the difference
is very different to what we would have obtained

mβ1=0.2(.) mβ2=0.8(.) m12(.) mnorm
PCR5∅

(.)

∅ 0.80 0.20 0.9296 0
A 0.16 0.32 0.0512 0.43
B 0.04 0.48 0.0192 0.57

Table 2: PCR5 fusion of mβ1=0.2(.) with mβ2=0.8(.).

by taking α1 = 0.2 and α2 = 0.8 and using the
reliability discounting approach as shown in Table
3.

mα1=0.2(.) mα2=0.8(.) m12(.) mPCR5(.)

∅ 0 0 0.0896 0
A 0.16 0.32 0.3392 0.3698
B 0.04 0.48 0.4112 0.4702
A ∪ B 0.80 0.20 0.1600 0.1600

Table 3: PCR5 fusion of mα1=0.2(.) with mα2=0.8(.).

By comparing Table 2 with Table 3, one sees the
clear difference in results obtained by these two
discounting techniques which is normal.

6 Reliability and importance
In this section, we examine the possibility to take into

account both the reliabilities αi and the importances
βi of given sources of evidence characterized by their
bba’s mi(.), i = 1, 2, . . . , s. The main question is how
to deal with these two distinct discounting factors since
in general, but when αi = βi = 1, the reliability and
importance discounting approaches do not commute.
Indeed, it can be easily verified (see in next example)
that mαi,βi(.) $= mβi,αi(.) whenever αi $= 1 and βi $= 1.
mαi,βi(.) denotes the reliability discounting of mi(.)by
αi followed by the importance discounting of mαi(.)
by βi which explains the notation αi, βi used in index.
Similarly, mβi,αi(.) denotes the importance discounting
of mi(.) by βi followed by the reliability discounting of
mβi(.) by αi.

To deal both with reliabilities and importances
factors and because of the non commutativity of these
discountings, we propose to proceed the fusion of the
sources in a three-steps process as follows:

Method 1: Step 1: Apply reliability and then impor-
tance discountings to get mαi,βi(.), i = 1, . . . , s and
combine them with PCR5∅ or PCR6∅ and normalize
the resulting bba; Step 2: Apply importance and then
reliability discountings to get mβi,αi(.), i = 1, . . . , s
and combine them with PCR5∅ or PCR6∅ and nor-
malize the resulting bba; Step 3 (mixing/averaging):
Combine the resulting bba’s of Steps 1 and 2 using the
arithmetic mean operator8.

8Other combination rules could be used also like PCR5 or
PCR6, etc., but we don’t see solid justification to use them again
and they require more computations than the simple arithmetic
mean.

where m123(A) is the mass of the conjunctive consensus
on A and P (1, 2, 3) is the set of all permutations of the
elements {1, 2, 3}. It should be observed that X may
be different or equal to Y .

The difference between formulas (3) and (6) is that
mPCR5(∅) = 0 whereas mPCR5∅

(∅) ≥ 0. Of course,
since we usually need to work with normal bba’s for
decision-making support, the result mPCR5∅

(.) , or
mPCR6∅

(.), of the fusion of discounted masses mβi(.)
will be normalized by redistributing the mass of belief
committed to the empty set to the other focal elements
and proportionally to their masses (see next example
for details).

5 Example
For convenience and simplicity, and due to space

limitation constraint, we give a very simple example
working on the classical power set 2Θ since most of
readers familiar belief functions usually work with this
fusion space.

Example 1: Let’s consider Θ = {A, B}, Shafer’s
model, and two sources with respectively bba’s m1(.)
and m2(.) given by m1(A) = 0.8, m1(B) = 0.2 and
m2(A) = 0.4, m2(B) = 0.6.

• Case 1 (no importance discounting): Let’s con-
sider that β1 = 1 and β2 = 1, i.e. the sources
must have the same maximal importance in the
fusion rule. In that case, one gets: mβ1(.) =
m1(.) and mβ2(.) = m2(.) and the bba’s are ac-
tually not discounted. The conjunctive rule gives
m12(A) = 0.32, m12(B) = 0.12 and the mass
m12(A ∩ B = ∅) = 0.56 is redistributed back to
A and B proportionally to their masses following
the PCR5 principle explained in section 2. We get
the following result:

mβ1=1(.) mβ2=1(.) m12(.) mPCR5(.)

∅ 0 0 0.56 0
A 0.8 0.4 0.32 0.64
B 0.2 0.6 0.12 0.36

Table 1: PCR5 fusion of mβ1=1(.) with mβ2=1(.).

• Case 2 (with importance discounting): Let’s take
now the importances factors β1 = 0.2 and β2 = 0.8
(note that in general we don’t need to force the
sum of βi to be one, unless one wants to deal with
relative importances between sources). Applying
importance discounting technique and normaliza-
tion of mPCR5∅

, denoted mnorm
PCR5∅

(.), one gets:

Clearly, one sees the strong impact of the impor-
tance discounting on the result with respect to
what we obtain in Table 1 (i.e. without impor-
tance discounting). Note also that the difference
is very different to what we would have obtained

mβ1=0.2(.) mβ2=0.8(.) m12(.) mnorm
PCR5∅

(.)

∅ 0.80 0.20 0.9296 0
A 0.16 0.32 0.0512 0.43
B 0.04 0.48 0.0192 0.57

Table 2: PCR5 fusion of mβ1=0.2(.) with mβ2=0.8(.).

by taking α1 = 0.2 and α2 = 0.8 and using the
reliability discounting approach as shown in Table
3.

mα1=0.2(.) mα2=0.8(.) m12(.) mPCR5(.)

∅ 0 0 0.0896 0
A 0.16 0.32 0.3392 0.3698
B 0.04 0.48 0.4112 0.4702
A ∪ B 0.80 0.20 0.1600 0.1600

Table 3: PCR5 fusion of mα1=0.2(.) with mα2=0.8(.).

By comparing Table 2 with Table 3, one sees the
clear difference in results obtained by these two
discounting techniques which is normal.

6 Reliability and importance
In this section, we examine the possibility to take into

account both the reliabilities αi and the importances
βi of given sources of evidence characterized by their
bba’s mi(.), i = 1, 2, . . . , s. The main question is how
to deal with these two distinct discounting factors since
in general, but when αi = βi = 1, the reliability and
importance discounting approaches do not commute.
Indeed, it can be easily verified (see in next example)
that mαi,βi(.) $= mβi,αi(.) whenever αi $= 1 and βi $= 1.
mαi,βi(.) denotes the reliability discounting of mi(.)by
αi followed by the importance discounting of mαi(.)
by βi which explains the notation αi, βi used in index.
Similarly, mβi,αi(.) denotes the importance discounting
of mi(.) by βi followed by the reliability discounting of
mβi(.) by αi.

To deal both with reliabilities and importances
factors and because of the non commutativity of these
discountings, we propose to proceed the fusion of the
sources in a three-steps process as follows:

Method 1: Step 1: Apply reliability and then impor-
tance discountings to get mαi,βi(.), i = 1, . . . , s and
combine them with PCR5∅ or PCR6∅ and normalize
the resulting bba; Step 2: Apply importance and then
reliability discountings to get mβi,αi(.), i = 1, . . . , s
and combine them with PCR5∅ or PCR6∅ and nor-
malize the resulting bba; Step 3 (mixing/averaging):
Combine the resulting bba’s of Steps 1 and 2 using the
arithmetic mean operator8.

8Other combination rules could be used also like PCR5 or
PCR6, etc., but we don’t see solid justification to use them again
and they require more computations than the simple arithmetic
mean.

Case 3 : Reliability discounting with

where m123(A) is the mass of the conjunctive consensus
on A and P (1, 2, 3) is the set of all permutations of the
elements {1, 2, 3}. It should be observed that X may
be different or equal to Y .

The difference between formulas (3) and (6) is that
mPCR5(∅) = 0 whereas mPCR5∅

(∅) ≥ 0. Of course,
since we usually need to work with normal bba’s for
decision-making support, the result mPCR5∅

(.) , or
mPCR6∅

(.), of the fusion of discounted masses mβi(.)
will be normalized by redistributing the mass of belief
committed to the empty set to the other focal elements
and proportionally to their masses (see next example
for details).

5 Example
For convenience and simplicity, and due to space

limitation constraint, we give a very simple example
working on the classical power set 2Θ since most of
readers familiar belief functions usually work with this
fusion space.

Example 1: Let’s consider Θ = {A, B}, Shafer’s
model, and two sources with respectively bba’s m1(.)
and m2(.) given by m1(A) = 0.8, m1(B) = 0.2 and
m2(A) = 0.4, m2(B) = 0.6.

• Case 1 (no importance discounting): Let’s con-
sider that β1 = 1 and β2 = 1, i.e. the sources
must have the same maximal importance in the
fusion rule. In that case, one gets: mβ1(.) =
m1(.) and mβ2(.) = m2(.) and the bba’s are ac-
tually not discounted. The conjunctive rule gives
m12(A) = 0.32, m12(B) = 0.12 and the mass
m12(A ∩ B = ∅) = 0.56 is redistributed back to
A and B proportionally to their masses following
the PCR5 principle explained in section 2. We get
the following result:

mβ1=1(.) mβ2=1(.) m12(.) mPCR5(.)

∅ 0 0 0.56 0
A 0.8 0.4 0.32 0.64
B 0.2 0.6 0.12 0.36

Table 1: PCR5 fusion of mβ1=1(.) with mβ2=1(.).

• Case 2 (with importance discounting): Let’s take
now the importances factors β1 = 0.2 and β2 = 0.8
(note that in general we don’t need to force the
sum of βi to be one, unless one wants to deal with
relative importances between sources). Applying
importance discounting technique and normaliza-
tion of mPCR5∅

, denoted mnorm
PCR5∅

(.), one gets:

Clearly, one sees the strong impact of the impor-
tance discounting on the result with respect to
what we obtain in Table 1 (i.e. without impor-
tance discounting). Note also that the difference
is very different to what we would have obtained

mβ1=0.2(.) mβ2=0.8(.) m12(.) mnorm
PCR5∅

(.)

∅ 0.80 0.20 0.9296 0
A 0.16 0.32 0.0512 0.43
B 0.04 0.48 0.0192 0.57

Table 2: PCR5 fusion of mβ1=0.2(.) with mβ2=0.8(.).

by taking α1 = 0.2 and α2 = 0.8 and using the
reliability discounting approach as shown in Table
3.

mα1=0.2(.) mα2=0.8(.) m12(.) mPCR5(.)

∅ 0 0 0.0896 0
A 0.16 0.32 0.3392 0.3698
B 0.04 0.48 0.4112 0.4702
A ∪ B 0.80 0.20 0.1600 0.1600

Table 3: PCR5 fusion of mα1=0.2(.) with mα2=0.8(.).

By comparing Table 2 with Table 3, one sees the
clear difference in results obtained by these two
discounting techniques which is normal.

6 Reliability and importance
In this section, we examine the possibility to take into

account both the reliabilities αi and the importances
βi of given sources of evidence characterized by their
bba’s mi(.), i = 1, 2, . . . , s. The main question is how
to deal with these two distinct discounting factors since
in general, but when αi = βi = 1, the reliability and
importance discounting approaches do not commute.
Indeed, it can be easily verified (see in next example)
that mαi,βi(.) $= mβi,αi(.) whenever αi $= 1 and βi $= 1.
mαi,βi(.) denotes the reliability discounting of mi(.)by
αi followed by the importance discounting of mαi(.)
by βi which explains the notation αi, βi used in index.
Similarly, mβi,αi(.) denotes the importance discounting
of mi(.) by βi followed by the reliability discounting of
mβi(.) by αi.

To deal both with reliabilities and importances
factors and because of the non commutativity of these
discountings, we propose to proceed the fusion of the
sources in a three-steps process as follows:

Method 1: Step 1: Apply reliability and then impor-
tance discountings to get mαi,βi(.), i = 1, . . . , s and
combine them with PCR5∅ or PCR6∅ and normalize
the resulting bba; Step 2: Apply importance and then
reliability discountings to get mβi,αi(.), i = 1, . . . , s
and combine them with PCR5∅ or PCR6∅ and nor-
malize the resulting bba; Step 3 (mixing/averaging):
Combine the resulting bba’s of Steps 1 and 2 using the
arithmetic mean operator8.

8Other combination rules could be used also like PCR5 or
PCR6, etc., but we don’t see solid justification to use them again
and they require more computations than the simple arithmetic
mean.

where m123(A) is the mass of the conjunctive consensus
on A and P (1, 2, 3) is the set of all permutations of the
elements {1, 2, 3}. It should be observed that X may
be different or equal to Y .

The difference between formulas (3) and (6) is that
mPCR5(∅) = 0 whereas mPCR5∅

(∅) ≥ 0. Of course,
since we usually need to work with normal bba’s for
decision-making support, the result mPCR5∅

(.) , or
mPCR6∅

(.), of the fusion of discounted masses mβi(.)
will be normalized by redistributing the mass of belief
committed to the empty set to the other focal elements
and proportionally to their masses (see next example
for details).

5 Example
For convenience and simplicity, and due to space

limitation constraint, we give a very simple example
working on the classical power set 2Θ since most of
readers familiar belief functions usually work with this
fusion space.

Example 1: Let’s consider Θ = {A, B}, Shafer’s
model, and two sources with respectively bba’s m1(.)
and m2(.) given by m1(A) = 0.8, m1(B) = 0.2 and
m2(A) = 0.4, m2(B) = 0.6.

• Case 1 (no importance discounting): Let’s con-
sider that β1 = 1 and β2 = 1, i.e. the sources
must have the same maximal importance in the
fusion rule. In that case, one gets: mβ1(.) =
m1(.) and mβ2(.) = m2(.) and the bba’s are ac-
tually not discounted. The conjunctive rule gives
m12(A) = 0.32, m12(B) = 0.12 and the mass
m12(A ∩ B = ∅) = 0.56 is redistributed back to
A and B proportionally to their masses following
the PCR5 principle explained in section 2. We get
the following result:

mβ1=1(.) mβ2=1(.) m12(.) mPCR5(.)

∅ 0 0 0.56 0
A 0.8 0.4 0.32 0.64
B 0.2 0.6 0.12 0.36

Table 1: PCR5 fusion of mβ1=1(.) with mβ2=1(.).

• Case 2 (with importance discounting): Let’s take
now the importances factors β1 = 0.2 and β2 = 0.8
(note that in general we don’t need to force the
sum of βi to be one, unless one wants to deal with
relative importances between sources). Applying
importance discounting technique and normaliza-
tion of mPCR5∅

, denoted mnorm
PCR5∅

(.), one gets:

Clearly, one sees the strong impact of the impor-
tance discounting on the result with respect to
what we obtain in Table 1 (i.e. without impor-
tance discounting). Note also that the difference
is very different to what we would have obtained

mβ1=0.2(.) mβ2=0.8(.) m12(.) mnorm
PCR5∅

(.)

∅ 0.80 0.20 0.9296 0
A 0.16 0.32 0.0512 0.43
B 0.04 0.48 0.0192 0.57

Table 2: PCR5 fusion of mβ1=0.2(.) with mβ2=0.8(.).

by taking α1 = 0.2 and α2 = 0.8 and using the
reliability discounting approach as shown in Table
3.

mα1=0.2(.) mα2=0.8(.) m12(.) mPCR5(.)

∅ 0 0 0.0896 0
A 0.16 0.32 0.3392 0.3698
B 0.04 0.48 0.4112 0.4702
A ∪ B 0.80 0.20 0.1600 0.1600

Table 3: PCR5 fusion of mα1=0.2(.) with mα2=0.8(.).

By comparing Table 2 with Table 3, one sees the
clear difference in results obtained by these two
discounting techniques which is normal.

6 Reliability and importance
In this section, we examine the possibility to take into

account both the reliabilities αi and the importances
βi of given sources of evidence characterized by their
bba’s mi(.), i = 1, 2, . . . , s. The main question is how
to deal with these two distinct discounting factors since
in general, but when αi = βi = 1, the reliability and
importance discounting approaches do not commute.
Indeed, it can be easily verified (see in next example)
that mαi,βi(.) $= mβi,αi(.) whenever αi $= 1 and βi $= 1.
mαi,βi(.) denotes the reliability discounting of mi(.)by
αi followed by the importance discounting of mαi(.)
by βi which explains the notation αi, βi used in index.
Similarly, mβi,αi(.) denotes the importance discounting
of mi(.) by βi followed by the reliability discounting of
mβi(.) by αi.

To deal both with reliabilities and importances
factors and because of the non commutativity of these
discountings, we propose to proceed the fusion of the
sources in a three-steps process as follows:

Method 1: Step 1: Apply reliability and then impor-
tance discountings to get mαi,βi(.), i = 1, . . . , s and
combine them with PCR5∅ or PCR6∅ and normalize
the resulting bba; Step 2: Apply importance and then
reliability discountings to get mβi,αi(.), i = 1, . . . , s
and combine them with PCR5∅ or PCR6∅ and nor-
malize the resulting bba; Step 3 (mixing/averaging):
Combine the resulting bba’s of Steps 1 and 2 using the
arithmetic mean operator8.

8Other combination rules could be used also like PCR5 or
PCR6, etc., but we don’t see solid justification to use them again
and they require more computations than the simple arithmetic
mean.

where m123(A) is the mass of the conjunctive consensus
on A and P (1, 2, 3) is the set of all permutations of the
elements {1, 2, 3}. It should be observed that X may
be different or equal to Y .

The difference between formulas (3) and (6) is that
mPCR5(∅) = 0 whereas mPCR5∅

(∅) ≥ 0. Of course,
since we usually need to work with normal bba’s for
decision-making support, the result mPCR5∅

(.) , or
mPCR6∅

(.), of the fusion of discounted masses mβi(.)
will be normalized by redistributing the mass of belief
committed to the empty set to the other focal elements
and proportionally to their masses (see next example
for details).

5 Example
For convenience and simplicity, and due to space

limitation constraint, we give a very simple example
working on the classical power set 2Θ since most of
readers familiar belief functions usually work with this
fusion space.

Example 1: Let’s consider Θ = {A, B}, Shafer’s
model, and two sources with respectively bba’s m1(.)
and m2(.) given by m1(A) = 0.8, m1(B) = 0.2 and
m2(A) = 0.4, m2(B) = 0.6.

• Case 1 (no importance discounting): Let’s con-
sider that β1 = 1 and β2 = 1, i.e. the sources
must have the same maximal importance in the
fusion rule. In that case, one gets: mβ1(.) =
m1(.) and mβ2(.) = m2(.) and the bba’s are ac-
tually not discounted. The conjunctive rule gives
m12(A) = 0.32, m12(B) = 0.12 and the mass
m12(A ∩ B = ∅) = 0.56 is redistributed back to
A and B proportionally to their masses following
the PCR5 principle explained in section 2. We get
the following result:

mβ1=1(.) mβ2=1(.) m12(.) mPCR5(.)

∅ 0 0 0.56 0
A 0.8 0.4 0.32 0.64
B 0.2 0.6 0.12 0.36

Table 1: PCR5 fusion of mβ1=1(.) with mβ2=1(.).

• Case 2 (with importance discounting): Let’s take
now the importances factors β1 = 0.2 and β2 = 0.8
(note that in general we don’t need to force the
sum of βi to be one, unless one wants to deal with
relative importances between sources). Applying
importance discounting technique and normaliza-
tion of mPCR5∅

, denoted mnorm
PCR5∅

(.), one gets:

Clearly, one sees the strong impact of the impor-
tance discounting on the result with respect to
what we obtain in Table 1 (i.e. without impor-
tance discounting). Note also that the difference
is very different to what we would have obtained

mβ1=0.2(.) mβ2=0.8(.) m12(.) mnorm
PCR5∅

(.)

∅ 0.80 0.20 0.9296 0
A 0.16 0.32 0.0512 0.43
B 0.04 0.48 0.0192 0.57

Table 2: PCR5 fusion of mβ1=0.2(.) with mβ2=0.8(.).

by taking α1 = 0.2 and α2 = 0.8 and using the
reliability discounting approach as shown in Table
3.

mα1=0.2(.) mα2=0.8(.) m12(.) mPCR5(.)

∅ 0 0 0.0896 0
A 0.16 0.32 0.3392 0.3698
B 0.04 0.48 0.4112 0.4702
A ∪ B 0.80 0.20 0.1600 0.1600

Table 3: PCR5 fusion of mα1=0.2(.) with mα2=0.8(.).

By comparing Table 2 with Table 3, one sees the
clear difference in results obtained by these two
discounting techniques which is normal.

6 Reliability and importance
In this section, we examine the possibility to take into

account both the reliabilities αi and the importances
βi of given sources of evidence characterized by their
bba’s mi(.), i = 1, 2, . . . , s. The main question is how
to deal with these two distinct discounting factors since
in general, but when αi = βi = 1, the reliability and
importance discounting approaches do not commute.
Indeed, it can be easily verified (see in next example)
that mαi,βi(.) $= mβi,αi(.) whenever αi $= 1 and βi $= 1.
mαi,βi(.) denotes the reliability discounting of mi(.)by
αi followed by the importance discounting of mαi(.)
by βi which explains the notation αi, βi used in index.
Similarly, mβi,αi(.) denotes the importance discounting
of mi(.) by βi followed by the reliability discounting of
mβi(.) by αi.

To deal both with reliabilities and importances
factors and because of the non commutativity of these
discountings, we propose to proceed the fusion of the
sources in a three-steps process as follows:

Method 1: Step 1: Apply reliability and then impor-
tance discountings to get mαi,βi(.), i = 1, . . . , s and
combine them with PCR5∅ or PCR6∅ and normalize
the resulting bba; Step 2: Apply importance and then
reliability discountings to get mβi,αi(.), i = 1, . . . , s
and combine them with PCR5∅ or PCR6∅ and nor-
malize the resulting bba; Step 3 (mixing/averaging):
Combine the resulting bba’s of Steps 1 and 2 using the
arithmetic mean operator8.

8Other combination rules could be used also like PCR5 or
PCR6, etc., but we don’t see solid justification to use them again
and they require more computations than the simple arithmetic
mean.



Mixing reliability and importance discountings

Method 1:  Step 1: Apply reliability discounting, then 
importance discounting to get              . Then use PCR5ø or 
PCR6ø to combine them; 
Step 2: Apply importance discounting, then reliability 
discounting to get              . Then use PCR5ø or PCR6ø to 
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Step 3: Average the results of steps 1 & 2

where m123(A) is the mass of the conjunctive consensus
on A and P (1, 2, 3) is the set of all permutations of the
elements {1, 2, 3}. It should be observed that X may
be different or equal to Y .
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sum of βi to be one, unless one wants to deal with
relative importances between sources). Applying
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, denoted mnorm
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that mαi,βi(.) $= mβi,αi(.) whenever αi $= 1 and βi $= 1.
mαi,βi(.) denotes the reliability discounting of mi(.)by
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of mi(.) by βi followed by the reliability discounting of
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malize the resulting bba; Step 3 (mixing/averaging):
Combine the resulting bba’s of Steps 1 and 2 using the
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8Other combination rules could be used also like PCR5 or
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and they require more computations than the simple arithmetic
mean.
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(.) , or
mPCR6∅

(.), of the fusion of discounted masses mβi(.)
will be normalized by redistributing the mass of belief
committed to the empty set to the other focal elements
and proportionally to their masses (see next example
for details).
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fusion space.
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model, and two sources with respectively bba’s m1(.)
and m2(.) given by m1(A) = 0.8, m1(B) = 0.2 and
m2(A) = 0.4, m2(B) = 0.6.

• Case 1 (no importance discounting): Let’s con-
sider that β1 = 1 and β2 = 1, i.e. the sources
must have the same maximal importance in the
fusion rule. In that case, one gets: mβ1(.) =
m1(.) and mβ2(.) = m2(.) and the bba’s are ac-
tually not discounted. The conjunctive rule gives
m12(A) = 0.32, m12(B) = 0.12 and the mass
m12(A ∩ B = ∅) = 0.56 is redistributed back to
A and B proportionally to their masses following
the PCR5 principle explained in section 2. We get
the following result:

mβ1=1(.) mβ2=1(.) m12(.) mPCR5(.)

∅ 0 0 0.56 0
A 0.8 0.4 0.32 0.64
B 0.2 0.6 0.12 0.36

Table 1: PCR5 fusion of mβ1=1(.) with mβ2=1(.).

• Case 2 (with importance discounting): Let’s take
now the importances factors β1 = 0.2 and β2 = 0.8
(note that in general we don’t need to force the
sum of βi to be one, unless one wants to deal with
relative importances between sources). Applying
importance discounting technique and normaliza-
tion of mPCR5∅

, denoted mnorm
PCR5∅

(.), one gets:

Clearly, one sees the strong impact of the impor-
tance discounting on the result with respect to
what we obtain in Table 1 (i.e. without impor-
tance discounting). Note also that the difference
is very different to what we would have obtained

mβ1=0.2(.) mβ2=0.8(.) m12(.) mnorm
PCR5∅

(.)

∅ 0.80 0.20 0.9296 0
A 0.16 0.32 0.0512 0.43
B 0.04 0.48 0.0192 0.57

Table 2: PCR5 fusion of mβ1=0.2(.) with mβ2=0.8(.).

by taking α1 = 0.2 and α2 = 0.8 and using the
reliability discounting approach as shown in Table
3.

mα1=0.2(.) mα2=0.8(.) m12(.) mPCR5(.)

∅ 0 0 0.0896 0
A 0.16 0.32 0.3392 0.3698
B 0.04 0.48 0.4112 0.4702
A ∪ B 0.80 0.20 0.1600 0.1600

Table 3: PCR5 fusion of mα1=0.2(.) with mα2=0.8(.).

By comparing Table 2 with Table 3, one sees the
clear difference in results obtained by these two
discounting techniques which is normal.

6 Reliability and importance
In this section, we examine the possibility to take into

account both the reliabilities αi and the importances
βi of given sources of evidence characterized by their
bba’s mi(.), i = 1, 2, . . . , s. The main question is how
to deal with these two distinct discounting factors since
in general, but when αi = βi = 1, the reliability and
importance discounting approaches do not commute.
Indeed, it can be easily verified (see in next example)
that mαi,βi(.) $= mβi,αi(.) whenever αi $= 1 and βi $= 1.
mαi,βi(.) denotes the reliability discounting of mi(.)by
αi followed by the importance discounting of mαi(.)
by βi which explains the notation αi, βi used in index.
Similarly, mβi,αi(.) denotes the importance discounting
of mi(.) by βi followed by the reliability discounting of
mβi(.) by αi.

To deal both with reliabilities and importances
factors and because of the non commutativity of these
discountings, we propose to proceed the fusion of the
sources in a three-steps process as follows:

Method 1: Step 1: Apply reliability and then impor-
tance discountings to get mαi,βi(.), i = 1, . . . , s and
combine them with PCR5∅ or PCR6∅ and normalize
the resulting bba; Step 2: Apply importance and then
reliability discountings to get mβi,αi(.), i = 1, . . . , s
and combine them with PCR5∅ or PCR6∅ and nor-
malize the resulting bba; Step 3 (mixing/averaging):
Combine the resulting bba’s of Steps 1 and 2 using the
arithmetic mean operator8.

8Other combination rules could be used also like PCR5 or
PCR6, etc., but we don’t see solid justification to use them again
and they require more computations than the simple arithmetic
mean.

see [Smarandache-Dezert Fusion 2010] paper

Method 2:  Step 1: Apply reliability discounting to 
get              . Then use PCR5 or PCR6 to combine them; 
Step 2:  Apply importance discounting, to get              . Then 
use PCR5ø or PCR6ø to combine them and then normalize. 
Step 3: Average the results of steps 1 & 2

Method 2: Another simplest method which could be
useful for intermediate traceability in some applications
would consist to change Steps 1 & 2 by Step 1’: Apply
reliability discounting only to get mαi(.) and combine
them with PCR5 or PCR6; Step 2’: Apply importance
discounting only to get mβi(.) and combine them with
PCR5∅ or PCR6∅ and normalize the result; Step 3’
same as Step 3. Due to space limitation, only Method
1 is briefly illustrated in the following very simple
example.

Example 2: Let’s take Θ = {A, B, C}, Shafer’s model,
three sources m1(.), m2(.) and m3(.) given in next table
and assume that their reliability factors are α1 = 0.8,
α2 = 0.5, and α3 = 0.2 and their importance factors
are β1 = 0.9, β2 = 0.3 and β3 = 0.6.

m1(.) m2(.) m3(.)
∅ 0 0 0
A 0.8 0.4 0.1
B 0 0.3 0.3
A ∪ B 0.1 0.2 0
C 0 0 0.5
A ∪ C 0.1 0 0
B ∪ C 0 0.1 0
A ∪ B ∪ C 0 0 0.1

Table 4: Sources of evidences.

By applying reliability followed by importance dis-
counting, and by applying importance followed by reli-
ability discounting, one gets:

mα1,β1
(.) mα2,β2

(.) mα3,β3
(.)

∅ 0.1000 0.7000 0.4000
A 00.5760 0.0600 0.0120
B 0 0.0450 0.0360
A ∪ B 0.0720 0.0300 0
C 0 0 0.0600
A ∪ C 0.0720 0 0
B ∪ C 0 0.0150 0
A ∪ B ∪ C 0.1800 0.1500 0.4920

Table 5: Reliability-Importance discounting.

mβ1,α1
(.) mβ2,α2

(.) mβ3,α3
(.)

∅ 0.0800 0.3500 0.0800
A 0.5760 0.0600 0.0120
B 0 0.0450 0.0360
A ∪ B 0.0720 0.0300 0
C 0 0 0.0600
A ∪ C 0.0720 0 0
B ∪ C 0 0.0150 0
A ∪ B ∪ C 0.2000 0.5000 0.8120

Table 6: Importance-Reliability discounting.

The normalized results of the PCR5∅ fusion of
mαi,βi(.) for i = 1, 2, 3 (Step 1) and PCR5∅ fusion of
mβi,αi(.) for i = 1, 2, 3 (Step 2) is given in next Table
7 with their arithmetic mean m̄PCR5(.) (Step 3).

Step 1 Step 2 Step 3
mnorm

PCR5∅,α,β
(.) mnorm

P CR5∅,β,α
(.) m̄PCR5(.)

∅ 0 0 0
A 0.5741 0.4927 0.5334
B 0.0254 0.0244 0.0249
A ∪ B 0.0311 0.0464 0.0388
C 0.0182 0.0182 0.0182
A ∪ C 0.0233 0.0386 0.0310
B ∪ C 0.0032 0.0032 0.0032
A ∪ B ∪ C 0.3247 0.3765 0.3506

Table 7: Results of Steps 1, 2 & 3.

7 Conclusions
The proposition of two different discounting tech-

niques is an important contribution to consider both
preferences and reliability in fusion problems for deci-
sion making purposes. In this paper, we have proposed
a new solution for taking into account the different im-
portances of sources of evidence in their combination.
We have shown the clear distinction between the clas-
sical reliability discounting technique and our new im-
portance discounting method which can be used with
extensions of PCR5 and PCR6 fusion rules developed in
DSmT framework. It has been shown also that Demp-
ster’s rule cannot be applied satisfactorily with this im-
portance discounting approach contrariwise to PCR5
and PCR6 rules. The importance and reliability can
now be distinguished in the fusion of sources which in-
troduces a link with Multi-Criteria Decision Problems
in the fusion of sources of information. Applications
of these techniques for risk prevention against natural
catastrophes in mountains are under progress and re-
sults will be published in forthcoming publications.
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Probabilistic transformations

Why ? Useful for decision-making under uncertainty and/or for mixing 
uncertainty management techniques with purely Bayesian approaches 
and filtering techniques (i.e. PDAF, JPDAF, MHT, etc)

Purpose:  One wants to approximate a bba m(.) by a probabiliy measure P(.)

Solutions:  Many solutions exist (Pignistic, Sudano’s, Cuzzolin’s, DSmP, ...)
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Generalized Pignistic Transformation

It allows to build a subjective probability measure P{.} over hyper-power set to 

help the decision making under uncertainty (other issues are possible).
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Then, one gets the following list of elements (with their

DSm cardinal) for the restrictedDΘ taking into account the

integrity constraints of this hybrid model:

A ∈ DΘ CM(A)
α0 ! ∅ 0
α1 ! θ1 ∩ θ2 1
α2 ! θ3 1
α3 ! θ1 2
α4 ! θ2 2
α5 ! θ1 ∪ θ2 3
α6 ! θ1 ∪ θ3 3
α7 ! θ2 ∪ θ3 3
α8 ! θ1 ∪ θ2 ∪ θ3 4

Table 2: CM(A) for the chosen hybrid modelM

2.4.4 A 3D example with the Shafer’s model

Consider now the same 3D case but with all exclusivity

constraints on θi, i = 1, 2, 3. This corresponds to the

3D Shafer’s model M0 presented in the following Venn

diagram.
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Then, one gets the following list of elements (with their

DSm cardinal) for the restricted DΘ, which coincides nat-

urally with the classical power set 2Θ:

A ∈ (DΘ ≡ 2Θ) CM0(A)
α0 ! ∅ 0
α1 ! θ1 1
α2 ! θ2 1
α3 ! θ3 1
α4 ! θ1 ∪ θ2 2
α5 ! θ1 ∪ θ3 2
α6 ! θ2 ∪ θ3 2
α7 ! θ1 ∪ θ2 ∪ θ3 3

Table 3: CM(A) for the 3D Shafer’s modelM0

3 The pignistic transformations

We follow here the Smets’ point of view [14] about the

assumption that beliefs manifest themselves at two mental

levels: the credal level where beliefs are entertained and the

pignistic level where belief are used to make decisions. Pig-

nistic terminology has been coined by Philippe Smets and

comes from pignus, a bet in Latin. The probability func-

tions, usually used to quantify beliefs at both levels, are

actually used here only to quantify the uncertainty when a

decision is really necessary, otherwise we argue as Philippe

Smets does, that beliefs are represented by belief functions.

To take a rational decision, we propose to transform beliefs

into pignistic probability functions through the generalized

pignistic transformation (GPT) which will be presented in

the sequel. We first recall the classical pignistic transforma-

tion (PT) based on the DST and then we generalize it within

the DSmT framework.

3.1 The classical pignistic transformation

When a decision must be taken, we use the expected util-

ity theory which requires to construct a probability func-

tion P{.} from basic belief assignment m(.) [14]. This is
achieved by the so-called classical pignistic transformation1

as follows (see [11] for justification):

P{A} =
∑

X∈2Θ

|X ∩ A|

|X |
m(X) (8)

where |A| denotes the number of worlds in the set A (with

convention |∅|/|∅| = 1, to define P{∅}). P{A} corre-
sponds to BetP (A) in the Smets’ notation [14]. Decisions
are achieved by computing the expected utilities of the acts

using the subjective/pignistic P{.} as the probability func-
tion needed to compute expectations. Usually, one uses the

maximum of the pignistic probability as decision criterion.

The max. of P{.} is often considered as a prudent betting
decision criterion between the two other alternatives (max

of plausibility or max. of credibility). It is easy to show that

P{.} is indeed a probability function (see [11]).

3.2 The generalized pignistic transformation

3.2.1 Definition

To take a rational decision within the DSmT framework, it

is then necessary to generalize the classical pignistic trans-

formation in order to construct a pignistic probability func-

tion from any generalized basic belief assignment m(.)
drawn form the DSm rule of combination (the classic or hy-

brid rule). This generalized pignistic transformation (GPT)

is defined by: ∀A ∈ DΘ,

P{A} =
∑

X∈DΘ

CM(X ∩ A)

CM(X)
m(X) (9)

1We don’t divide here m(X) by 1 − m(∅) as in the P. Smets’
formulation just because m(∅) = 0 in the DSmT framework, un-
less there is a solid necessity to justify to do it.

= DSm cardinality of X = # of parts of X in Venn Diagram for model M under consideration

The DSmT approach for information

fusion and some open problems
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Abstract. This paper introduces the recent theory of plausible and paradoxical

reasoning, known as DSmT (Dezert-Smarandache Theory) in the literature, which

deals with imprecise, uncertain and potentially highly conflicting sources of infor-

mation. Recent publications have shown the interest and the potential ability of

DSmT to solve fusion problems where Dempster-Shafer Theory (DST) provides

counter-intuitive results, especially when conflict between sources becomes high

and information becomes vague and imprecise. This short paper presents the foun-

dations of DSmT, its main rules of combination including the most recent ones and

introduce briefly some open challenging problems in fusion.

Keywords. Information fusion, Dezert-Smarandache theory, DSmT, Plausible
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1. Introduction

CM(.)

CM(X)

The development of the DSmT [8] arises from the necessity to overcome the inher-

ent limitations of the DST [7] which are closely related with the acceptance of Shafer’s

model (i.e. working with an homogeneous1 frame of discernment Θ defined as a finite

set of exhaustive and exclusive hypotheses θi, i = 1, . . . , n), the third middle excluded
principle, and Dempster’s rule for the combination of independent sources of evidence.

Limitations of DST are well reported in literature [17,13] and several alternative rules

to Dempster’s rule of combination can be found in [1,16,3,5,6,8]. DSmT provides a new

1Email addresses: jean.dezert@onera.fr, smarand@unm.edu.
1Although the homogeneity of Θ is not explicitly mentioned in the DST, it is a strong implicit assumption

inherent to the Shafer’s model. When working with DST, one implicitly assumes that all finite and exclusive

elements ofΘ have somehow the same semantic nature, otherwise the complement defined over the power-set

becomes just a non-sense. The Shafer’s model cannot deal directly with non-homogeneous elements (carrying

different semantics) of Θ. This property however is necessary in many applications where the information
given by the sources can’t be expressed with same semantic due to the potentially different intrinsic nature of

information carried by the sources/experts/sensors.

DSmT: A new paradigm shift for information fusion

J. Dezert1, F. Smarandache2

1ONERA/DTIM/IED, 29 Av. de la Division Leclerc, 92320 Châtillon, France
2Department of Mathematics, University of New Mexico, Gallup, NM 87301, USA

Abstract: The management and combination of uncertain,

imprecise, fuzzy and even paradoxical or high conflicting

sources of information has always been, and still remains

today, of primal importance for the development of reli-

able modern information systems involving artificial reason-

ing. In this short survey paper, we present the recent theory

of plausible and paradoxical reasoning, known as DSmT

(Dezert-Smarandache Theory) in literature, developed for

dealingwith imprecise, uncertain and potentially highly con-

flicting sources of informationwhich is a new paradigm shift

for information fusion. Recent publications have shown the

interest and the potential ability of DSmT to solve fusion

problems where Dempster’s rule used in Dempster-Shafer

Theory (DST) provides counter-intuitive results or fails to

provide useful result at all. This presentation is focused on

the foundations of DSmT, and on the presentation of its main

rules of combination (classic and hybrid) and also the most

efficient Proportional Conflict Redistribution rule developed

so far. The Shafer’s model on which is based DST appears

as a particular and specific case of DSm hybrid model which

can be easily handled by DSmT as well. Several simple but

illustrative examples are given throughout this presentation

to show the interest and the generality of this new approach.

Keywords: Dezert-Smarandache Theory, DSmT, Informa-

tion Fusion, Conflict management.

1 Pipo

CMf (Θ)(θ1) = 4

CM(Θ)(θ1) = 2

P{A} ≡ betP{A}

2 Introduction

The development of the DSmT [11] arises from the neces-

sity to overcome the inherent limitations of the DST [10]

which are closely related with the acceptance of Shafer’s

model (i.e. working with an homogeneous frame of dis-

cernment Θ defined as a finite set of exhaustive and exclu-

sive hypotheses θi, i = 1, . . . , n), the third excluded mid-
dle principle, and the Dempster’s rule for the combination

of independent sources of evidence. Limitations of DST are

well reported in literature [18, 16, 19] and several alternative

rules to the Dempster’s rule of combination can be found in

[4, 17, 7, 8, 9, 11] and very recently in [12, 13, 5]. DSmT

provides a new mathematical framework for information fu-

sion which appears less restrictive and more general than

the basis and constraints of DST. The basis of DSmT is the

refutation of the principle of the third excluded middle and

Shafer’s model in general, since for a wide class of fusion

problems the hypotheses one has to deal with can have dif-

ferent intrinsic nature1 and also appear only vague and im-

precise in such a way that precise refinement is just impos-

sible to obtain in reality so that the exclusive elements θi

cannot be properly identified and defined. Many problems

involving fuzzy/vague continuous and relative2 concepts de-

scribed in natural language with different semantic contents

and having no absolute interpretation enter in this category.

DSmT starts with the notion of free DSm model and con-

siders Θ only as a frame of exhaustive elements which can

potentially overlap and have different intrinsic semantic na-

tures and which also can change with time with new infor-

mation and evidences received on the model itself. DSmT

offers a flexibility on the structure of the model one has to

deal with. When the free DSm model holds, the conjunc-

tive consensus is performed. If the free model does not

fit the reality because it is known that some subsets of Θ
contain elements truly exclusive but also possibly truly non

existing at all at a given time (in dynamic3 fusion), new

fusion rules must be performed to take into account these

integrity constraints. The constraints can be explicitly in-

troduced into the free DSm model to fit it adequately with

our current knowledge of the reality; we actually construct

a hybrid DSm model on which the combination will be ef-

ficiently performed. Shafer’s model, which is the basis of

DST, corresponds to a very specific hybrid DSm (and ho-

mogeneous) model including all possible exclusivity con-

straints. DSmT has been developed to work with any kind

of model, to combine imprecise, uncertain and potentially

high conflicting sources for static and dynamic information

fusion. DSmT refutes the idea that sources provide their be-

liefs with the same absolute interpretation of elements ofΘ;
what is considered as good for somebody can be considered

as bad for somebody else. This paper is an extended ver-

sion of [2, 3, 15]. After a short presentation of hyper-power

1By example, in some target tracking and classification applications,

one has to deal both with imprecise and uncertain information like radar-

cross section, as well as Doppler/velocity measurements
2The notion of relativity comes from the own interpretation of the ele-

ments of the frame Θ by each sources of evidences involved in the fusion

process.
3i.e. when the frame Θ and/or the modelM is changing with time.

in Smets’ TBM context

Classical Pignistic Transform (CPT)
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Then, one gets the following list of elements (with their

DSm cardinal) for the restrictedDΘ taking into account the

integrity constraints of this hybrid model:

A ∈ DΘ CM(A)
α0 ! ∅ 0
α1 ! θ1 ∩ θ2 1
α2 ! θ3 1
α3 ! θ1 2
α4 ! θ2 2
α5 ! θ1 ∪ θ2 3
α6 ! θ1 ∪ θ3 3
α7 ! θ2 ∪ θ3 3
α8 ! θ1 ∪ θ2 ∪ θ3 4

Table 2: CM(A) for the chosen hybrid modelM

2.4.4 A 3D example with the Shafer’s model

Consider now the same 3D case but with all exclusivity

constraints on θi, i = 1, 2, 3. This corresponds to the

3D Shafer’s model M0 presented in the following Venn

diagram.
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Then, one gets the following list of elements (with their

DSm cardinal) for the restricted DΘ, which coincides nat-

urally with the classical power-set 2Θ:

A ∈ (DΘ ≡ 2Θ) CM0(A)
α0 ! ∅ 0
α1 ! θ1 1
α2 ! θ2 1
α3 ! θ3 1
α4 ! θ1 ∪ θ2 2
α5 ! θ1 ∪ θ3 2
α6 ! θ2 ∪ θ3 2
α7 ! θ1 ∪ θ2 ∪ θ3 3

Table 3: CM(A) for the 3D Shafer’s modelM0

3 The Pignistic Transformation

We follow here the Smets’ point of view [14] about the

assumption that beliefs manifest themselves at two mental

levels: the credal level where beliefs are entertained and the

pignistic level where belief are used to make decisions. Pig-

nistic terminology has been coined by Philippe Smets and

comes from pignus, a bet in Latin. The probability func-

tions, usually used to quantify beliefs at both levels, are

actually used here only to quantify the uncertainty when a

decision is really necessary, otherwise we argue as Philippe

Smets does, that beliefs are represented by belief functions.

To take a rational decision, we propose to transform beliefs

into pignistic probability functions through the Generalized

Pignistic Transformation (GPT) which will be presented in

the sequel. We first recall the classical Pignistic Transfor-

mation based on the DST and then we generalize it within

the DSmT framework.

3.1 Classical Pignistic Transformation

When a decision must be taken, we use the expected util-

ity theory which requires to construct a probability function

P{.} from basic belief functionm(.) [14]. This is achieved
by the so-called classical Pignistic Transformation1 as fol-

lows (see [13] for justification):

P{A} =
∑

X∈2Θ

|X ∩ A|

|X |
m(X) (8)

where |A| denotes the number of worlds in the set A (with

convention |∅|/|∅| = 1, to define P{∅}). P{A} corre-
sponds to BetP (A) in the Smets notation [14]. Decisions
are achieved by computing the expected utilities of the acts

using the subjective/pignistic P{.} as the probability func-
tion needed to compute expectations. Usually, one uses the

maximum of the pignistic probability as decision criterion.

The max. of P{.} is often considered as a prudent betting
decision criterion between the two other alternatives (max

of plausibility or max. of credibility which appears to be

respectively too optimistic or too pessimistic). It is easy to

show that P{.} is indeed a probability function (see [13]).

3.2 Generalized Pignistic Transformation

3.2.1 Definition

To take a rational decision within the DSmT framework,

it is then necessary to generalize the Classical Pignistic

Transformation in order to construct a Pignistic Probabil-

ity function from any generalized basic belief assignment

m(.) drawn form the DSm rule of combination (the classic
or hybrid rule). This Generalized Pignistic Transformation

(GPT) is defined by: ∀A ∈ DΘ,

P{A} =
∑

X∈DΘ

CM(X ∩ A)

CM(X)
m(X) (9)

1We don’t divide here m(X) by 1 − m(∅) as in the P. Smets’
formulation just because m(∅) = 0 in the DSmT framework, un-
less there is a solid necessity to justify to do it.

GPT reduces to CPT when Shafer’s model is used
∀A ∈ DΘ

Bel(A) ≤ P{A} ≤ Pl(A)

2.4 The DSm cardinality CM(A)

2.4.1 Definition

One important notion involved in the definition of the generalized pignistic transformation (GPT) is the DSm cardinality

[3]. The DSm cardinality of any element A ∈ DΘ, denoted CM(A), corresponds to the number of parts of A in the

Venn diagram of the problem (modelM) taking into account the set of integrity constraints (if any), i.e. all the possible

intersections due to the nature of the elements θi. This intrinsic cardinality depends on the model M (free, hybrid or

Shafer’s model). M is the model that contains A, which depends both on the dimension n = |Θ| and on the number of
parts of non-empty intersections present in its associated Venn diagram. One has 1 ≤ CM(A) ≤ 2n − 1. CM(A) must
not be confused with the classical cardinality |A| of a given set A (i.e. the number of its distinct elements) - that’s why a

new notation is necessary here.

It can be shown, see [3], that CM(A), is exactly equal to the sum of the elements of the row of Dn corresponding

to proposition A in the un basis (see section 2.1.1). Actually CM(A) is very easy to compute by programming from the
algorithm of generation ofDΘ given in [4].

If one imposes a constraint that a set B from DΘ is empty (i.e. we choose a hybrid model), then one suppresses the

columns corresponding to the parts which compose B in the matrixDn and the row of B and the rows of all elements of

DΘ which are subsets of B, getting a new matrix D′
n which represents a new hybrid modelM′. In the un basis, one

similarly suppresses the parts that form B, and now this basis has the dimension 2n − 1 − CM(B).

2.4.2 A 3D example with the free DSm modelMf

Consider the 3D case Θ = {θ1, θ2, θ3} with the free DSm model Mf corresponding to the following Venn diagram

(where< i > denotes the part which belongs to θi only,< ij > denotes the part which belongs to θi and θj only, etc; this

is the Smarandache’s codification [4]).
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#$

!"
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!"
#$!"
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<12>

<123>

<3>
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Property : Other alternatives exist 
[Sudano 2002, 2003, Cuzzolin 2007, DSmP 2008]

CPT & GPT are not invertible.
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Examples for Pignistic Transformation

Based on free-DSm model

By substituting CM(X ∩ (A ∪ B)) by CM(X ∩ A) + CM(X ∩ B) into (10), it comes:

P{A ∪ B} =
∑

X∈DΘ

CM(X ∩ A) + CM(X ∩ B)

CM(X)
m(X)

=
∑

X∈DΘ

CM(X ∩ A)

CM(X)
m(X)

+
∑

X∈DΘ

CM(X ∩ B)

CM(X)
m(X)

= P{A} + P{B}

which completes the proof. From the coefficients
CM(X∩A)
CM(X) involved in (9), it can also be easily checked that A ⊂ B ⇒

P{A} ≤ P{B}. One can also easily prove the Poincaré’ equality: P{A ∪ B} = P{A} + P{B}− P{A ∩ B} because
CM(X ∩ (A∪B) = CM((X ∩A)∪ (X ∩B)) = CM(X ∩A) + CM(X ∩B)− CM(X ∩ (A∩B)) (one has substracted
CM(X ∩ (A ∩ B)), i.e. the number of parts of X ∩ (A ∩ B) in the Venn diagram, due to the fact that these parts were
added twice: once in CM(X ∩ A) and second time in CM(X ∩ B).

4 Examples of GPT

4.1 Example for the 2D case

• With the free-DSmmodel: Let’s consider
Θ = {θ1, θ2}

and the generalized basic belief functionm(.) over the hyperpower-set

DΘ = {∅, θ1 ∩ θ2, θ1, θ2, θ1 ∪ θ2}

. It is easy to construct the pignistic probability P{.}. According to the definition of the GPT given in (9), one gets:

P{∅} = 0

P{θ1} = m(θ1) +
1

2
m(θ2) + m(θ1 ∩ θ2) +

2

3
m(θ1 ∪ θ2)

P{θ2} = m(θ2) +
1

2
m(θ1) + m(θ1 ∩ θ2) +

2

3
m(θ1 ∪ θ2)

P{θ1 ∩ θ2} =
1

2
m(θ2) +

1

2
m(θ1) + m(θ1 ∩ θ2) +

1

3
m(θ1 ∪ θ2)

P{θ1 ∪ θ2} = P{Θ} = m(θ1) + m(θ2) + m(θ1 ∩ θ2) + m(θ1 ∪ θ2) = 1

It is easy to prove that 0 ≤ P{.} ≤ 1 and P{θ1 ∪ θ2} = P{θ1} + P{θ2}− P{θ1 ∩ θ2}

• With the Shafer’s model: If one adopts the Shafer’s model (we assume θ1 ∩ θ2
M0

≡ ∅), then after applying the
DSm hybrid rule of combination, one gets a basic belief function with non null masses only on θ1, θ2 and θ1 ∪ θ2.

By applying the GPT, one gets:

P{∅} = 0

P{θ1 ∩ θ2} = 0

P{θ1} = m(θ1) +
1

2
m(θ1 ∪ θ2)

P{θ2} = m(θ2) +
1

2
m(θ1 ∪ θ2)

P{θ1 ∪ θ2} = m(θ1) + m(θ2) + m(θ1 ∪ θ2) = 1

which naturally corresponds in this case to the pignistic probability built with the classical pignistic transformation

(8).

By substituting CM(X ∩ (A ∪ B)) by CM(X ∩ A) + CM(X ∩ B) into (10), it comes:

P{A ∪ B} =
∑

X∈DΘ

CM(X ∩ A) + CM(X ∩ B)

CM(X)
m(X)

=
∑

X∈DΘ

CM(X ∩ A)

CM(X)
m(X)

+
∑

X∈DΘ

CM(X ∩ B)

CM(X)
m(X)

= P{A} + P{B}

which completes the proof. From the coefficients
CM(X∩A)
CM(X) involved in (9), it can also be easily checked that A ⊂ B ⇒

P{A} ≤ P{B}. One can also easily prove the Poincaré’ equality: P{A ∪ B} = P{A} + P{B}− P{A ∩ B} because
CM(X ∩ (A∪B) = CM((X ∩A)∪ (X ∩B)) = CM(X ∩A) + CM(X ∩B)− CM(X ∩ (A∩B)) (one has substracted
CM(X ∩ (A ∩ B)), i.e. the number of parts of X ∩ (A ∩ B) in the Venn diagram, due to the fact that these parts were
added twice: once in CM(X ∩ A) and second time in CM(X ∩ B).

4 Examples of GPT

4.1 Example for the 2D case

• With the free-DSmmodel: Let’s consider
Θ = {θ1, θ2}

and the generalized basic belief functionm(.) over the hyperpower-set

DΘ = {∅, θ1 ∩ θ2, θ1, θ2, θ1 ∪ θ2}

. It is easy to construct the pignistic probability P{.}. According to the definition of the GPT given in (9), one gets:

P{∅} = 0

P{θ1} = m(θ1) +
1

2
m(θ2) + m(θ1 ∩ θ2) +

2

3
m(θ1 ∪ θ2)

P{θ2} = m(θ2) +
1

2
m(θ1) + m(θ1 ∩ θ2) +

2

3
m(θ1 ∪ θ2)

P{θ1 ∩ θ2} =
1

2
m(θ2) +

1

2
m(θ1) + m(θ1 ∩ θ2) +

1

3
m(θ1 ∪ θ2)

P{θ1 ∪ θ2} = P{Θ} = m(θ1) + m(θ2) + m(θ1 ∩ θ2) + m(θ1 ∪ θ2) = 1

It is easy to prove that 0 ≤ P{.} ≤ 1 and P{θ1 ∪ θ2} = P{θ1} + P{θ2}− P{θ1 ∩ θ2}

• With the Shafer’s model: If one adopts the Shafer’s model (we assume θ1 ∩ θ2
M0

≡ ∅), then after applying the
DSm hybrid rule of combination, one gets a basic belief function with non null masses only on θ1, θ2 and θ1 ∪ θ2.

By applying the GPT, one gets:

P{∅} = 0

P{θ1 ∩ θ2} = 0

P{θ1} = m(θ1) +
1

2
m(θ1 ∪ θ2)

P{θ2} = m(θ2) +
1

2
m(θ1 ∪ θ2)

P{θ1 ∪ θ2} = m(θ1) + m(θ2) + m(θ1 ∪ θ2) = 1

which naturally corresponds in this case to the pignistic probability built with the classical pignistic transformation

(8).

Based on Shafer’s model

By substituting CM(X ∩ (A ∪ B)) by CM(X ∩ A) + CM(X ∩ B) into (10), it comes:

P{A ∪ B} =
∑

X∈DΘ

CM(X ∩ A) + CM(X ∩ B)

CM(X)
m(X)

=
∑

X∈DΘ

CM(X ∩ A)

CM(X)
m(X)

+
∑

X∈DΘ

CM(X ∩ B)

CM(X)
m(X)

= P{A} + P{B}

which completes the proof. From the coefficients
CM(X∩A)
CM(X) involved in (9), it can also be easily checked that A ⊂ B ⇒

P{A} ≤ P{B}. One can also easily prove the Poincaré’ equality: P{A ∪ B} = P{A} + P{B}− P{A ∩ B} because
CM(X ∩ (A∪B) = CM((X ∩A)∪ (X ∩B)) = CM(X ∩A) + CM(X ∩B)− CM(X ∩ (A∩B)) (one has substracted
CM(X ∩ (A ∩ B)), i.e. the number of parts of X ∩ (A ∩ B) in the Venn diagram, due to the fact that these parts were
added twice: once in CM(X ∩ A) and second time in CM(X ∩ B).

4 Examples of GPT

4.1 Example for the 2D case

• With the free-DSmmodel: Let’s consider
Θ = {θ1, θ2}

and the generalized basic belief functionm(.) over the hyperpower-set
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There exist cases where Sudano’s transformations cannot be computed (division by zero) and 
they do not provide n general the max of PIC.  PrNPL has an abnormal behavior also:
This legitimate property is not satisfied by PrNPl, since for example if we consider

Say if Θ = {A, B, C} and m(A) = 0.2, m(B) = m(C) = 0 and m(B ∪ C) = 0.8, then

PrNPl(A) = 0.1112 < m(A) = 0.2

So it is abnormal that singleton A looses mass when m(.) is transformed into a subjective probability.
In summary, DSmP does an ’improvement’ of all Sudano, Cuzzolin, and BetP formulas, in the sense that DSmP

mathematically makes a more accurate redistribution of the ignorance masses to the singletons involved in ignorances. DSmP

and BetP work in both theories: DST (= Shafer’s model) and DSmT (= free or hybrid models) as well. In order to use
Sudano’s and Cuzzolin’s in DSmT models, we have to refine the frame (see Example 5).

VI. THE PROBABILISTIC INFORMATION CONTENT (PIC)
Following Sudano’s approach [12], [13], [15], we adopt the Probabilistic Information Content (PIC) criterion as a metric

depicting the strength of a critical decision by a specific probability distribution. It is an essential measure in any threshold-
driven automated decision system. The PIC is the dual of the normalized Shannon entropy. A PIC value of one indicates the
total knowledge to make a correct decision (one hypothesis has a probability value of one and the rest of zero). A PIC value
of zero indicates that the knowledge to make a correct decision does not exist (all the hypotheses have an equal probability
value), i.e. one has the maximal entropy. The PIC is used in our analysis to sort the performances of the different pignistic
transformations through several numerical examples. We first recall what Shannon entropy and PIC measure are and their tight
relationship.

A. Shannon entropy
Shannon entropy, usually expressed in bits (binary digits), of a probability measure P{.} over a discrete finite set Θ =

{θ1, . . . , θn} is defined by7 [5]:

H(P ) � −
n�

i=1

P{θi} log2(P{θi}) (15)

H(P ) is maximal for the uniform probability measure.

In that case, one gets

Hmax = −
n�

i=1

1
n

log2(
1
n

) = log2(n)

H(P ) is minimal for a ”deterministic probability measure”.

Hmin = 0

, i.e. for any P{.} such that P{θi} = 1 for some i ∈ {1, 2, . . . , n} and P{θj} = 0 for j �= i. H(P ) measures the randomness
carried by any discrete probability P{.}.

B. The PIC metric
The Probabilistic Information Content (PIC) of a probability measure P{.} associated with a probabilistic source over a

discrete finite set Θ = {θ1, . . . , θn} is defined by [13]:

PIC(P ) = 1 +
1

Hmax
·

n�

i=1

P{θi} log2(P{θi}) (16)

The PIC is nothing but the dual of the normalized Shannon entropy and thus is actually unit less. PIC(P ) takes its values in
[0, 1].

∈ [0, 1]

PICmax = 1 with any ”deterministic probability measure”.

7with common convention 0 log2 0 = 0.
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Simple example of Sudano’s Transformations

Let’s consider the 2D frame Θ = {A, B}
) and the non-Bayesian quantitativesince one adopts Shafer’s mode for the frame

, i.e. GΘ = 2Θ = {∅, A,B, A ∪B}. A B A ∪B
m(.) 0.3 0.1 0.6

PrNPl(A) = 0.9/(0.9 + 0.7) = 0.5625
PrNPl(B) = 0.7/(0.9 + 0.7) = 0.4375

Bel(A) = 0.3

Pl(A) = 0.9

Bel(B) = 0.1

Pl(B) = 0.7

with Shafer’s model Belief mass

PrP l(A) = 0.9 · [0.3/0.9 + 0.6/(0.9 + 0.7)] = 0.6375
PrP l(B) = 0.7 · [0.1/0.7 + 0.6/(0.9 + 0.7)] = 0.3625

PrBel(A) = 0.3 · [0.3/0.3 + 0.6/(0.3 + 0.1)] = 0.75
PrBel(B) = 0.1 · [0.1/0.1 + 0.6/(0.3 + 0.1)] = 0.25

with � � (1−
�

Y ∈2Θ Bel(Y ))/(
�

Y ∈2Θ Pl(Y ).
a hybrid transformation

.): � = 1−0.3−0.1
0.9+0.7 = 0.375

PraP l(A) = 0.3 + 0.375 · 0.9 = 0.6375
PraP l(B) = 0.1 + 0.375 · 0.7 = 0.3625

PrHyb(A) = 0.6375 · [
0.3

0.6375
+

0.6
0.6375 + 0.3625

] = 0.6825

0 1 0 6
·

0.6375 0.6375 + 0.3625

PrHyb(B) = 0.3625 · [
0.1

0.3625
+

0.6
0.6375 + 0.3625

] = 0.3175

whereas BetP(.) gives

BetP (A) = 0.3 + (0.6/2) = 0.60
BetP (B) = 0.1 + (0.6/2) = 0.40
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Cuzzolin’s Transformation (2007)

Fabio Cuzzolin proposed in 2007 in the DST framework the following transformation based 
on a geometric interpretation of the Dempster-Shafer combination rule.

BetP (∅) = 0
BetP (θ1 ∩ θ2) = 0

BetP (θ1) = m(θ1) +
1
2
m(θ1 ∪ θ2)

BetP (θ2) = m(θ2) +
1
2
m(θ1 ∪ θ2)

BetP (θ1 ∪ θ2) = m(θ1) + m(θ2) + m(θ1 ∪ θ2) = 1
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Recently, Sudano has proposed interesting alternatives denoted PrP l, PrNPl, PraP l, PrBel and PrHyb to BetP , all

defined in DST framework [15]. Sudano uses different kinds of mappings either proportional to the plausibility, to the normalized

plausibility, to all plausibilities, to the belief or a hybrid mapping. PrP l and PrBel are defined
3

for all X �= ∅ ∈ Θ by:

PrP l(X) = Pl(X) ·
�

Y ∈2Θ,X⊆Y

m(Y )
CS[Pl(Y )]

(4)

PrBel(X) = Bel(X) ·
�

Y ∈2Θ,X⊆Y

m(Y )
CS[Bel(Y )]

(5)

where the compound-to-sum of singletons (CS) operator of any function
4

f(.) is defined by [12]:

CS[f(Y )] �
�

Yi∈2Θ,|Yi|=1,∪iYi=Y

f(Yi)

PrNPl, PraP l and PrHyb are given by [12], [15]:

• a mapping proportional to the normalized plausibility

PrNPl(X) =
1
∆

�

Y ∈2Θ,Y ∩X �=∅

m(Y ) =
1
∆

· Pl(X) (6)
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• a mapping proportional to all plausibilities
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with � � (1−
�

Y ∈2Θ Bel(Y ))/(
�

Y ∈2Θ Pl(Y ).
• a hybrid transformation

PrHyb(X) = PraP l(X) ·
�

Y ∈2Θ

X⊆Y

m(Y )
CS[PraP l(Y )]

(8)

IV. CUZZOLIN’S INTERSECTION PROBABILITY

In 2007, a new transformation has been proposed in [1] by Cuzzolin in the framework of DST. From a geometric interpretation

of Dempster’s rule, an Intersection Probability measure was proposed from the proportional repartition of the Total Non Specific

Mass
5

(TNSM) by each contribution of the non-specific masses involved in it. For notation convenience, we will denote it

CuzzP in the sequel. CuzzP (.) is defined on any finite and discrete frame Θ = {θ1, . . . , θn}, n ≥ 2, satisfying Shafer’s

model, by

CuzzP (θi) = m(θi) +
∆(θi)�n

j=1 ∆(θj)
× TNSM (9)

with ∆(θi) � Pl(θi)−m(θi) and

TNSM = 1−
n�

j=1

m(θj) =
�

A∈2Θ,|A|>1

m(A) (10)

CuzzP is however not appealing for the following reasons:

3
For notation convenience and simplicity, we use a different but equivalent notation than the one in [15].

4
For example, f(.) must be replaced by Pl(.) in (4) or by Bel(.) in (5).

5
i.e. the mass committed to partial and total ignorances, i.e. to disjunctions of elements of the frame.
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defined in DST framework [15]. Sudano uses different kinds of mappings either proportional to the plausibility, to the normalized

plausibility, to all plausibilities, to the belief or a hybrid mapping. PrP l and PrBel are defined
3

for all X �= ∅ ∈ Θ by:

PrP l(X) = Pl(X) ·
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Y ∈2Θ,X⊆Y
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IV. CUZZOLIN’S INTERSECTION PROBABILITY

In 2007, a new transformation has been proposed in [1] by Cuzzolin in the framework of DST. From a geometric interpretation

of Dempster’s rule, an Intersection Probability measure was proposed from the proportional repartition of the Total Non Specific

Mass
5

(TNSM) by each contribution of the non-specific masses involved in it. For notation convenience, we will denote it

CuzzP in the sequel. CuzzP (.) is defined on any finite and discrete frame Θ = {θ1, . . . , θn}, n ≥ 2, satisfying Shafer’s

model, by

CuzzP (θi) = m(θi) +
∆(θi)�n

j=1 ∆(θj)
× TNSM (9)
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m(A) (10)

CuzzP is however not appealing for the following reasons:
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For example, f(.) must be replaced by Pl(.) in (4) or by Bel(.) in (5).

5
i.e. the mass committed to partial and total ignorances, i.e. to disjunctions of elements of the frame.
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Total Non Specific Mass

Remarks

1 - CuzzP comes from the Cuzzolin’s geometric interpretation of DS rule, but DS 
rule is not very efficient for combining high conflicting belief masses.

2 - CuzzP is not satisfactory since some parts of the masses of partial ignorance, 
say A,  involved in TNSM are redistributed back to singletons which are not 
included in A. 

3 - CuzzP doesn’t not provide max of PIC.

4 - CuzzP is mathematically not defined when m(.) is already a probabilistic mass.

1) Although (9) does not include explicitly Dempster’s rule, its geometrical justification [1], [2] is strongly conditioned

by the acceptance of Dempster’s rule as the fusion operator for belief functions. This is a dogmatic point of view we

disagree with since it has been recognized since many years by different experts of AI community, that other fusion

rules can offer better performances, especially for cases where high conflicting sources are involved.

2) Some parts of the masses of partial ignorance, say A, involved in the TNSM, are also transferred to singletons, say

θi ∈ Θ which are not included in A (i.e. such that {θi}∩A = ∅). Such transfer is not good and does not make sense in

our point of view. To be more clear, let’s take Θ = {A, B,C} and m(.) defined on its power set with all masses strictly

positive. In that case, m(A ∪ B) > 0 does count in TNSM and thus it is a bit redistributed back to C with the ratio
∆(C)

∆(A)+∆(B)+∆(C) through TNSM > 0. There is no solid reason for committing partially m(A∪B) to C since, only A
and B are involved in that partial ignorance. Similar remark holds for the partial redistribution of m(A ∪ C) > 0.

3) CuzzP is not defined when m(.) is a probabilistic mass because one gets 0/0 indetermination. This remark is important

only from the mathematical point of view.

V. A NEW GENERALIZED PIGNISTIC TRANSFORMATION

Our new mapping, denoted DSmP is straight, different from Sudano’s and Cuzzolin’s mappings which are more refined

but less interesting in our opinions than what we present here. The basic idea of DSmP consists in a new way of

proportionalizations of the mass of each partial ignorance such as A1 ∪A2 or A1 ∪ (A2 ∩A3) or (A1 ∩A2)∪ (A3 ∩A4), etc.

and the mass of the total ignorance A1 ∪A2 ∪ . . . ∪An, to the elements involved in the ignorances. This new transformation

takes into account both the values of the masses and the cardinality of elements in the proportional redistribution process. We

first present the general formula for this new transformation and the numerical examples and comparisons with respect to other

transformations are given in next sections.

A. The DSmP formula
Let’s consider a discrete frame Θ with a given model (free DSm model, hybrid DSm model or Shafer’s model), the DSmP

mapping is defined by
6 DSmP�(∅) = 0 and ∀X ∈ GΘ \ {∅} by

DSmP�(X) =
�

Y ∈GΘ

�

Z⊆X∩Y
C(Z)=1

m(Z) + � · C(X ∩ Y )

�

Z⊆Y
C(Z)=1

m(Z) + � · C(Y )
m(Y ) (11)

where � ≥ 0 is a tuning parameter and GΘ
corresponds to the hyper-power set including eventually all the integrity constraints

(if any) of the model M; C(X∩Y ) and C(Y ) denote the DSm cardinals
7

of the sets X∩Y and Y respectively. � allows to reach

the maximum PIC value of the approximation of m(.) into a subjective probability measure. The smaller �, the better/bigger

PIC value. In some particular degenerate cases however, the DSmP�=0 values cannot be derived, but the DSmP�>0 values

can however always be derived by choosing � as a very small positive number, say � = 1/1000 for example in order to be as

close as we want to the maximum of the PIC (see next sections for details and examples). When � = 1 and when the masses

of all elements Z having C(Z) = 1 are zero, (11) reduces to (3), i.e. DSmP�=1 = BetP . The passage from a free DSm model

to a Shafer’s model involves the passage from a structure to another one, and the cardinals change as well in the formula (11).

B. Advantages of DSmP
DSmP works for all models (free, hybrid and Shafer’s). In order to apply classical BetP , CuzzP or Sudano’s mappings,

we need at first to refine the frame (on the cases when it is possible!) in order to work with Shafer’s model, and then apply

their formulas. In the case where refinement makes sense, then one can apply the other subjective probabilities on the refined

frame. DSmP works on the refined frame as well and gives the same result as it does on the non-refined frame. Thus DSmP
with � > 0 works on any models and so is very general and appealing. It is a combination of PrBel and BetP . PrBel
performs a redistribution of an ignorance mass to the singletons involved in that ignorance proportionally with respect to the

singleton masses. While BetP also does a redistribution of an ignorance mass to the singletons involved in that ignorance

but proportionally with respect to the singleton cardinals. PrBel does not work when the masses of all singletons involved in

an ignorance are null since it gives the indetermination 0/0; and in the case when at least one singleton mass involved in an

ignorance is zero, that singleton does not receive any mass from the distribution even if it was involved in an ignorance, which

is not fair/good. So, DSmP solves the PrBel problem by doing a redistribution of the ignorance mass with respect to both

the singleton masses and the singletons’ cardinals in the same time. Now, if all masses of singletons involved in all ignorances

6
The formulation of (11) for the case of singletons θi of Θ is given in [8].

7
We have omitted the index of the modelM for notation convenience.
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Simple example of Cuzzolin’sTransformation

DSmP�(θi) = m(θi)

+ (m(θi) + �)
�

X∈2Θ

X⊃θi
C(X)≥2

m(X)�

Y ∈2Θ

Y⊂X
C(Y )=1

m(Y ) + � · C(X)
(12)

The probabilities of (partial or total) ignorances are then
obtained from the additivity property of the probabilities of
elementary exclusive elements, i.e. for i, j = 1, . . . , n, i �= j,
DSmP�(θi ∪ θj) = DSmP�(θi) + DSmP�(θj), etc.

VI. PIC METRIC FOR THE EVALUATION OF THE
TRANSFORMATIONS

Following Sudano’s approach [17], [18], [21], we adopt the
Probabilistic Information Content (PIC) criteria as a metric
depicting the strength of a critical decision by a specific
probability distribution which is an essential measure in any
threshold-driven automated decision system. The PIC value
is actually nothing but the dual of the normalized Shannon
entropy as we will show. A PIC value of one indicates the
total knowledge (i.e. minimal entropy) or information to make
a correct decision (one hypothesis has a probability value
of one and the rest of zero). A PIC value of zero indicates
that the knowledge or information to make a correct decision
does not exist (all the hypothesis have an equal probability
value), i.e. one has the maximal entropy. The PIC criteria will
be used in our analysis in order to compare and order the
performances of the different pignistic transformations through
several numerical examples in the next sections. We just briefly
recall here what Shannon entropy and PIC measure are and
their tight relationship.

A. Shannon entropy

Shannon entropy, usually expressed in bits (binary digits),
of a discrete probability measure P{.} over a discrete finite
set Θ = {θ1, . . . , θn} is defined by5 [12]:

H(P ) � −
n�

i=1

P{θi} log2(P{θi}) (13)

H(P ) measures the randomness/uncertainty carried by any
discrete probability measure P{.}. H(P ) is maximal for the
uniform probability measure over Θ, i.e. when P{θi} = 1/n

for i = 1, 2, . . . , n. In that case, one gets:

H(P ) = Hmax = −
n�

i=1

1
n

log2(
1
n

) = log2(n)

H(P ) is minimal for a totally deterministic probability
measure, i.e. for any P{.} such that P{θi} = 1 for some
i ∈ {1, 2, . . . , n} and P{θj} = 0 for j �= i.

5with common convention 0 log2 0 = 0, see [1].

B. The PIC metric

The Probabilistic Information Content (PIC) of a discrete
probability measure P{.} over a discrete finite set Θ =
{θ1, . . . , θn} is defined by [18]:

PIC(P ) = 1 +
1

Hmax
·

n�

i=1

P{θi} log2(P{θi}) (14)

The PIC metric is nothing but the dual of the normal-
ized Shannon entropy metric and thus is actually unitless. It
actually measures the Information content of a probabilistic
source characterized by the probability measure P{.}. The
PIC(P ) metric takes its values in [0, 1] and is maximum, i.e.
PIC(P ) = PICmax = 1 for any deterministic probability
measures. PIC(P ) = PICmin = 0 when the probability
measure is uniform over the frame Θ, i.e. P{θi} = 1/n for
i = 1, 2, . . . , n. The simple relationships between H(P ) and
PIC(P ) are :

PIC(P ) = 1− H(P )
Hmax

(15)

H(P ) = Hmax · (1− PIC(P )) (16)

VII. EXAMPLES ON A 2D FRAME

A. Example 1 (Shafer’s model and a general source)

Let’s consider the 2D frame Θ = {A, B} with Shafer’s
model (i.e. A ∩ B = ∅) and the non-Bayesian quantitative
belief assignments (mass) given in Table I. In this example
since one adopts Shafer’s mode for the frame Θ, G

Θ coincides
with 2Θ, i.e. G

Θ = 2Θ = {∅, A,B, A ∪B}.

A B A ∪B
m(.) 0.3 0.1 0.6

Table I
QUANTITATIVE INPUTS FOR EXAMPLE VII-A

• Classical pignistic probability:

BetP (A) = m(A) +
1
2
m(A ∪B) = 0.3 + (0.6/2) = 0.60

BetP (B) = m(B) +
1
2
m(A ∪B) = 0.1 + (0.6/2) = 0.40

Since we are working with Shafer’s model, the generalized
pignistic probability given by (3) coincides with the classical
pignistic probability measure.

• Sudano’s probabilities:
Applying Sudano’s probabilities formulas (4)-(8), one gets:
- Probability PrP l(.):

PrP l(A) = 0.9 · [0.3/0.9 + 0.6/(0.9 + 0.7)] = 0.6375
PrP l(B) = 0.7 · [0.1/0.7 + 0.6/(0.9 + 0.7)] = 0.3625
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DSmP�(θi) = m(θi)

+ (m(θi) + �)
�

X∈2Θ

X⊃θi
C(X)≥2

m(X)�

Y ∈2Θ

Y⊂X
C(Y )=1

m(Y ) + � · C(X)
(12)

The probabilities of (partial or total) ignorances are then
obtained from the additivity property of the probabilities of
elementary exclusive elements, i.e. for i, j = 1, . . . , n, i �= j,
DSmP�(θi ∪ θj) = DSmP�(θi) + DSmP�(θj), etc.

VI. PIC METRIC FOR THE EVALUATION OF THE
TRANSFORMATIONS

Following Sudano’s approach [17], [18], [21], we adopt the
Probabilistic Information Content (PIC) criteria as a metric
depicting the strength of a critical decision by a specific
probability distribution which is an essential measure in any
threshold-driven automated decision system. The PIC value
is actually nothing but the dual of the normalized Shannon
entropy as we will show. A PIC value of one indicates the
total knowledge (i.e. minimal entropy) or information to make
a correct decision (one hypothesis has a probability value
of one and the rest of zero). A PIC value of zero indicates
that the knowledge or information to make a correct decision
does not exist (all the hypothesis have an equal probability
value), i.e. one has the maximal entropy. The PIC criteria will
be used in our analysis in order to compare and order the
performances of the different pignistic transformations through
several numerical examples in the next sections. We just briefly
recall here what Shannon entropy and PIC measure are and
their tight relationship.

A. Shannon entropy

Shannon entropy, usually expressed in bits (binary digits),
of a discrete probability measure P{.} over a discrete finite
set Θ = {θ1, . . . , θn} is defined by5 [12]:

H(P ) � −
n�

i=1

P{θi} log2(P{θi}) (13)

H(P ) measures the randomness/uncertainty carried by any
discrete probability measure P{.}. H(P ) is maximal for the
uniform probability measure over Θ, i.e. when P{θi} = 1/n

for i = 1, 2, . . . , n. In that case, one gets:

H(P ) = Hmax = −
n�

i=1

1
n

log2(
1
n

) = log2(n)

H(P ) is minimal for a totally deterministic probability
measure, i.e. for any P{.} such that P{θi} = 1 for some
i ∈ {1, 2, . . . , n} and P{θj} = 0 for j �= i.

5with common convention 0 log2 0 = 0, see [1].

B. The PIC metric

The Probabilistic Information Content (PIC) of a discrete
probability measure P{.} over a discrete finite set Θ =
{θ1, . . . , θn} is defined by [18]:

PIC(P ) = 1 +
1

Hmax
·

n�

i=1

P{θi} log2(P{θi}) (14)

The PIC metric is nothing but the dual of the normal-
ized Shannon entropy metric and thus is actually unitless. It
actually measures the Information content of a probabilistic
source characterized by the probability measure P{.}. The
PIC(P ) metric takes its values in [0, 1] and is maximum, i.e.
PIC(P ) = PICmax = 1 for any deterministic probability
measures. PIC(P ) = PICmin = 0 when the probability
measure is uniform over the frame Θ, i.e. P{θi} = 1/n for
i = 1, 2, . . . , n. The simple relationships between H(P ) and
PIC(P ) are :

PIC(P ) = 1− H(P )
Hmax

(15)

H(P ) = Hmax · (1− PIC(P )) (16)

VII. EXAMPLES ON A 2D FRAME

A. Example 1 (Shafer’s model and a general source)

Let’s consider the 2D frame Θ = {A, B} with Shafer’s
model (i.e. A ∩ B = ∅) and the non-Bayesian quantitative
belief assignments (mass) given in Table I. In this example
since one adopts Shafer’s mode for the frame Θ, G

Θ coincides
with 2Θ, i.e. G

Θ = 2Θ = {∅, A,B, A ∪B}.

A B A ∪B
m(.) 0.3 0.1 0.6

Table I
QUANTITATIVE INPUTS FOR EXAMPLE VII-A
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1
2
m(A ∪B) = 0.3 + (0.6/2) = 0.60

BetP (B) = m(B) +
1
2
m(A ∪B) = 0.1 + (0.6/2) = 0.40

Since we are working with Shafer’s model, the generalized
pignistic probability given by (3) coincides with the classical
pignistic probability measure.
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DSm Probabilistic Transformation (DSmP)

DSmP(.) is useful for hard or soft decision-making support. It works both in 
Dempster-Shafer Theory (DST) and Dezert-Smarandache Theory (DSmT).

DSmP «maximizes» the Probabilistic Information Content (PIC) of the 
approximation, contrariwise to other approaches (PIC=1=”Deterministic” 
distribution, PIC=0=uniform distribution). 

Note: DSmP provides the max of PIC WITH numerical robustness of result, but not 
the max of PIC in absolute value [see Han et al. Fusion 2010]

PIC has been introduced by John Sudano [Fusion 2002] 

Development of a new probabilistic transformation, denoted DSmP(.), of any 
basic belief assignment m(.) into a subjective probabilistic measure. 
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Shannon entropy (1948):

{θ1, . . . , θn} is defined by
9

[5]:

H(P ) � −
n�

i=1

P{θi} log2(P{θi}) (12)

H(P ) is maximal for the uniform probability distribution over

Θ, i.e. when P{θi} = 1/n for i = 1, 2, . . . , n. In that case,

one gets H(P ) = Hmax = −
�n

i=1
1
n log2( 1

n ) = log2(n).
H(P ) is minimal for a totally deterministic probability, i.e.

for any P{.} such that P{θi} = 1 for some i ∈ {1, 2, . . . , n}
and P{θj} = 0 for j �= i. H(P ) measures the randomness

carried by any discrete probability P{.}.

B. The PIC metric

The Probabilistic Information Content (PIC) of a probability

measure P{.} associated with a probabilistic source over a

discrete finite set Θ = {θ1, . . . , θn} is defined by [13]:

PIC(P ) = 1 +
1

Hmax
·

n�

i=1

P{θi} log2(P{θi}) (13)

The PIC is nothing but the dual of the normalized Shannon

entropy and thus is actually unit less. PIC(P ) takes its values

in [0, 1]. PIC(P ) is maximum, i.e. PICmax = 1 with any

deterministic probability and it is minimum, i.e. PICmin = 0,

with the uniform probability over the frame Θ. The simple

relationships between H(P ) and PIC(P ) are PIC(P ) =
1− (H(P )/Hmax) and H(P ) = Hmax · (1− PIC(P )).

VII. EXAMPLES AND COMPARISONS ON A 2D FRAME

Due to the space limitation constraint, all details of deriva-

tions are voluntarily omitted here but they will appear in [8].

In this section, we work with the 2D frame Θ = {A, B}.

A. Example 1 (Shafer’s model and a general source)

Since one assumes Shafer’s model, G
Θ = 2Θ =

{∅, A,B, A ∪ B}. The non-Bayesian quantitative belief mass

is given in Table I. Table II presents the results of the

different mappings and their PIC sorted by increasing order.

One sees that DSmP�→0 provides same result as PrBel and

PIC(DSmP�→0) is greater than the PIC values obtained with

PrNPL, BetP , CuzzP , PrP l and PraP l.

A B A ∪B

m(.) 0.3 0.1 0.6

Table I

QUANTITATIVE INPUTS FOR EXAMPLE 1

B. Example 2 (Shafer’s model and the totally ignorant source)

Let’s assume Shafer’s model and the vacuous bba charac-

terizing the totally ignorant source, i.e. m(A ∪ B) = 1. It

can be verified that all mappings coincide with the uniform

probability measure over singletons of Θ, except PrBel which

is mathematically not defined in that case. This result can be

easily proved for any size of the frame Θ with |Θ| > 2.

9
with common convention 0 log2 0 = 0.

A B PIC(.)
PrNPl(.) 0.5625 0.4375 0.0113

BetP (.) 0.6000 0.4000 0.0291

CuzzP (.) 0.6000 0.4000 0.0291

PrP l(.) 0.6375 0.3625 0.0553

PraP l(.) 0.6375 0.3625 0.0553

PrHyb(.) 0.6825 0.3175 0.0984

DSmP�=0.001(.) 0.7492 0.2508 0.1875

PrBel(.) 0.7500 0.2500 0.1887

DSmP�=0(.) 0.7500 0.2500 0.1887

Table II

RESULTS FOR EXAMPLE 1.

C. Example 3 (Shafer’s model and a probabilistic source)
Let’s assume Shafer’s model and let’s see what happens

when applying all the transformations on a probabilistic

source
10

which commits a belief mass only to singletons

of 2Θ
, i.e. a Bayesian mass [4]. It is intuitively expected

that all transformations are idempotent when dealing with

probabilistic sources, since actually there is no reason/need

to modify m(.) (the input mass) to obtain a new subjective

probability measure since Bel(.) associated with m(.) is

already a probability measure. So if we consider for example

the uniform Bayesian mass defined by mu(A) = mu(B) =
1/2, it is very easy to verify in this case, that almost all

transformations coincide with the (probabilistic) input mass as

expected, so that the idempotency property is satisfied. Only

Cuzzolin’s transformation fails to satisfy this property because

in CuzzP (.) formula (9) one gets 0/0 indeterminacy since all

∆(.) = 0 in (9). This remark is valid whatever the dimension

of the frame Θ is, and for any Bayesian mass (not only for

uniform belief mass).

D. Example 4 (Shafer’s model and non-Bayesian mass)
Let’s assume Shafer’s model and the non-Bayesian mass

(more precisely the simple support mass) given in Table III.

We summarize in Table IV, the results obtained with all

transformations. One sees that PIC(DSmP�→0) is maximum

among all PIC values. PrBel(.) does not work correctly since

it can not have a division by zero. We use NaN acronym

here standing for Not a Number11
; even overcoming it

12
,

PrBel does not do a fair redistribution of the ignorance

m(A ∪ B) = 0.6 because B does not receive anything from

the mass 0.6, although B is involved in the ignorance A∪B.

All m(A ∪B) = 0.6 was unfairly redistributed to A only.

The best result is an adequate probability, not the biggest
PIC in this case. This is because P (B) deserves to receive

some mass from m(A ∪ B), so the most correct result is

done by DSmP�=0.001 in Table IV (of course we can choose

any other very small positive value for � if we want). Always

when a singleton whose mass is zero, but it is involved in an

ignorance whose mass is not zero, then � (in DSmP formula

(11)) should be different from zero.

10
This has obviously no practical interest since the source already provides

a probability measure, nevertheless this is very interesting to see the theoretical

behavior of the transformations in such case.

11
we could also use the standard ”N/A” standing for ”does not apply”.

12
since the direct derivation of PrBel(B) cannot be done from the

formula (5) because of the undefined form 0/0, we could however force

it to PrBel(B) = 0 since PrBel(B) = 1−PrBel(A) = 1− 1 = 0, and

consequently we indirectly take PIC(PrBel) = 1.
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9

[5]:

H(P ) � −
n�

i=1

P{θi} log2(P{θi}) (12)

H(P ) is maximal for the uniform probability distribution over

Θ, i.e. when P{θi} = 1/n for i = 1, 2, . . . , n. In that case,

one gets H(P ) = Hmax = −
�n

i=1
1
n log2( 1

n ) = log2(n).
H(P ) is minimal for a totally deterministic probability, i.e.

for any P{.} such that P{θi} = 1 for some i ∈ {1, 2, . . . , n}
and P{θj} = 0 for j �= i. H(P ) measures the randomness

carried by any discrete probability P{.}.

B. The PIC metric

The Probabilistic Information Content (PIC) of a probability

measure P{.} associated with a probabilistic source over a

discrete finite set Θ = {θ1, . . . , θn} is defined by [13]:

PIC(P ) = 1 +
1

Hmax
·

n�

i=1

P{θi} log2(P{θi}) (13)

The PIC is nothing but the dual of the normalized Shannon

entropy and thus is actually unit less. PIC(P ) takes its values

in [0, 1]. PIC(P ) is maximum, i.e. PICmax = 1 with any

deterministic probability and it is minimum, i.e. PICmin = 0,

with the uniform probability over the frame Θ. The simple

relationships between H(P ) and PIC(P ) are PIC(P ) =
1− (H(P )/Hmax) and H(P ) = Hmax · (1− PIC(P )).

VII. EXAMPLES AND COMPARISONS ON A 2D FRAME

Due to the space limitation constraint, all details of deriva-

tions are voluntarily omitted here but they will appear in [8].

In this section, we work with the 2D frame Θ = {A, B}.

A. Example 1 (Shafer’s model and a general source)

Since one assumes Shafer’s model, G
Θ = 2Θ =

{∅, A,B, A ∪ B}. The non-Bayesian quantitative belief mass

is given in Table I. Table II presents the results of the

different mappings and their PIC sorted by increasing order.

One sees that DSmP�→0 provides same result as PrBel and

PIC(DSmP�→0) is greater than the PIC values obtained with

PrNPL, BetP , CuzzP , PrP l and PraP l.

A B A ∪B

m(.) 0.3 0.1 0.6

Table I

QUANTITATIVE INPUTS FOR EXAMPLE 1

B. Example 2 (Shafer’s model and the totally ignorant source)

Let’s assume Shafer’s model and the vacuous bba charac-

terizing the totally ignorant source, i.e. m(A ∪ B) = 1. It

can be verified that all mappings coincide with the uniform

probability measure over singletons of Θ, except PrBel which

is mathematically not defined in that case. This result can be

easily proved for any size of the frame Θ with |Θ| > 2.

9
with common convention 0 log2 0 = 0.

A B PIC(.)
PrNPl(.) 0.5625 0.4375 0.0113

BetP (.) 0.6000 0.4000 0.0291

CuzzP (.) 0.6000 0.4000 0.0291

PrP l(.) 0.6375 0.3625 0.0553

PraP l(.) 0.6375 0.3625 0.0553

PrHyb(.) 0.6825 0.3175 0.0984

DSmP�=0.001(.) 0.7492 0.2508 0.1875

PrBel(.) 0.7500 0.2500 0.1887

DSmP�=0(.) 0.7500 0.2500 0.1887

Table II

RESULTS FOR EXAMPLE 1.

C. Example 3 (Shafer’s model and a probabilistic source)
Let’s assume Shafer’s model and let’s see what happens

when applying all the transformations on a probabilistic

source
10

which commits a belief mass only to singletons

of 2Θ
, i.e. a Bayesian mass [4]. It is intuitively expected

that all transformations are idempotent when dealing with

probabilistic sources, since actually there is no reason/need

to modify m(.) (the input mass) to obtain a new subjective

probability measure since Bel(.) associated with m(.) is

already a probability measure. So if we consider for example

the uniform Bayesian mass defined by mu(A) = mu(B) =
1/2, it is very easy to verify in this case, that almost all

transformations coincide with the (probabilistic) input mass as

expected, so that the idempotency property is satisfied. Only

Cuzzolin’s transformation fails to satisfy this property because

in CuzzP (.) formula (9) one gets 0/0 indeterminacy since all

∆(.) = 0 in (9). This remark is valid whatever the dimension

of the frame Θ is, and for any Bayesian mass (not only for

uniform belief mass).

D. Example 4 (Shafer’s model and non-Bayesian mass)
Let’s assume Shafer’s model and the non-Bayesian mass

(more precisely the simple support mass) given in Table III.

We summarize in Table IV, the results obtained with all

transformations. One sees that PIC(DSmP�→0) is maximum

among all PIC values. PrBel(.) does not work correctly since

it can not have a division by zero. We use NaN acronym

here standing for Not a Number11
; even overcoming it

12
,

PrBel does not do a fair redistribution of the ignorance

m(A ∪ B) = 0.6 because B does not receive anything from

the mass 0.6, although B is involved in the ignorance A∪B.

All m(A ∪B) = 0.6 was unfairly redistributed to A only.

The best result is an adequate probability, not the biggest
PIC in this case. This is because P (B) deserves to receive

some mass from m(A ∪ B), so the most correct result is

done by DSmP�=0.001 in Table IV (of course we can choose

any other very small positive value for � if we want). Always

when a singleton whose mass is zero, but it is involved in an

ignorance whose mass is not zero, then � (in DSmP formula

(11)) should be different from zero.

10
This has obviously no practical interest since the source already provides

a probability measure, nevertheless this is very interesting to see the theoretical

behavior of the transformations in such case.

11
we could also use the standard ”N/A” standing for ”does not apply”.

12
since the direct derivation of PrBel(B) cannot be done from the

formula (5) because of the undefined form 0/0, we could however force

it to PrBel(B) = 0 since PrBel(B) = 1−PrBel(A) = 1− 1 = 0, and

consequently we indirectly take PIC(PrBel) = 1.

PIC = Dual of the normalized Shannon Entropy (Sudano 2002)

cardinal is 1 should be greater than or equal to the mass of that element. I. e. if A in G
Θ and C(A) = 1, then P (A) ≥ m(A)

for any probability transformation P (.). This legitimate property is not satisfied by PrNPl, since for example if we consider
Θ = {A, B,C} and m(A) = 0.2, m(B) = m(C) = 0 and m(B∪C) = 0.8, one obtains PrNPl(A) = 0.1112 < m(A) = 0.2.
So it is abnormal that singleton A looses mass when m(.) is transformed into a subjective probability.

In summary, DSmP does an ’improvement’ of all Sudano, Cuzzolin, and BetP formulas, in the sense that DSmP

mathematically makes a more accurate redistribution of the ignorance masses to the singletons involved in ignorances. DSmP

and BetP work in both theories: DST (= Shafer’s model) and DSmT (= free or hybrid models) as well. In order to use
Sudano’s and Cuzzolin’s in DSmT models, we have to refine the frame (see Example 5).

VI. THE PROBABILISTIC INFORMATION CONTENT (PIC)

Following Sudano’s approach [12], [13], [15], we adopt the Probabilistic Information Content (PIC) criterion as a metric
depicting the strength of a critical decision by a specific probability distribution. It is an essential measure in any threshold-
driven automated decision system. The PIC is the dual of the normalized Shannon entropy. A PIC value of one indicates the
total knowledge to make a correct decision (one hypothesis has a probability value of one and the rest of zero). A PIC value
of zero indicates that the knowledge to make a correct decision does not exist (all the hypotheses have an equal probability
value), i.e. one has the maximal entropy. The PIC is used in our analysis to sort the performances of the different pignistic
transformations through several numerical examples. We first recall what Shannon entropy and PIC measure are and their tight
relationship.

A. Shannon entropy

Shannon entropy, usually expressed in bits (binary digits), of a probability measure P{.} over a discrete finite set Θ =
{θ1, . . . , θn} is defined by9 [5]:

H(P ) � −
n�

i=1

P{θi} log2(P{θi}) (12)

H(P ) is maximal when P{θi} = 1/n for i = 1, 2, . . . , n.

In that case, one gets

Hmax = −
n�

i=1

1
n

log2(
1
n

) = log2(n)

H(P ) is minimal for a deterministic probability.

, i.e. for any P{.} such that P{θi} = 1 for some i ∈ {1, 2, . . . , n} and P{θj} = 0 for j �= i. H(P ) measures the randomness
carried by any discrete probability P{.}.

B. The PIC metric

The Probabilistic Information Content (PIC) of a probability measure P{.} associated with a probabilistic source over a
discrete finite set Θ = {θ1, . . . , θn} is defined by [13]:

PIC(P ) = 1 +
1

Hmax
·

n�

i=1

P{θi} log2(P{θi}) (13)

The PIC is nothing but the dual of the normalized Shannon entropy and thus is actually unit less. PIC(P ) takes its values in
[0, 1]. PIC(P ) is maximum, i.e. PICmax = 1 with any deterministic probability and it is minimum, i.e. PICmin = 0, with the
uniform probability over the frame Θ. The simple relationships between H(P ) and PIC(P ) are PIC(P ) = 1−(H(P )/Hmax)
and H(P ) = Hmax · (1− PIC(P )).

VII. EXAMPLES AND COMPARISONS ON A 2D FRAME

Due to the space limitation constraint, all details of derivations are voluntarily omitted here but they will appear in [8]. In
this section, we work with the 2D frame Θ = {A, B}.

A. Example 1 (Shafer’s model and a general source)

Since one assumes Shafer’s model, G
Θ = 2Θ = {∅, A,B,A ∪ B}. The non-Bayesian quantitative belief mass is given

in Table I. Table II presents the results of the different mappings and their PIC sorted by increasing order. One sees that
DSmP�→0 provides same result as PrBel and PIC(DSmP�→0) is greater than the PIC values obtained with PrNPL,
BetP , CuzzP , PrP l and PraP l.

9with common convention 0 log2 0 = 0.
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cardinal is 1 should be greater than or equal to the mass of that element. I. e. if A in G
Θ and C(A) = 1, then P (A) ≥ m(A)

for any probability transformation P (.). This legitimate property is not satisfied by PrNPl, since for example if we consider
Θ = {A, B,C} and m(A) = 0.2, m(B) = m(C) = 0 and m(B∪C) = 0.8, one obtains PrNPl(A) = 0.1112 < m(A) = 0.2.
So it is abnormal that singleton A looses mass when m(.) is transformed into a subjective probability.

In summary, DSmP does an ’improvement’ of all Sudano, Cuzzolin, and BetP formulas, in the sense that DSmP
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and BetP work in both theories: DST (= Shafer’s model) and DSmT (= free or hybrid models) as well. In order to use
Sudano’s and Cuzzolin’s in DSmT models, we have to refine the frame (see Example 5).
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Following Sudano’s approach [12], [13], [15], we adopt the Probabilistic Information Content (PIC) criterion as a metric

depicting the strength of a critical decision by a specific probability distribution. It is an essential measure in any threshold-
driven automated decision system. The PIC is the dual of the normalized Shannon entropy. A PIC value of one indicates the
total knowledge to make a correct decision (one hypothesis has a probability value of one and the rest of zero). A PIC value
of zero indicates that the knowledge to make a correct decision does not exist (all the hypotheses have an equal probability
value), i.e. one has the maximal entropy. The PIC is used in our analysis to sort the performances of the different pignistic
transformations through several numerical examples. We first recall what Shannon entropy and PIC measure are and their tight
relationship.

A. Shannon entropy
Shannon entropy, usually expressed in bits (binary digits), of a probability measure P{.} over a discrete finite set Θ =

{θ1, . . . , θn} is defined by9 [5]:
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PIC(P ) = 1− (H(P )/Hmax)

H(P ) = Hmax · (1− PIC(P ))
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Relationship between PIC(P) and H(P)

Probabilistic Information Content (PIC)
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IV. CUZZOLIN’S INTERSECTION PROBABILITY

In 2007, a new transformation has been proposed in [1] by Cuzzolin in the framework of DST. From a geometric interpretation

of Dempster’s rule, an Intersection Probability measure was proposed from the proportional repartition of the Total Non Specific

Mass
5

(TNSM) by each contribution of the non-specific masses involved in it. For notation convenience, we will denote it

CuzzP in the sequel. CuzzP (.) is defined on any finite and discrete frame Θ = {θ1, . . . , θn}, n ≥ 2, satisfying Shafer’s

model, by

CuzzP (θi) = m(θi) +
∆(θi)�n

j=1 ∆(θj)
× TNSM (9)

with ∆(θi) � Pl(θi)−m(θi) and

TNSM = 1−
n�

j=1

m(θj) =
�

A∈2Θ,|A|>1

m(A) (10)

CuzzP is however not appealing for the following reasons:

1) Although (9) does not include explicitly Dempster’s rule, its geometrical justification [1], [2] is strongly conditioned

by the acceptance of Dempster’s rule as the fusion operator for belief functions. This is a dogmatic point of view we

disagree with since it has been recognized since many years by different experts of AI community, that other fusion

rules can offer better performances, especially for cases where high conflicting sources are involved.

2) Some parts of the masses of partial ignorance, say A, involved in the TNSM, are also transferred to singletons, say

θi ∈ Θ which are not included in A (i.e. such that {θi}∩A = ∅). Such transfer is not good and does not make sense in

our point of view. To be more clear, let’s take Θ = {A, B,C} and m(.) defined on its power set with all masses strictly

positive. In that case, m(A ∪ B) > 0 does count in TNSM and thus it is a bit redistributed back to C with the ratio
∆(C)

∆(A)+∆(B)+∆(C) through TNSM > 0. There is no solid reason for committing partially m(A∪B) to C since, only A
and B are involved in that partial ignorance. Similar remark holds for the partial redistribution of m(A ∪ C) > 0.

3) CuzzP is not defined when m(.) is a probabilistic mass because one gets 0/0 indetermination. This remark is important

only from the mathematical point of view.

V. A NEW GENERALIZED PIGNISTIC TRANSFORMATION

Our new mapping, denoted DSmP is straight, different from Sudano’s and Cuzzolin’s mappings which are more refined

but less interesting in our opinions than what we present here. The basic idea of DSmP consists in a new way of

proportionalizations of the mass of each partial ignorance such as A1 ∪A2 or A1 ∪ (A2 ∩A3) or (A1 ∩A2)∪ (A3 ∩A4), etc.

and the mass of the total ignorance A1 ∪A2 ∪ . . . ∪An, to the elements involved in the ignorances. This new transformation

takes into account both the values of the masses and the cardinality of elements in the proportional redistribution process. We

first present the general formula for this new transformation and the numerical examples and comparisons with respect to other

transformations are given in next sections.

A. The DSmP formula
Let’s consider a discrete frame Θ with a given model (free DSm model, hybrid DSm model or Shafer’s model), the DSmP

mapping is defined by
6 DSmP�(∅) = 0 and ∀X ∈ GΘ \ {∅} by

DSmP�(X) =
�

Y ∈GΘ

�

Z⊆X∩Y
C(Z)=1

m(Z) + � · C(X ∩ Y )

�

Z⊆Y
C(Z)=1

m(Z) + � · C(Y )
m(Y ) (11)

where � ≥ 0 is a tuning parameter and GΘ
corresponds to the hyper-power set including eventually all the integrity constraints

(if any) of the model M; C(X∩Y ) and C(Y ) denote the DSm cardinals
7

of the sets X∩Y and Y respectively. � allows to reach

the maximum PIC value of the approximation of m(.) into a subjective probability measure. The smaller �, the better/bigger

PIC value. In some particular degenerate cases however, the DSmP�=0 values cannot be derived, but the DSmP�>0 values

can however always be derived by choosing � as a very small positive number, say � = 1/1000 for example in order to be as

close as we want to the maximum of the PIC (see next sections for details and examples). When � = 1 and when the masses

of all elements Z having C(Z) = 1 are zero, (11) reduces to (3), i.e. DSmP�=1 = BetP . The passage from a free DSm model

to a Shafer’s model involves the passage from a structure to another one, and the cardinals change as well in the formula (11).

5
i.e. the mass committed to partial and total ignorances, i.e. to disjunctions of elements of the frame.

6
The formulation of (11) for the case of singletons θi of Θ is given in [8].

7
We have omitted the index of the modelM for notation convenience.
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proportionalizations of the mass of each partial ignorance such as A1 ∪A2 or A1 ∪ (A2 ∩A3) or (A1 ∩A2)∪ (A3 ∩A4), etc.

and the mass of the total ignorance A1 ∪A2 ∪ . . . ∪An, to the elements involved in the ignorances. This new transformation

takes into account both the values of the masses and the cardinality of elements in the proportional redistribution process. We

first present the general formula for this new transformation and the numerical examples and comparisons with respect to other
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corresponds to the hyper-power set including eventually all the integrity constraints
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3) CuzzP is not defined when m(.) is a probabilistic mass because one gets 0/0 indetermination. This remark is important
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The smaller �, the better/bigger PIC value.

In some particular degenerate cases however, the DSmP�=0 values cannot be derived, but the DSmP�>0 values can
however always be derived by choosing � as a very small positive number, say � = 1/1000 for example in order to be as
close as we want to the maximum of the PIC (see next sections for details and examples).

When � = 1 and when the masses of all elements Z having C(Z) = 1 are zero, DSmP�=1(.) = BetP (.).

The passage from a free DSm model to a Shafer’s model involves the passage from a structure to another one, and the
cardinals change as well in the formula (11).

B. Advantages of DSmP
DSmP works for all models (free, hybrid and Shafer’s). In order to apply classical BetP , CuzzP or Sudano’s mappings,

we need at first to refine the frame (on the cases when it is possible!) in order to work with Shafer’s model, and then apply
their formulas. In the case where refinement makes sense, then one can apply the other subjective probabilities on the refined
frame. DSmP works on the refined frame as well and gives the same result as it does on the non-refined frame. Thus DSmP

with � > 0 works on any models and so is very general and appealing. It is a combination of PrBel and BetP . PrBel

performs a redistribution of an ignorance mass to the singletons involved in that ignorance proportionally with respect to the
singleton masses. While BetP also does a redistribution of an ignorance mass to the singletons involved in that ignorance
but proportionally with respect to the singleton cardinals. PrBel does not work when the masses of all singletons involved in
an ignorance are null since it gives the indetermination 0/0; and in the case when at least one singleton mass involved in an
ignorance is zero, that singleton does not receive any mass from the distribution even if it was involved in an ignorance, which
is not fair/good. So, DSmP solves the PrBel problem by doing a redistribution of the ignorance mass with respect to both
the singleton masses and the singletons’ cardinals in the same time. Now, if all masses of singletons involved in all ignorances
are different from zero, then we can take � = 0, and DSmP coincides with PrBel and both of them give the best result, i.e.
the best PIC value. PrNPl is not satisfactory since it yields to an abnormal behavior. Indeed, in any model, when a bba m(.)
is transformed into a probability, normally (we mean it is logically that) the masses of ignorances are transferred to the masses
of elements of cardinal 1 (in Shafer’s model these elements are singletons). Thus, the resulting probability of an element whose
cardinal is 1 should be greater than or equal to the mass of that element. I. e. if A in G

Θ and C(A) = 1, then P (A) ≥ m(A)
for any probability transformation P (.). This legitimate property is not satisfied by PrNPl, since for example if we consider
Θ = {A, B,C} and m(A) = 0.2, m(B) = m(C) = 0 and m(B∪C) = 0.8, one obtains PrNPl(A) = 0.1112 < m(A) = 0.2.
So it is abnormal that singleton A looses mass when m(.) is transformed into a subjective probability.

In summary, DSmP does an ’improvement’ of all Sudano, Cuzzolin, and BetP formulas, in the sense that DSmP

mathematically makes a more accurate redistribution of the ignorance masses to the singletons involved in ignorances. DSmP

and BetP work in both theories: DST (= Shafer’s model) and DSmT (= free or hybrid models) as well. In order to use
Sudano’s and Cuzzolin’s in DSmT models, we have to refine the frame (see Example 5).

VI. THE PROBABILISTIC INFORMATION CONTENT (PIC)
Following Sudano’s approach [12], [13], [15], we adopt the Probabilistic Information Content (PIC) criterion as a metric

depicting the strength of a critical decision by a specific probability distribution. It is an essential measure in any threshold-
driven automated decision system. The PIC is the dual of the normalized Shannon entropy. A PIC value of one indicates the
total knowledge to make a correct decision (one hypothesis has a probability value of one and the rest of zero). A PIC value
of zero indicates that the knowledge to make a correct decision does not exist (all the hypotheses have an equal probability
value), i.e. one has the maximal entropy. The PIC is used in our analysis to sort the performances of the different pignistic
transformations through several numerical examples. We first recall what Shannon entropy and PIC measure are and their tight
relationship.

A. Shannon entropy
Shannon entropy, usually expressed in bits (binary digits), of a probability measure P{.} over a discrete finite set Θ =

{θ1, . . . , θn} is defined by7 [5]:

H(P ) � −
n�

i=1

P{θi} log2(P{θi}) (12)

7with common convention 0 log2 0 = 0.
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Remark:

All transformations are mathematically idempotent when m(.) is already probabilistic, but Cuzzolin’s one. 78
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1) Although (9) does not include explicitly Dempster’s rule, its geometrical justification [1], [2] is strongly conditioned

by the acceptance of Dempster’s rule as the fusion operator for belief functions. This is a dogmatic point of view we

disagree with since it has been recognized since many years by different experts of AI community, that other fusion

rules can offer better performances, especially for cases where high conflicting sources are involved.

2) Some parts of the masses of partial ignorance, say A, involved in the TNSM, are also transferred to singletons, say

θi ∈ Θ which are not included in A (i.e. such that {θi}∩A = ∅). Such transfer is not good and does not make sense in

our point of view. To be more clear, let’s take Θ = {A, B,C} and m(.) defined on its power set with all masses strictly

positive. In that case, m(A ∪ B) > 0 does count in TNSM and thus it is a bit redistributed back to C with the ratio
∆(C)

∆(A)+∆(B)+∆(C) through TNSM > 0. There is no solid reason for committing partially m(A∪B) to C since, only A
and B are involved in that partial ignorance. Similar remark holds for the partial redistribution of m(A ∪ C) > 0.
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The smaller �, the better/bigger PIC value.

In some particular degenerate cases however, the DSmP�=0 values cannot be derived, but the DSmP�>0 values can
however always be derived by choosing � as a very small positive number, say � = 1/1000 for example in order to be as
close as we want to the maximum of the PIC (see next sections for details and examples).

When � = 1 and when the masses of all elements Z having C(Z) = 1 are zero, DSmP�=1(.) = BetP (.).

The passage from a free DSm model to a Shafer’s model involves the passage from a structure to another one, and the
cardinals change as well in the formula (11).

B. Advantages of DSmP
DSmP works for all models (free, hybrid and Shafer’s). In order to apply classical BetP , CuzzP or Sudano’s mappings,

we need at first to refine the frame (on the cases when it is possible!) in order to work with Shafer’s model, and then apply
their formulas. In the case where refinement makes sense, then one can apply the other subjective probabilities on the refined
frame. DSmP works on the refined frame as well and gives the same result as it does on the non-refined frame. Thus DSmP

with � > 0 works on any models and so is very general and appealing. It is a combination of PrBel and BetP . PrBel

performs a redistribution of an ignorance mass to the singletons involved in that ignorance proportionally with respect to the
singleton masses. While BetP also does a redistribution of an ignorance mass to the singletons involved in that ignorance
but proportionally with respect to the singleton cardinals. PrBel does not work when the masses of all singletons involved in
an ignorance are null since it gives the indetermination 0/0; and in the case when at least one singleton mass involved in an
ignorance is zero, that singleton does not receive any mass from the distribution even if it was involved in an ignorance, which
is not fair/good. So, DSmP solves the PrBel problem by doing a redistribution of the ignorance mass with respect to both
the singleton masses and the singletons’ cardinals in the same time. Now, if all masses of singletons involved in all ignorances
are different from zero, then we can take � = 0, and DSmP coincides with PrBel and both of them give the best result, i.e.
the best PIC value. PrNPl is not satisfactory since it yields to an abnormal behavior. Indeed, in any model, when a bba m(.)
is transformed into a probability, normally (we mean it is logically that) the masses of ignorances are transferred to the masses
of elements of cardinal 1 (in Shafer’s model these elements are singletons). Thus, the resulting probability of an element whose
cardinal is 1 should be greater than or equal to the mass of that element. I. e. if A in G

Θ and C(A) = 1, then P (A) ≥ m(A)
for any probability transformation P (.). This legitimate property is not satisfied by PrNPl, since for example if we consider
Θ = {A, B,C} and m(A) = 0.2, m(B) = m(C) = 0 and m(B∪C) = 0.8, one obtains PrNPl(A) = 0.1112 < m(A) = 0.2.
So it is abnormal that singleton A looses mass when m(.) is transformed into a subjective probability.

In summary, DSmP does an ’improvement’ of all Sudano, Cuzzolin, and BetP formulas, in the sense that DSmP

mathematically makes a more accurate redistribution of the ignorance masses to the singletons involved in ignorances. DSmP

and BetP work in both theories: DST (= Shafer’s model) and DSmT (= free or hybrid models) as well. In order to use
Sudano’s and Cuzzolin’s in DSmT models, we have to refine the frame (see Example 5).

VI. THE PROBABILISTIC INFORMATION CONTENT (PIC)
Following Sudano’s approach [12], [13], [15], we adopt the Probabilistic Information Content (PIC) criterion as a metric

depicting the strength of a critical decision by a specific probability distribution. It is an essential measure in any threshold-
driven automated decision system. The PIC is the dual of the normalized Shannon entropy. A PIC value of one indicates the
total knowledge to make a correct decision (one hypothesis has a probability value of one and the rest of zero). A PIC value
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Remark:

All transformations are mathematically idempotent when m(.) is already probabilistic, but Cuzzolin’s one.
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Simple example for DSmP

DSmP�(θi) = m(θi)

+ (m(θi) + �)
�

X∈2Θ

X⊃θi
C(X)≥2

m(X)�

Y ∈2Θ

Y⊂X
C(Y )=1

m(Y ) + � · C(X)
(12)

The probabilities of (partial or total) ignorances are then
obtained from the additivity property of the probabilities of
elementary exclusive elements, i.e. for i, j = 1, . . . , n, i �= j,
DSmP�(θi ∪ θj) = DSmP�(θi) + DSmP�(θj), etc.

VI. PIC METRIC FOR THE EVALUATION OF THE
TRANSFORMATIONS

Following Sudano’s approach [17], [18], [21], we adopt the
Probabilistic Information Content (PIC) criteria as a metric
depicting the strength of a critical decision by a specific
probability distribution which is an essential measure in any
threshold-driven automated decision system. The PIC value
is actually nothing but the dual of the normalized Shannon
entropy as we will show. A PIC value of one indicates the
total knowledge (i.e. minimal entropy) or information to make
a correct decision (one hypothesis has a probability value
of one and the rest of zero). A PIC value of zero indicates
that the knowledge or information to make a correct decision
does not exist (all the hypothesis have an equal probability
value), i.e. one has the maximal entropy. The PIC criteria will
be used in our analysis in order to compare and order the
performances of the different pignistic transformations through
several numerical examples in the next sections. We just briefly
recall here what Shannon entropy and PIC measure are and
their tight relationship.

A. Shannon entropy

Shannon entropy, usually expressed in bits (binary digits),
of a discrete probability measure P{.} over a discrete finite
set Θ = {θ1, . . . , θn} is defined by5 [12]:

H(P ) � −
n�

i=1

P{θi} log2(P{θi}) (13)

H(P ) measures the randomness/uncertainty carried by any
discrete probability measure P{.}. H(P ) is maximal for the
uniform probability measure over Θ, i.e. when P{θi} = 1/n

for i = 1, 2, . . . , n. In that case, one gets:

H(P ) = Hmax = −
n�

i=1

1
n

log2(
1
n

) = log2(n)

H(P ) is minimal for a totally deterministic probability
measure, i.e. for any P{.} such that P{θi} = 1 for some
i ∈ {1, 2, . . . , n} and P{θj} = 0 for j �= i.

5with common convention 0 log2 0 = 0, see [1].

B. The PIC metric

The Probabilistic Information Content (PIC) of a discrete
probability measure P{.} over a discrete finite set Θ =
{θ1, . . . , θn} is defined by [18]:

PIC(P ) = 1 +
1

Hmax
·

n�

i=1

P{θi} log2(P{θi}) (14)

The PIC metric is nothing but the dual of the normal-
ized Shannon entropy metric and thus is actually unitless. It
actually measures the Information content of a probabilistic
source characterized by the probability measure P{.}. The
PIC(P ) metric takes its values in [0, 1] and is maximum, i.e.
PIC(P ) = PICmax = 1 for any deterministic probability
measures. PIC(P ) = PICmin = 0 when the probability
measure is uniform over the frame Θ, i.e. P{θi} = 1/n for
i = 1, 2, . . . , n. The simple relationships between H(P ) and
PIC(P ) are :

PIC(P ) = 1− H(P )
Hmax

(15)

H(P ) = Hmax · (1− PIC(P )) (16)

VII. EXAMPLES ON A 2D FRAME

A. Example 1 (Shafer’s model and a general source)

Let’s consider the 2D frame Θ = {A, B} with Shafer’s
model (i.e. A ∩ B = ∅) and the non-Bayesian quantitative
belief assignments (mass) given in Table I. In this example
since one adopts Shafer’s mode for the frame Θ, G

Θ coincides
with 2Θ, i.e. G

Θ = 2Θ = {∅, A,B, A ∪B}.

A B A ∪B
m(.) 0.3 0.1 0.6

Table I
QUANTITATIVE INPUTS FOR EXAMPLE VII-A

• Classical pignistic probability:

BetP (A) = m(A) +
1
2
m(A ∪B) = 0.3 + (0.6/2) = 0.60

BetP (B) = m(B) +
1
2
m(A ∪B) = 0.1 + (0.6/2) = 0.40

Since we are working with Shafer’s model, the generalized
pignistic probability given by (3) coincides with the classical
pignistic probability measure.

• Sudano’s probabilities:
Applying Sudano’s probabilities formulas (4)-(8), one gets:
- Probability PrP l(.):

PrP l(A) = 0.9 · [0.3/0.9 + 0.6/(0.9 + 0.7)] = 0.6375
PrP l(B) = 0.7 · [0.1/0.7 + 0.6/(0.9 + 0.7)] = 0.3625
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DSmP�(A) =
m(A) + � · C(A)
m(A) + � · C(A)

· m(A) +
0

m(B) + � · C(B)
· m(B) +

m(A) + � · C(A)
m(A) + m(B) + � · C(A ∪B)

· m(A ∪ B) (1)

DSmP�(B) =
0

m(A) + � · C(A)
· m(A) +

m(B) + � · C(B)
m(B) + � · C(B)

· m(B) +
m(B) + � · C(B)

m(A) + m(B) + � · C(A ∪B)
· m(A ∪ B) (2)

DSmP�(A∪B) =
m(A) + � · C(A)
m(A) + � · C(A)

·m(A) +
m(B) + � · C(B)
m(B) + � · C(B)

·m(B) +
m(A) + m(B) + � · C(A ∪B)
m(A) + m(B) + � · C(A ∪B)

·m(A∪B) (3)

Since we use Shafer’s model in this example C(A) = C(B) = 1 and C(A ∪ B) = 2 and finally one gets with the DSmP

transformation the following analytical expressions:

DSmP�(A) = m(A) +
m(A) + �

m(A) + m(B) + 2 · � · m(A ∪B)

DSmP�(B) = m(B) +
m(B) + �

m(A) + m(B) + 2 · � · m(A ∪B)

DSmP�(A ∪B) = m(A) + m(B) + m(A ∪B) = 1

One can verify that the expressions of DSmP�(A) and DSmP�(B) are also consistent with the formula (??) and it can be

easily verified that

DSmP�(A) + DSmP�(B) = DSmP�(A ∪B) = 1.

- Applying formula (14) (or equivalently the three previous expressions) for � = 0.1 yields:

DSmP�=0.1(A) = 0.3 + 0.4 = 0.7
DSmP�=0.1(B) = 0.1 + 0.2 = 0.3

DSmP�=0.1(A ∪B) = 1

• Cuzzolin’s probability:

TNSM = m(A ∪B) = 0.6

∆(A) = Pl(A)−m(A) = 0.6

∆(B) = Pl(B)−m(B) = 0.6

CuzzP (A) = m(A) +
∆(A)

∆(A) + ∆(B)
· TNSM = 0.3 +

0.6
0.6 + 0.6

· 0.6 = 0.60

CuzzP (B) = m(B) +
∆(B)

∆(A) + ∆(B)
· TNSM = 0.1 +

0.6
0.6 + 0.6

· 0.6 = 0.40
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A B

The PIC is nothing but the dual of the normalized Shannon

entropy and thus is actually unit less. PIC(P ) takes its values
in [0, 1]. PIC(P ) is maximum, i.e. PICmax = 1 with any
deterministic probability and it is minimum, i.e. PICmin = 0,
with the uniform probability over the frame Θ. The simple
relationships between H(P ) and PIC(P ) are PIC(P ) =
1 − (H(P )/Hmax) and H(P ) = Hmax · (1 − PIC(P )).

VII. EXAMPLES AND COMPARISONS ON A 2D FRAME

Due to the space limitation constraint, all details of deriva-

tions are voluntarily omitted here but they will appear in [8].

In this section, we work with the 2D frame Θ = {A, B}.

A. Example 1 (Shafer’s model and a general source)

Since one assumes Shafer’s model, GΘ = 2Θ =
{∅, A, B, A ∪ B}. The non-Bayesian quantitative belief mass
is given in Table I. Table II presents the results of the

different mappings and their PIC sorted by increasing order.

One sees that DSmPε→0 provides same result as PrBel and
PIC(DSmPε→0) is greater than the PIC values obtained with
PrNPL, BetP , CuzzP , PrP l and PraP l.

A B A ∪ B
m(.) 0.3 0.1 0.6

Table I
QUANTITATIVE INPUTS FOR EXAMPLE 1

A B PIC(.)
PrNP l(.) 0.5625 0.4375 0.0113
BetP (.) 0.6000 0.4000 0.0291
CuzzP (.) 0.6000 0.4000 0.0291
PrP l(.) 0.6375 0.3625 0.0553
PraP l(.) 0.6375 0.3625 0.0553
PrHyb(.) 0.6825 0.3175 0.0984
DSmPε=0.001(.) 0.7492 0.2508 0.1875
PrBel(.) 0.7500 0.2500 0.1887
DSmPε=0(.) 0.7500 0.2500 0.1887

Table II
RESULTS FOR EXAMPLE 1.

B. Example 2 (Shafer’s model and the totally ignorant source)

Let’s assume Shafer’s model and the vacuous bba charac-

terizing the totally ignorant source, i.e. m(A ∪ B) = 1. It
can be verified that all mappings coincide with the uniform

probability measure over singletons ofΘ, except PrBel which
is mathematically not defined in that case. This result can be

easily proved for any size of the frame Θ with |Θ| > 2.

C. Example 3 (Shafer’s model and a probabilistic source)

Let’s assume Shafer’s model and let’s see what happens

when applying all the transformations on a probabilistic

source10 which commits a belief mass only to singletons

of 2Θ, i.e. a Bayesian mass [4]. It is intuitively expected

that all transformations are idempotent when dealing with

probabilistic sources, since actually there is no reason/need

10This has obviously no practical interest since the source already provides
a probability measure, nevertheless this is very interesting to see the theoretical
behavior of the transformations in such case.

to modify m(.) (the input mass) to obtain a new subjective

probability measure since Bel(.) associated with m(.) is

already a probability measure. So if we consider for example

the uniform Bayesian mass defined by mu(A) = mu(B) =
1/2, it is very easy to verify in this case, that almost all
transformations coincide with the (probabilistic) input mass as

expected, so that the idempotency property is satisfied. Only

Cuzzolin’s transformation fails to satisfy this property because

in CuzzP (.) formula (9) one gets 0/0 indeterminacy since all
∆(.) = 0 in (9). This remark is valid whatever the dimension
of the frame Θ is, and for any Bayesian mass (not only for

uniform belief mass).

D. Example 4 (Shafer’s model and non-Bayesian mass)

Let’s assume Shafer’s model and the non-Bayesian mass

(more precisely the simple support mass) given in Table III.

We summarize in Table IV, the results obtained with all

transformations. One sees that PIC(DSmPε→0) is maximum
among all PIC values. PrBel(.) does not work correctly since
it can not have a division by zero. We use NaN acronym

here standing for Not a Number11; even overcoming it12,

PrBel does not do a fair redistribution of the ignorance
m(A ∪ B) = 0.6 because B does not receive anything from

the mass 0.6, although B is involved in the ignorance A∪B.
All m(A ∪ B) = 0.6 was unfairly redistributed to A only.

A B A ∪ B
m(.) 0.4 0 0.6

Table III
QUANTITATIVE INPUTS FOR EXAMPLE 4

A B PIC(.)
PrBel(.) 1 NaN NaN

PrNP l(.) 0.6250 0.3750 0.0455
BetP (.) 0.7000 0.3000 0.1187
CuzzP (.) 0.7000 0.3000 0.1187
PrP l(.) 0.7750 0.2250 0.2308
PraP l(.) 0.7750 0.2250 0.2308
PrHyb(.) 0.8650 0.1350 0.4291
DSmPε=0.001(.) 0.9985 0.0015 0.9838
DSmPε=0(.) 1 0 1

Table IV
RESULTS FOR EXAMPLE 4.

The best result is an adequate probability, not the biggest

PIC in this case. This is because P (B) deserves to receive
some mass from m(A ∪ B), so the most correct result is
done by DSmPε=0.001 in Table IV (of course we can choose

any other very small positive value for ε if we want). Always
when a singleton whose mass is zero, but it is involved in an

ignorance whose mass is not zero, then ε (in DSmP formula

(11)) should be different from zero.

11we could also use the standard ”N/A” standing for ”does not apply”.
12since the direct derivation of PrBel(B) cannot be done from the

formula (5) because of the undefined form 0/0, we could however force
it to PrBel(B) = 0 since PrBel(B) = 1−PrBel(A) = 1− 1 = 0, and
consequently we indirectly take PIC(PrBel) = 1.
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∆(A) + ∆(B)
· TNSM = 0.1 +

0.6
0.6 + 0.6

· 0.6 = 0.40

BetP (A) = 0.3 + (0.6/2) = 0.60
BetP (B) = 0.1 + (0.6/2) = 0.40

DSmP�(A) =
m(A) + � · C(A)
m(A) + � · C(A)

· m(A) +
0

m(B) + � · C(B)
· m(B) +

m(A) + � · C(A)
m(A) + m(B) + � · C(A ∪B)

· m(A ∪ B) (1)

DSmP�(B) =
0

m(A) + � · C(A)
· m(A) +

m(B) + � · C(B)
m(B) + � · C(B)

· m(B) +
m(B) + � · C(B)

m(A) + m(B) + � · C(A ∪B)
· m(A ∪ B) (2)

DSmP�(A∪B) =
m(A) + � · C(A)
m(A) + � · C(A)

·m(A) +
m(B) + � · C(B)
m(B) + � · C(B)

·m(B) +
m(A) + m(B) + � · C(A ∪B)
m(A) + m(B) + � · C(A ∪B)

·m(A∪B) (3)

Since we use Shafer’s model, C(A) = C(B) = 1 and C(A ∪B) = 2,

the previous expressions reduce to

DSmP�(A) = m(A) +
m(A) + �

m(A) + m(B) + 2 · � · m(A ∪B)

DSmP�(B) = m(B) +
m(B) + �

m(A) + m(B) + 2 · � · m(A ∪B)

DSmP�(A ∪B) = m(A) + m(B) + m(A ∪B) = 1

One can verify that the expressions of DSmP�(A) and DSmP�(B) are also consistent with the formula (??) and it can be

easily verified that

DSmP�(A) + DSmP�(B) = DSmP�(A ∪B) = 1.

- Applying formula (14) (or equivalently the three previous expressions) for � = 0.1 yields:

DSmP�=0.1(A) = 0.3 + 0.4 = 0.7
DSmP�=0.1(B) = 0.1 + 0.2 = 0.3

DSmP�=0.1(A ∪B) = 1

• Cuzzolin’s probability:

TNSM = m(A ∪B) = 0.6

∆(A) = Pl(A)−m(A) = 0.6

∆(B) = Pl(B)−m(B) = 0.6

CuzzP (A) = m(A) +
∆(A)

∆(A) + ∆(B)
· TNSM = 0.3 +

0.6
0.6 + 0.6

· 0.6 = 0.60

CuzzP (B) = m(B) +
∆(B)

∆(A) + ∆(B)
· TNSM = 0.1 +

0.6
0.6 + 0.6

· 0.6 = 0.40

BetP (A) = 0.3 + (0.6/2) = 0.60
BetP (B) = 0.1 + (0.6/2) = 0.40

Final results

min

max
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Results for other 2D examples

Shafer’s model and vacuous mass :

The PIC is nothing but the dual of the normalized Shannon

entropy and thus is actually unit less. PIC(P ) takes its values
in [0, 1]. PIC(P ) is maximum, i.e. PICmax = 1 with any
deterministic probability and it is minimum, i.e. PICmin = 0,
with the uniform probability over the frame Θ. The simple
relationships between H(P ) and PIC(P ) are PIC(P ) =
1 − (H(P )/Hmax) and H(P ) = Hmax · (1 − PIC(P )).

VII. EXAMPLES AND COMPARISONS ON A 2D FRAME

Due to the space limitation constraint, all details of deriva-

tions are voluntarily omitted here but they will appear in [8].

In this section, we work with the 2D frame Θ = {A, B}.

A. Example 1 (Shafer’s model and a general source)

Since one assumes Shafer’s model, GΘ = 2Θ =
{∅, A, B, A ∪ B}. The non-Bayesian quantitative belief mass
is given in Table I. Table II presents the results of the

different mappings and their PIC sorted by increasing order.

One sees that DSmPε→0 provides same result as PrBel and
PIC(DSmPε→0) is greater than the PIC values obtained with
PrNPL, BetP , CuzzP , PrP l and PraP l.

A B A ∪ B
m(.) 0.3 0.1 0.6

Table I
QUANTITATIVE INPUTS FOR EXAMPLE 1

A B PIC(.)
PrNP l(.) 0.5625 0.4375 0.0113
BetP (.) 0.6000 0.4000 0.0291
CuzzP (.) 0.6000 0.4000 0.0291
PrP l(.) 0.6375 0.3625 0.0553
PraP l(.) 0.6375 0.3625 0.0553
PrHyb(.) 0.6825 0.3175 0.0984
DSmPε=0.001(.) 0.7492 0.2508 0.1875
PrBel(.) 0.7500 0.2500 0.1887
DSmPε=0(.) 0.7500 0.2500 0.1887

Table II
RESULTS FOR EXAMPLE 1.

B. Example 2 (Shafer’s model and the totally ignorant source)

Let’s assume Shafer’s model and the vacuous bba charac-

terizing the totally ignorant source, i.e. m(A ∪ B) = 1. It
can be verified that all mappings coincide with the uniform

probability measure over singletons ofΘ, except PrBel which
is mathematically not defined in that case. This result can be

easily proved for any size of the frame Θ with |Θ| > 2.

C. Example 3 (Shafer’s model and a probabilistic source)

Let’s assume Shafer’s model and let’s see what happens

when applying all the transformations on a probabilistic

source10 which commits a belief mass only to singletons

of 2Θ, i.e. a Bayesian mass [4]. It is intuitively expected

that all transformations are idempotent when dealing with

probabilistic sources, since actually there is no reason/need

10This has obviously no practical interest since the source already provides
a probability measure, nevertheless this is very interesting to see the theoretical
behavior of the transformations in such case.

to modify m(.) (the input mass) to obtain a new subjective

probability measure since Bel(.) associated with m(.) is

already a probability measure. So if we consider for example

the uniform Bayesian mass defined by mu(A) = mu(B) =
1/2, it is very easy to verify in this case, that almost all
transformations coincide with the (probabilistic) input mass as

expected, so that the idempotency property is satisfied. Only

Cuzzolin’s transformation fails to satisfy this property because

in CuzzP (.) formula (9) one gets 0/0 indeterminacy since all
∆(.) = 0 in (9). This remark is valid whatever the dimension
of the frame Θ is, and for any Bayesian mass (not only for

uniform belief mass).

D. Example 4 (Shafer’s model and non-Bayesian mass)

Let’s assume Shafer’s model and the non-Bayesian mass

(more precisely the simple support mass) given in Table III.

We summarize in Table IV, the results obtained with all

transformations. One sees that PIC(DSmPε→0) is maximum
among all PIC values. PrBel(.) does not work correctly since
it can not have a division by zero. We use NaN acronym

here standing for Not a Number11; even overcoming it12,

PrBel does not do a fair redistribution of the ignorance
m(A ∪ B) = 0.6 because B does not receive anything from

the mass 0.6, although B is involved in the ignorance A∪B.
All m(A ∪ B) = 0.6 was unfairly redistributed to A only.

A B A ∪ B
m(.) 0.4 0 0.6

Table III
QUANTITATIVE INPUTS FOR EXAMPLE 4

A B PIC(.)
PrBel(.) 1 NaN NaN

PrNP l(.) 0.6250 0.3750 0.0455
BetP (.) 0.7000 0.3000 0.1187
CuzzP (.) 0.7000 0.3000 0.1187
PrP l(.) 0.7750 0.2250 0.2308
PraP l(.) 0.7750 0.2250 0.2308
PrHyb(.) 0.8650 0.1350 0.4291
DSmPε=0.001(.) 0.9985 0.0015 0.9838
DSmPε=0(.) 1 0 1

Table IV
RESULTS FOR EXAMPLE 4.

The best result is an adequate probability, not the biggest

PIC in this case. This is because P (B) deserves to receive
some mass from m(A ∪ B), so the most correct result is
done by DSmPε=0.001 in Table IV (of course we can choose

any other very small positive value for ε if we want). Always
when a singleton whose mass is zero, but it is involved in an

ignorance whose mass is not zero, then ε (in DSmP formula

(11)) should be different from zero.

11we could also use the standard ”N/A” standing for ”does not apply”.
12since the direct derivation of PrBel(B) cannot be done from the

formula (5) because of the undefined form 0/0, we could however force
it to PrBel(B) = 0 since PrBel(B) = 1−PrBel(A) = 1− 1 = 0, and
consequently we indirectly take PIC(PrBel) = 1.

All transformations coincide and give P(A)=P(B)=1/2, but PrBel(.) which is not defined.

Shafer’s model with Free DSm modelA B A B

The PIC is nothing but the dual of the normalized Shannon

entropy and thus is actually unit less. PIC(P ) takes its values
in [0, 1]. PIC(P ) is maximum, i.e. PICmax = 1 with any
deterministic probability and it is minimum, i.e. PICmin = 0,
with the uniform probability over the frame Θ. The simple
relationships between H(P ) and PIC(P ) are PIC(P ) =
1 − (H(P )/Hmax) and H(P ) = Hmax · (1 − PIC(P )).

VII. EXAMPLES AND COMPARISONS ON A 2D FRAME

Due to the space limitation constraint, all details of deriva-

tions are voluntarily omitted here but they will appear in [8].

In this section, we work with the 2D frame Θ = {A, B}.

A. Example 1 (Shafer’s model and a general source)

Since one assumes Shafer’s model, GΘ = 2Θ =
{∅, A, B, A ∪ B}. The non-Bayesian quantitative belief mass
is given in Table I. Table II presents the results of the

different mappings and their PIC sorted by increasing order.

One sees that DSmPε→0 provides same result as PrBel and
PIC(DSmPε→0) is greater than the PIC values obtained with
PrNPL, BetP , CuzzP , PrP l and PraP l.

A B A ∪ B
m(.) 0.3 0.1 0.6

Table I
QUANTITATIVE INPUTS FOR EXAMPLE 1

A B PIC(.)
PrNP l(.) 0.5625 0.4375 0.0113
BetP (.) 0.6000 0.4000 0.0291
CuzzP (.) 0.6000 0.4000 0.0291
PrP l(.) 0.6375 0.3625 0.0553
PraP l(.) 0.6375 0.3625 0.0553
PrHyb(.) 0.6825 0.3175 0.0984
DSmPε=0.001(.) 0.7492 0.2508 0.1875
PrBel(.) 0.7500 0.2500 0.1887
DSmPε=0(.) 0.7500 0.2500 0.1887

Table II
RESULTS FOR EXAMPLE 1.

B. Example 2 (Shafer’s model and the totally ignorant source)

Let’s assume Shafer’s model and the vacuous bba charac-

terizing the totally ignorant source, i.e. m(A ∪ B) = 1. It
can be verified that all mappings coincide with the uniform

probability measure over singletons ofΘ, except PrBel which
is mathematically not defined in that case. This result can be

easily proved for any size of the frame Θ with |Θ| > 2.

C. Example 3 (Shafer’s model and a probabilistic source)

Let’s assume Shafer’s model and let’s see what happens

when applying all the transformations on a probabilistic

source10 which commits a belief mass only to singletons

of 2Θ, i.e. a Bayesian mass [4]. It is intuitively expected

that all transformations are idempotent when dealing with

probabilistic sources, since actually there is no reason/need

10This has obviously no practical interest since the source already provides
a probability measure, nevertheless this is very interesting to see the theoretical
behavior of the transformations in such case.

to modify m(.) (the input mass) to obtain a new subjective

probability measure since Bel(.) associated with m(.) is

already a probability measure. So if we consider for example

the uniform Bayesian mass defined by mu(A) = mu(B) =
1/2, it is very easy to verify in this case, that almost all
transformations coincide with the (probabilistic) input mass as

expected, so that the idempotency property is satisfied. Only

Cuzzolin’s transformation fails to satisfy this property because

in CuzzP (.) formula (9) one gets 0/0 indeterminacy since all
∆(.) = 0 in (9). This remark is valid whatever the dimension
of the frame Θ is, and for any Bayesian mass (not only for

uniform belief mass).

D. Example 4 (Shafer’s model and non-Bayesian mass)

Let’s assume Shafer’s model and the non-Bayesian mass

(more precisely the simple support mass) given in Table III.

We summarize in Table IV, the results obtained with all

transformations. One sees that PIC(DSmPε→0) is maximum
among all PIC values. PrBel(.) does not work correctly since
it can not have a division by zero. We use NaN acronym

here standing for Not a Number11; even overcoming it12,

PrBel does not do a fair redistribution of the ignorance
m(A ∪ B) = 0.6 because B does not receive anything from

the mass 0.6, although B is involved in the ignorance A∪B.
All m(A ∪ B) = 0.6 was unfairly redistributed to A only.

A B A ∪ B
m(.) 0.4 0 0.6

Table III
QUANTITATIVE INPUTS FOR EXAMPLE 4

A B PIC(.)
PrBel(.) 1 NaN NaN

PrNP l(.) 0.6250 0.3750 0.0455
BetP (.) 0.7000 0.3000 0.1187
CuzzP (.) 0.7000 0.3000 0.1187
PrP l(.) 0.7750 0.2250 0.2308
PraP l(.) 0.7750 0.2250 0.2308
PrHyb(.) 0.8650 0.1350 0.4291
DSmPε=0.001(.) 0.9985 0.0015 0.9838
DSmPε=0(.) 1 0 1

Table IV
RESULTS FOR EXAMPLE 4.

The best result is an adequate probability, not the biggest

PIC in this case. This is because P (B) deserves to receive
some mass from m(A ∪ B), so the most correct result is
done by DSmPε=0.001 in Table IV (of course we can choose

any other very small positive value for ε if we want). Always
when a singleton whose mass is zero, but it is involved in an

ignorance whose mass is not zero, then ε (in DSmP formula

(11)) should be different from zero.

11we could also use the standard ”N/A” standing for ”does not apply”.
12since the direct derivation of PrBel(B) cannot be done from the

formula (5) because of the undefined form 0/0, we could however force
it to PrBel(B) = 0 since PrBel(B) = 1−PrBel(A) = 1− 1 = 0, and
consequently we indirectly take PIC(PrBel) = 1.

The PIC is nothing but the dual of the normalized Shannon

entropy and thus is actually unit less. PIC(P ) takes its values
in [0, 1]. PIC(P ) is maximum, i.e. PICmax = 1 with any
deterministic probability and it is minimum, i.e. PICmin = 0,
with the uniform probability over the frame Θ. The simple
relationships between H(P ) and PIC(P ) are PIC(P ) =
1 − (H(P )/Hmax) and H(P ) = Hmax · (1 − PIC(P )).

VII. EXAMPLES AND COMPARISONS ON A 2D FRAME

Due to the space limitation constraint, all details of deriva-

tions are voluntarily omitted here but they will appear in [8].

In this section, we work with the 2D frame Θ = {A, B}.

A. Example 1 (Shafer’s model and a general source)

Since one assumes Shafer’s model, GΘ = 2Θ =
{∅, A, B, A ∪ B}. The non-Bayesian quantitative belief mass
is given in Table I. Table II presents the results of the

different mappings and their PIC sorted by increasing order.

One sees that DSmPε→0 provides same result as PrBel and
PIC(DSmPε→0) is greater than the PIC values obtained with
PrNPL, BetP , CuzzP , PrP l and PraP l.

A B A ∪ B
m(.) 0.3 0.1 0.6

Table I
QUANTITATIVE INPUTS FOR EXAMPLE 1

A B PIC(.)
PrNP l(.) 0.5625 0.4375 0.0113
BetP (.) 0.6000 0.4000 0.0291
CuzzP (.) 0.6000 0.4000 0.0291
PrP l(.) 0.6375 0.3625 0.0553
PraP l(.) 0.6375 0.3625 0.0553
PrHyb(.) 0.6825 0.3175 0.0984
DSmPε=0.001(.) 0.7492 0.2508 0.1875
PrBel(.) 0.7500 0.2500 0.1887
DSmPε=0(.) 0.7500 0.2500 0.1887

Table II
RESULTS FOR EXAMPLE 1.

B. Example 2 (Shafer’s model and the totally ignorant source)

Let’s assume Shafer’s model and the vacuous bba charac-

terizing the totally ignorant source, i.e. m(A ∪ B) = 1. It
can be verified that all mappings coincide with the uniform

probability measure over singletons ofΘ, except PrBel which
is mathematically not defined in that case. This result can be

easily proved for any size of the frame Θ with |Θ| > 2.

C. Example 3 (Shafer’s model and a probabilistic source)

Let’s assume Shafer’s model and let’s see what happens

when applying all the transformations on a probabilistic

source10 which commits a belief mass only to singletons

of 2Θ, i.e. a Bayesian mass [4]. It is intuitively expected

that all transformations are idempotent when dealing with

probabilistic sources, since actually there is no reason/need

10This has obviously no practical interest since the source already provides
a probability measure, nevertheless this is very interesting to see the theoretical
behavior of the transformations in such case.

to modify m(.) (the input mass) to obtain a new subjective

probability measure since Bel(.) associated with m(.) is

already a probability measure. So if we consider for example

the uniform Bayesian mass defined by mu(A) = mu(B) =
1/2, it is very easy to verify in this case, that almost all
transformations coincide with the (probabilistic) input mass as

expected, so that the idempotency property is satisfied. Only

Cuzzolin’s transformation fails to satisfy this property because

in CuzzP (.) formula (9) one gets 0/0 indeterminacy since all
∆(.) = 0 in (9). This remark is valid whatever the dimension
of the frame Θ is, and for any Bayesian mass (not only for

uniform belief mass).

D. Example 4 (Shafer’s model and non-Bayesian mass)

Let’s assume Shafer’s model and the non-Bayesian mass

(more precisely the simple support mass) given in Table III.

We summarize in Table IV, the results obtained with all

transformations. One sees that PIC(DSmPε→0) is maximum
among all PIC values. PrBel(.) does not work correctly since
it can not have a division by zero. We use NaN acronym

here standing for Not a Number11; even overcoming it12,

PrBel does not do a fair redistribution of the ignorance
m(A ∪ B) = 0.6 because B does not receive anything from

the mass 0.6, although B is involved in the ignorance A∪B.
All m(A ∪ B) = 0.6 was unfairly redistributed to A only.

A B A ∪ B
m(.) 0.4 0 0.6

Table III
QUANTITATIVE INPUTS FOR EXAMPLE 4

A B PIC(.)
PrBel(.) 1 NaN NaN

PrNP l(.) 0.6250 0.3750 0.0455
BetP (.) 0.7000 0.3000 0.1187
CuzzP (.) 0.7000 0.3000 0.1187
PrP l(.) 0.7750 0.2250 0.2308
PraP l(.) 0.7750 0.2250 0.2308
PrHyb(.) 0.8650 0.1350 0.4291
DSmPε=0.001(.) 0.9985 0.0015 0.9838
DSmPε=0(.) 1 0 1

Table IV
RESULTS FOR EXAMPLE 4.

The best result is an adequate probability, not the biggest

PIC in this case. This is because P (B) deserves to receive
some mass from m(A ∪ B), so the most correct result is
done by DSmPε=0.001 in Table IV (of course we can choose

any other very small positive value for ε if we want). Always
when a singleton whose mass is zero, but it is involved in an

ignorance whose mass is not zero, then ε (in DSmP formula

(11)) should be different from zero.

11we could also use the standard ”N/A” standing for ”does not apply”.
12since the direct derivation of PrBel(B) cannot be done from the

formula (5) because of the undefined form 0/0, we could however force
it to PrBel(B) = 0 since PrBel(B) = 1−PrBel(A) = 1− 1 = 0, and
consequently we indirectly take PIC(PrBel) = 1.

NaN means “Not a Number”

E. Example 5 (Free DSm model)

Let’s assume the free DSm model (i.e. A∩B "= ∅) and the
generalized mass given in Table V. In the case of free-DSm (or

hybrid DSm) models, the pignistic probability and the DSmP

can be derived directly fromm(.) without the refinement of the
frameΘ whereas Sudano’s and Cuzzolin’s probabilities cannot

be derived directly from their formulas (4)-(9) for such models.

However, they can be obtained indirectly after a refinement of

the frame Θ into Θref which satisfies Shafer’s model. More

precisely, instead of working directly on the 2D frame Θ =
{A, B} with m(.) given in Table V, we need to work on the
3D frame Θref = {A′ ! A\{A∩B}, B′ ! B \{A∩B}, C′ !

A∩B} satisfying Shafer’s model with the equivalent bbam(.)
defined as in Table VI. The results are then given in Table

VII. One sees that PIC(DSmPε→0) is the maximum value.

PrBel does not work correctly because it cannot be directly
evaluated for A and B since the underlying PrBel(A′) and
PrBel(B′) are mathematically undefined in such case. If one
works on the refined frame Θref and one applies the DSmP
mapping of the bba m(.) defined in Table VI, one obtains
naturally the same results for DSmP as those given in table

VII. Of course the results of BetP in Table VII are the same

using directly the formula (3) as those using (1) on Θref. The

verification is left to the reader.

A ∩ B A B A ∪ B
m(.) 0.4 0.2 0.1 0.3

Table V
QUANTITATIVE INPUTS FOR EXAMPLE 5

C′ A′ ∪ C′ B′ ∪ C′ A′ ∪ B′ ∪ C′

m(.) 0.4 0.2 0.1 0.3

Table VI
QUANTITATIVE INPUTS ON THE REFINED FRAMEΘREF

A B A ∩ B PIC(.)
PrNP l(.) 0.7895 0.7368 0.5263 0.0741
CuzzP (.) 0.8400 0.8000 0.6400 0.1801
BetP (.) 0.8500 0.8000 0.6500 0.1931
PraP l(.) 0.8736 0.8421 0.7157 0.2789
PrP l(.) 0.9083 0.8544 0.7627 0.3570
PrHyb(.) 0.9471 0.9165 0.8636 0.5544
DSmPε=0.001(.) 0.9990 0.9988 0.9978 0.9842
PrBel(.) NaN NaN 1 1
DSmPε=0(.) 1 1 1 1

Table VII
RESULTS FOR EXAMPLE 5.

VIII. EXAMPLES ON A 3D FRAME

We work hereafter on the 3D frame Θ = {A, B, C}.

A. Example 6 (Shafer’s model and a non-Bayesian mass)

This example is drawn from [15]. Let’s assume Shafer’s

model and the non-Bayesian belief mass given by m(A) =
0.35, m(B) = 0.25, m(C) = 0.02, m(A ∪ B) = 0.20,
m(A∪C) = 0.07,m(B∪C) = 0.05 andm(A∪B∪C) = 0.06.
The results of the mappings are given in Table VIII. One sees

that DSmPε→0 provides the same result as PrBel which
corresponds here to the best result in term of PIC metric.

A B C PIC(.)
PrNP l(.) 0.4722 0.3889 0.1389 0.0936
CuzzP (.) 0.5029 0.3937 0.1034 0.1377
BetP (.) 0.5050 0.3950 0.1000 0.1424
PraP l(.) 0.5294 0.3978 0.0728 0.1861
PrP l(.) 0.5421 0.4005 0.0574 0.2149
PrHyb(.) 0.5575 0.4019 0.0406 0.2517
DSmPε=0.001(.) 0.5665 0.4037 0.0298 0.2783
PrBel(.) 0.5668 0.4038 0.0294 0.2793
DSmPε=0(.) 0.5668 0.4038 0.0294 0.2793

Table VIII
RESULTS FOR EXAMPLE 6.

B. Example 7 (Shafer’s model and a non-Bayesian mass)

Let’s assume Shafer’s model and change a bit the non-

Bayesian input mass by taking m(A) = 0.10, m(B) = 0,
m(C) = 0.20, m(A ∪ B) = 0.30, m(A ∪ C) = 0.10,
m(B ∪C) = 0 and m(A∪B ∪C) = 0.30. The results of the
mappings are given in Table IX. One sees that DSmPε→0

provides the best PIC value than all other mappings since

PrBel is mathematically undefined. If one takes artificially
PrBel(B) = 0, one gets the same result as with DSmPε→0.

A B C PIC(.)
PrBel(.) 0.5333 NaN 0.4667 NaN

PrNP l(.) 0.4000 0.3000 0.3000 0.0088
CuzzP (.) 0.3880 0.2470 0.3650 0.0163
BetP (.) 0.4000 0.2500 0.3500 0.0164
PraP l(.) 0.3800 0.2100 0.4100 0.0342
PrP l(.) 0.4486 0.2186 0.3328 0.0368
PrHyb(.) 0.4553 0.1698 0.3749 0.0650
DSmPε=0.001(.) 0.5305 0.0039 0.4656 0.3500

Table IX
RESULTS FOR EXAMPLE 7.

C. Example 8 (Hybrid DSm model)

We consider the hybrid DSm model in which all inter-

sections of elements of Θ are empty, but A ∩ B. In this
case, GΘ reduces to 9 elements {∅, A ∩ B, A, B, C, A ∪
B, A ∪ C, B ∪ C, A ∪ B ∪ C}. The input masses of focal
elements are given by m(A ∩ B) = 0.20, m(A) = 0.10,
m(C) = 0.20, m(A ∪ B) = 0.30, m(A ∪ C) = 0.10, and
m(A ∪ B ∪ C) = 0.10. In order to apply Sudano’s and
Cuzzolin’s mappings, we need to work on the refined frame

Θref with Shafer’s model as depicted on Figure 1 and masses

given in the Table X.

D′ A′ ∪ D′ C′

m(.) 0.2 0.1 0.2

A′ ∪ B′ ∪ D′ A′ ∪ C′ ∪ D′ A′ ∪ B′ ∪ C′ ∪ D′

m(.) 0.3 0.1 0.1

Table X
QUANTITATIVE INPUTS ON THE REFINED FRAME FOR EXAMPLE 8

One sees from the Table XI that DSmPε→0 provides the

best results in term of PIC metric. The refined frame has been

defined as: Θref = {A′ ! A\(A∩B), B′ ! B\(A∩B), C′ !

C, D′ ! A ∩ B} according to Figure 1.

The refinement of the frame is needed for working with all transformations, but 
for DSmP formula which can be applied directly.

E. Example 5 (Free DSm model)

Let’s assume the free DSm model (i.e. A∩B "= ∅) and the
generalized mass given in Table V. In the case of free-DSm (or

hybrid DSm) models, the pignistic probability and the DSmP

can be derived directly fromm(.) without the refinement of the
frameΘ whereas Sudano’s and Cuzzolin’s probabilities cannot

be derived directly from their formulas (4)-(9) for such models.

However, they can be obtained indirectly after a refinement of

the frame Θ into Θref which satisfies Shafer’s model. More

precisely, instead of working directly on the 2D frame Θ =
{A, B} with m(.) given in Table V, we need to work on the
3D frame Θref = {A′ ! A\{A∩B}, B′ ! B \{A∩B}, C′ !

A∩B} satisfying Shafer’s model with the equivalent bbam(.)
defined as in Table VI. The results are then given in Table

VII. One sees that PIC(DSmPε→0) is the maximum value.

PrBel does not work correctly because it cannot be directly
evaluated for A and B since the underlying PrBel(A′) and
PrBel(B′) are mathematically undefined in such case. If one
works on the refined frame Θref and one applies the DSmP
mapping of the bba m(.) defined in Table VI, one obtains
naturally the same results for DSmP as those given in table

VII. Of course the results of BetP in Table VII are the same

using directly the formula (3) as those using (1) on Θref. The

verification is left to the reader.

A ∩ B A B A ∪ B
m(.) 0.4 0.2 0.1 0.3

Table V
QUANTITATIVE INPUTS FOR EXAMPLE 5

C′ A′ ∪ C′ B′ ∪ C′ A′ ∪ B′ ∪ C′

m(.) 0.4 0.2 0.1 0.3

Table VI
QUANTITATIVE INPUTS ON THE REFINED FRAMEΘREF

A B A ∩ B PIC(.)
PrNP l(.) 0.7895 0.7368 0.5263 0.0741
CuzzP (.) 0.8400 0.8000 0.6400 0.1801
BetP (.) 0.8500 0.8000 0.6500 0.1931
PraP l(.) 0.8736 0.8421 0.7157 0.2789
PrP l(.) 0.9083 0.8544 0.7627 0.3570
PrHyb(.) 0.9471 0.9165 0.8636 0.5544
DSmPε=0.001(.) 0.9990 0.9988 0.9978 0.9842
PrBel(.) NaN NaN 1 1
DSmPε=0(.) 1 1 1 1

Table VII
RESULTS FOR EXAMPLE 5.

VIII. EXAMPLES ON A 3D FRAME

We work hereafter on the 3D frame Θ = {A, B, C}.

A. Example 6 (Shafer’s model and a non-Bayesian mass)

This example is drawn from [15]. Let’s assume Shafer’s

model and the non-Bayesian belief mass given by m(A) =
0.35, m(B) = 0.25, m(C) = 0.02, m(A ∪ B) = 0.20,
m(A∪C) = 0.07,m(B∪C) = 0.05 andm(A∪B∪C) = 0.06.
The results of the mappings are given in Table VIII. One sees

that DSmPε→0 provides the same result as PrBel which
corresponds here to the best result in term of PIC metric.

A B C PIC(.)
PrNP l(.) 0.4722 0.3889 0.1389 0.0936
CuzzP (.) 0.5029 0.3937 0.1034 0.1377
BetP (.) 0.5050 0.3950 0.1000 0.1424
PraP l(.) 0.5294 0.3978 0.0728 0.1861
PrP l(.) 0.5421 0.4005 0.0574 0.2149
PrHyb(.) 0.5575 0.4019 0.0406 0.2517
DSmPε=0.001(.) 0.5665 0.4037 0.0298 0.2783
PrBel(.) 0.5668 0.4038 0.0294 0.2793
DSmPε=0(.) 0.5668 0.4038 0.0294 0.2793

Table VIII
RESULTS FOR EXAMPLE 6.

B. Example 7 (Shafer’s model and a non-Bayesian mass)

Let’s assume Shafer’s model and change a bit the non-

Bayesian input mass by taking m(A) = 0.10, m(B) = 0,
m(C) = 0.20, m(A ∪ B) = 0.30, m(A ∪ C) = 0.10,
m(B ∪C) = 0 and m(A∪B ∪C) = 0.30. The results of the
mappings are given in Table IX. One sees that DSmPε→0

provides the best PIC value than all other mappings since

PrBel is mathematically undefined. If one takes artificially
PrBel(B) = 0, one gets the same result as with DSmPε→0.

A B C PIC(.)
PrBel(.) 0.5333 NaN 0.4667 NaN

PrNP l(.) 0.4000 0.3000 0.3000 0.0088
CuzzP (.) 0.3880 0.2470 0.3650 0.0163
BetP (.) 0.4000 0.2500 0.3500 0.0164
PraP l(.) 0.3800 0.2100 0.4100 0.0342
PrP l(.) 0.4486 0.2186 0.3328 0.0368
PrHyb(.) 0.4553 0.1698 0.3749 0.0650
DSmPε=0.001(.) 0.5305 0.0039 0.4656 0.3500

Table IX
RESULTS FOR EXAMPLE 7.

C. Example 8 (Hybrid DSm model)

We consider the hybrid DSm model in which all inter-

sections of elements of Θ are empty, but A ∩ B. In this
case, GΘ reduces to 9 elements {∅, A ∩ B, A, B, C, A ∪
B, A ∪ C, B ∪ C, A ∪ B ∪ C}. The input masses of focal
elements are given by m(A ∩ B) = 0.20, m(A) = 0.10,
m(C) = 0.20, m(A ∪ B) = 0.30, m(A ∪ C) = 0.10, and
m(A ∪ B ∪ C) = 0.10. In order to apply Sudano’s and
Cuzzolin’s mappings, we need to work on the refined frame

Θref with Shafer’s model as depicted on Figure 1 and masses

given in the Table X.

D′ A′ ∪ D′ C′

m(.) 0.2 0.1 0.2

A′ ∪ B′ ∪ D′ A′ ∪ C′ ∪ D′ A′ ∪ B′ ∪ C′ ∪ D′

m(.) 0.3 0.1 0.1

Table X
QUANTITATIVE INPUTS ON THE REFINED FRAME FOR EXAMPLE 8

One sees from the Table XI that DSmPε→0 provides the

best results in term of PIC metric. The refined frame has been

defined as: Θref = {A′ ! A\(A∩B), B′ ! B\(A∩B), C′ !

C, D′ ! A ∩ B} according to Figure 1.
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E. Example 5 (Free DSm model)

Let’s assume the free DSm model (i.e. A∩B "= ∅) and the
generalized mass given in Table V. In the case of free-DSm (or

hybrid DSm) models, the pignistic probability and the DSmP

can be derived directly fromm(.) without the refinement of the
frameΘ whereas Sudano’s and Cuzzolin’s probabilities cannot

be derived directly from their formulas (4)-(9) for such models.

However, they can be obtained indirectly after a refinement of

the frame Θ into Θref which satisfies Shafer’s model. More

precisely, instead of working directly on the 2D frame Θ =
{A, B} with m(.) given in Table V, we need to work on the
3D frame Θref = {A′ ! A\{A∩B}, B′ ! B \{A∩B}, C′ !

A∩B} satisfying Shafer’s model with the equivalent bbam(.)
defined as in Table VI. The results are then given in Table

VII. One sees that PIC(DSmPε→0) is the maximum value.

PrBel does not work correctly because it cannot be directly
evaluated for A and B since the underlying PrBel(A′) and
PrBel(B′) are mathematically undefined in such case. If one
works on the refined frame Θref and one applies the DSmP
mapping of the bba m(.) defined in Table VI, one obtains
naturally the same results for DSmP as those given in table

VII. Of course the results of BetP in Table VII are the same

using directly the formula (3) as those using (1) on Θref. The

verification is left to the reader.

A ∩ B A B A ∪ B
m(.) 0.4 0.2 0.1 0.3

Table V
QUANTITATIVE INPUTS FOR EXAMPLE 5

C′ A′ ∪ C′ B′ ∪ C′ A′ ∪ B′ ∪ C′

m(.) 0.4 0.2 0.1 0.3

Table VI
QUANTITATIVE INPUTS ON THE REFINED FRAMEΘREF

A B A ∩ B PIC(.)
PrNP l(.) 0.7895 0.7368 0.5263 0.0741
CuzzP (.) 0.8400 0.8000 0.6400 0.1801
BetP (.) 0.8500 0.8000 0.6500 0.1931
PraP l(.) 0.8736 0.8421 0.7157 0.2789
PrP l(.) 0.9083 0.8544 0.7627 0.3570
PrHyb(.) 0.9471 0.9165 0.8636 0.5544
DSmPε=0.001(.) 0.9990 0.9988 0.9978 0.9842
PrBel(.) NaN NaN 1 1
DSmPε=0(.) 1 1 1 1

Table VII
RESULTS FOR EXAMPLE 5.

VIII. EXAMPLES ON A 3D FRAME

We work hereafter on the 3D frame Θ = {A, B, C}.

A. Example 6 (Shafer’s model and a non-Bayesian mass)

This example is drawn from [15]. Let’s assume Shafer’s

model and the non-Bayesian belief mass given by m(A) =
0.35, m(B) = 0.25, m(C) = 0.02, m(A ∪ B) = 0.20,
m(A∪C) = 0.07,m(B∪C) = 0.05 andm(A∪B∪C) = 0.06.
The results of the mappings are given in Table VIII. One sees

that DSmPε→0 provides the same result as PrBel which
corresponds here to the best result in term of PIC metric.

A B C PIC(.)
PrNP l(.) 0.4722 0.3889 0.1389 0.0936
CuzzP (.) 0.5029 0.3937 0.1034 0.1377
BetP (.) 0.5050 0.3950 0.1000 0.1424
PraP l(.) 0.5294 0.3978 0.0728 0.1861
PrP l(.) 0.5421 0.4005 0.0574 0.2149
PrHyb(.) 0.5575 0.4019 0.0406 0.2517
DSmPε=0.001(.) 0.5665 0.4037 0.0298 0.2783
PrBel(.) 0.5668 0.4038 0.0294 0.2793
DSmPε=0(.) 0.5668 0.4038 0.0294 0.2793

Table VIII
RESULTS FOR EXAMPLE 6.

B. Example 7 (Shafer’s model and a non-Bayesian mass)

Let’s assume Shafer’s model and change a bit the non-

Bayesian input mass by taking m(A) = 0.10, m(B) = 0,
m(C) = 0.20, m(A ∪ B) = 0.30, m(A ∪ C) = 0.10,
m(B ∪C) = 0 and m(A∪B ∪C) = 0.30. The results of the
mappings are given in Table IX. One sees that DSmPε→0

provides the best PIC value than all other mappings since

PrBel is mathematically undefined. If one takes artificially
PrBel(B) = 0, one gets the same result as with DSmPε→0.

A B C PIC(.)
PrBel(.) 0.5333 NaN 0.4667 NaN

PrNP l(.) 0.4000 0.3000 0.3000 0.0088
CuzzP (.) 0.3880 0.2470 0.3650 0.0163
BetP (.) 0.4000 0.2500 0.3500 0.0164
PraP l(.) 0.3800 0.2100 0.4100 0.0342
PrP l(.) 0.4486 0.2186 0.3328 0.0368
PrHyb(.) 0.4553 0.1698 0.3749 0.0650
DSmPε=0.001(.) 0.5305 0.0039 0.4656 0.3500

Table IX
RESULTS FOR EXAMPLE 7.

C. Example 8 (Hybrid DSm model)

We consider the hybrid DSm model in which all inter-

sections of elements of Θ are empty, but A ∩ B. In this
case, GΘ reduces to 9 elements {∅, A ∩ B, A, B, C, A ∪
B, A ∪ C, B ∪ C, A ∪ B ∪ C}. The input masses of focal
elements are given by m(A ∩ B) = 0.20, m(A) = 0.10,
m(C) = 0.20, m(A ∪ B) = 0.30, m(A ∪ C) = 0.10, and
m(A ∪ B ∪ C) = 0.10. In order to apply Sudano’s and
Cuzzolin’s mappings, we need to work on the refined frame

Θref with Shafer’s model as depicted on Figure 1 and masses

given in the Table X.

D′ A′ ∪ D′ C′

m(.) 0.2 0.1 0.2

A′ ∪ B′ ∪ D′ A′ ∪ C′ ∪ D′ A′ ∪ B′ ∪ C′ ∪ D′

m(.) 0.3 0.1 0.1

Table X
QUANTITATIVE INPUTS ON THE REFINED FRAME FOR EXAMPLE 8

One sees from the Table XI that DSmPε→0 provides the

best results in term of PIC metric. The refined frame has been

defined as: Θref = {A′ ! A\(A∩B), B′ ! B\(A∩B), C′ !

C, D′ ! A ∩ B} according to Figure 1.

A B C PIC(.)
PrNPl(.) 0.4722 0.3889 0.1389 0.0936
CuzzP (.) 0.5029 0.3937 0.1034 0.1377
BetP (.) 0.5050 0.3950 0.1000 0.1424
PraP l(.) 0.5294 0.3978 0.0728 0.1861
PrP l(.) 0.5421 0.4005 0.0574 0.2149
PrHyb(.) 0.5575 0.4019 0.0406 0.2517
DSmP�=0.001(.) 0.5665 0.4037 0.0298 0.2783
PrBel(.) 0.5668 0.4038 0.0294 0.2793
DSmP�=0(.) 0.5668 0.4038 0.0294 0.2793

Table XIII
RESULTS FOR EXAMPLE 6.

B. Example 7 (Shafer’s model and a non-Bayesian mass)

Let’s assume Shafer’s model and change a bit the non-Bayesian input mass by taking m(A) = 0.10, m(B) = 0, m(C) = 0.20,
m(A ∪ B) = 0.30, m(A ∪ C) = 0.10, m(B ∪ C) = 0 and m(A ∪ B ∪ C) = 0.30. The results of the mappings are given
in Table ??. One sees that DSmP�→0 provides the best PIC value than all other mappings since PrBel is mathematically
undefined. If one takes artificially PrBel(B) = 0, one gets the same result as with DSmP�→0.

A B C PIC(.)
PrBel(.) 0.5333 NaN 0.4667 NaN
PrNPl(.) 0.4000 0.3000 0.3000 0.0088
CuzzP (.) 0.3880 0.2470 0.3650 0.0163
BetP (.) 0.4000 0.2500 0.3500 0.0164
PraP l(.) 0.3800 0.2100 0.4100 0.0342
PrP l(.) 0.4486 0.2186 0.3328 0.0368
PrHyb(.) 0.4553 0.1698 0.3749 0.0650
DSmP�=0.001(.) 0.5305 0.0039 0.4656 0.3500

Table XIV
RESULTS FOR EXAMPLE 7.

C. Example 8 (Hybrid DSm model)

We consider the hybrid DSm model in which all intersections of elements of Θ are empty, but A ∩ B. In this case, GΘ

reduces to 9 elements {∅, A∩B, A, B,C, A∪B, A∪C, B ∪C, A∪B ∪C}. The input masses of focal elements are given by
m(A ∩B) = 0.20, m(A) = 0.10, m(C) = 0.20, m(A ∪B) = 0.30, m(A ∪ C) = 0.10, and m(A ∪B ∪ C) = 0.10. In order
to apply Sudano’s and Cuzzolin’s mappings, we need to work on the refined frame Θref with Shafer’s model as depicted on
Figure ?? and masses given in the Table ??.

D
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A
� ∪D

�
C
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m(.) 0.2 0.1 0.2
A

� ∪B
� ∪D

�
A

� ∪ C
� ∪D
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A

� ∪B
� ∪ C

� ∪D
�

m(.) 0.3 0.1 0.1

Table XV
QUANTITATIVE INPUTS ON THE REFINED FRAME FOR EXAMPLE 8

One sees from the Table ?? that DSmP�→0 provides the best results in term of PIC metric. The refined frame has been
defined as: Θref = {A� � A \ (A ∩B), B� � B \ (A ∩B), C � � C, D� � A ∩B} according to Figure ??.

A B C PIC(.)
PrNPl(.) 0.4722 0.3889 0.1389 0.0936
CuzzP (.) 0.5029 0.3937 0.1034 0.1377
BetP (.) 0.5050 0.3950 0.1000 0.1424
PraP l(.) 0.5294 0.3978 0.0728 0.1861
PrP l(.) 0.5421 0.4005 0.0574 0.2149
PrHyb(.) 0.5575 0.4019 0.0406 0.2517
DSmP�=0.001(.) 0.5665 0.4037 0.0298 0.2783
PrBel(.) 0.5668 0.4038 0.0294 0.2793
DSmP�=0(.) 0.5668 0.4038 0.0294 0.2793

Table XIII
RESULTS FOR EXAMPLE 6.

B. Example 7 (Shafer’s model and a non-Bayesian mass)

Let’s assume Shafer’s model and change a bit the non-Bayesian input mass by taking m(A) = 0.10, m(B) = 0, m(C) = 0.20,
m(A ∪ B) = 0.30, m(A ∪ C) = 0.10, m(B ∪ C) = 0 and m(A ∪ B ∪ C) = 0.30. The results of the mappings are given
in Table ??. One sees that DSmP�→0 provides the best PIC value than all other mappings since PrBel is mathematically
undefined. If one takes artificially PrBel(B) = 0, one gets the same result as with DSmP�→0.

A B C PIC(.)
PrBel(.) 0.5333 NaN 0.4667 NaN
PrNPl(.) 0.4000 0.3000 0.3000 0.0088
CuzzP (.) 0.3880 0.2470 0.3650 0.0163
BetP (.) 0.4000 0.2500 0.3500 0.0164
PraP l(.) 0.3800 0.2100 0.4100 0.0342
PrP l(.) 0.4486 0.2186 0.3328 0.0368
PrHyb(.) 0.4553 0.1698 0.3749 0.0650
DSmP�=0.001(.) 0.5305 0.0039 0.4656 0.3500

Table XIV
RESULTS FOR EXAMPLE 7.

C. Example 8 (Hybrid DSm model)

We consider the hybrid DSm model in which all intersections of elements of Θ are empty, but A ∩ B. In this case, GΘ

reduces to 9 elements {∅, A∩B, A, B,C, A∪B, A∪C, B ∪C, A∪B ∪C}. The input masses of focal elements are given by
m(A ∩B) = 0.20, m(A) = 0.10, m(C) = 0.20, m(A ∪B) = 0.30, m(A ∪ C) = 0.10, and m(A ∪B ∪ C) = 0.10. In order
to apply Sudano’s and Cuzzolin’s mappings, we need to work on the refined frame Θref with Shafer’s model as depicted on
Figure ?? and masses given in the Table ??.
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Table XV
QUANTITATIVE INPUTS ON THE REFINED FRAME FOR EXAMPLE 8

One sees from the Table ?? that DSmP�→0 provides the best results in term of PIC metric. The refined frame has been
defined as: Θref = {A� � A \ (A ∩B), B� � B \ (A ∩B), C � � C, D� � A ∩B} according to Figure ??.

Mass inputMass input

Using Shafer’s model A B C
A ∩B A B A ∪B

m(.) 0.4 0.2 0.1 0.3

Table I
QUANTITATIVE INPUTS FOR EXAMPLE 5

A B C A ∪B A ∪ C B ∪ C A ∪B ∪ C
m(.) 0.35 0.25 0.02 0.20 0.07 0.05 0.06

Table II
QUANTITATIVE INPUTS FOR EXAMPLE 5

A B C A ∪B A ∪ C B ∪ C A ∪B ∪ C
m(.) 0.10 0 0.20 0.30 0.10 0 0.30

Table III
QUANTITATIVE INPUTS FOR EXAMPLE 5

We consider the hybrid DSm model in which all intersections of elements of Θ are empty, but A ∩ B. In this case, GΘ

reduces to 9 elements {∅, A∩B, A, B,C, A∪B, A∪C, B ∪C, A∪B ∪C}. The input masses of focal elements are given by
m(A ∩B) = 0.20, m(A) = 0.10, m(C) = 0.20, m(A ∪B) = 0.30, m(A ∪ C) = 0.10, and m(A ∪B ∪ C) = 0.10. In order
to apply Sudano’s and Cuzzolin’s mappings, we need to work on the refined frame Θref with Shafer’s model as depicted on
Figure ?? and masses given in the Table ??.

A ∩B ≡ D� A ≡ A� ∪D� C ≡ C�

m(.) 0.2 0.1 0.2

Table IV
QUANTITATIVE INPUTS ON THE REFINED FRAME FOR EXAMPLE 8

A ∪B ≡ A� ∪B� ∪D� A ∪ C ≡ A� ∪ C� ∪D� A ∪B ∪ C ≡ A� ∪B� ∪ C� ∪D�

m(.) 0.3 0.1 0.1

Table V
QUANTITATIVE INPUTS ON THE REFINED FRAME FOR EXAMPLE 8

One sees from the Table ?? that DSmP�→0 provides the best results in term of PIC metric. The refined frame has been
defined as: Θref = {A� � A \ (A ∩B), B� � B \ (A ∩B), C � � C, D� � A ∩B} according to Figure ??.

DSmP�(A) =
m(A) + � · C(A)
m(A) + � · C(A)

· m(A) +
0

m(B) + � · C(B)
· m(B) +

m(A) + � · C(A)
m(A) + m(B) + � · C(A ∪B)

· m(A ∪ B) (1)

DSmP�(B) =
0

m(A) + � · C(A)
· m(A) +

m(B) + � · C(B)
m(B) + � · C(B)

· m(B) +
m(B) + � · C(B)

m(A) + m(B) + � · C(A ∪B)
· m(A ∪ B) (2)

DSmP�(A∪B) =
m(A) + � · C(A)
m(A) + � · C(A)

·m(A) +
m(B) + � · C(B)
m(B) + � · C(B)

·m(B) +
m(A) + m(B) + � · C(A ∪B)
m(A) + m(B) + � · C(A ∪B)

·m(A∪B) (3)

Since we use Shafer’s model, C(A) = C(B) = 1 and C(A ∪B) = 2,

the previous expressions reduce to

DSmP�(A) = m(A) +
m(A) + �

m(A) + m(B) + 2 · � · m(A ∪B)

DSmP�(B) = m(B) +
m(B) + �

m(A) + m(B) + 2 · � · m(A ∪B)

DSmP�(A ∪B) = m(A) + m(B) + m(A ∪B) = 1

A ∩B A B A ∪B
m(.) 0.4 0.2 0.1 0.3

Table I
QUANTITATIVE INPUTS FOR EXAMPLE 5

A B C A ∪B A ∪ C B ∪ C A ∪B ∪ C
m(.) 0.35 0.25 0.02 0.20 0.07 0.05 0.06

Table II
QUANTITATIVE INPUTS FOR EXAMPLE 5

A B C A ∪B A ∪ C B ∪ C A ∪B ∪ C
m(.) 0.10 0 0.20 0.30 0.10 0 0.30

Table III
QUANTITATIVE INPUTS FOR EXAMPLE 5

We consider the hybrid DSm model in which all intersections of elements of Θ are empty, but A ∩ B. In this case, GΘ

reduces to 9 elements {∅, A∩B, A, B,C, A∪B, A∪C, B ∪C, A∪B ∪C}. The input masses of focal elements are given by
m(A ∩B) = 0.20, m(A) = 0.10, m(C) = 0.20, m(A ∪B) = 0.30, m(A ∪ C) = 0.10, and m(A ∪B ∪ C) = 0.10. In order
to apply Sudano’s and Cuzzolin’s mappings, we need to work on the refined frame Θref with Shafer’s model as depicted on
Figure ?? and masses given in the Table ??.

A ∩B ≡ D� A ≡ A� ∪D� C ≡ C�

m(.) 0.2 0.1 0.2

Table IV
QUANTITATIVE INPUTS ON THE REFINED FRAME FOR EXAMPLE 8

A ∪B ≡ A� ∪B� ∪D� A ∪ C ≡ A� ∪ C� ∪D� A ∪B ∪ C ≡ A� ∪B� ∪ C� ∪D�

m(.) 0.3 0.1 0.1

Table V
QUANTITATIVE INPUTS ON THE REFINED FRAME FOR EXAMPLE 8

One sees from the Table ?? that DSmP�→0 provides the best results in term of PIC metric. The refined frame has been
defined as: Θref = {A� � A \ (A ∩B), B� � B \ (A ∩B), C � � C, D� � A ∩B} according to Figure ??.

DSmP�(A) =
m(A) + � · C(A)
m(A) + � · C(A)

· m(A) +
0

m(B) + � · C(B)
· m(B) +

m(A) + � · C(A)
m(A) + m(B) + � · C(A ∪B)

· m(A ∪ B) (1)

DSmP�(B) =
0

m(A) + � · C(A)
· m(A) +

m(B) + � · C(B)
m(B) + � · C(B)

· m(B) +
m(B) + � · C(B)

m(A) + m(B) + � · C(A ∪B)
· m(A ∪ B) (2)

DSmP�(A∪B) =
m(A) + � · C(A)
m(A) + � · C(A)

·m(A) +
m(B) + � · C(B)
m(B) + � · C(B)

·m(B) +
m(A) + m(B) + � · C(A ∪B)
m(A) + m(B) + � · C(A ∪B)

·m(A∪B) (3)

Since we use Shafer’s model, C(A) = C(B) = 1 and C(A ∪B) = 2,

the previous expressions reduce to

DSmP�(A) = m(A) +
m(A) + �

m(A) + m(B) + 2 · � · m(A ∪B)

DSmP�(B) = m(B) +
m(B) + �

m(A) + m(B) + 2 · � · m(A ∪B)

DSmP�(A ∪B) = m(A) + m(B) + m(A ∪B) = 1
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Results for some 3D examples

E. Example 5 (Free DSm model)

Let’s assume the free DSm model (i.e. A∩B "= ∅) and the
generalized mass given in Table V. In the case of free-DSm (or

hybrid DSm) models, the pignistic probability and the DSmP

can be derived directly fromm(.) without the refinement of the
frameΘ whereas Sudano’s and Cuzzolin’s probabilities cannot

be derived directly from their formulas (4)-(9) for such models.

However, they can be obtained indirectly after a refinement of

the frame Θ into Θref which satisfies Shafer’s model. More

precisely, instead of working directly on the 2D frame Θ =
{A, B} with m(.) given in Table V, we need to work on the
3D frame Θref = {A′ ! A\{A∩B}, B′ ! B \{A∩B}, C′ !

A∩B} satisfying Shafer’s model with the equivalent bbam(.)
defined as in Table VI. The results are then given in Table

VII. One sees that PIC(DSmPε→0) is the maximum value.

PrBel does not work correctly because it cannot be directly
evaluated for A and B since the underlying PrBel(A′) and
PrBel(B′) are mathematically undefined in such case. If one
works on the refined frame Θref and one applies the DSmP
mapping of the bba m(.) defined in Table VI, one obtains
naturally the same results for DSmP as those given in table

VII. Of course the results of BetP in Table VII are the same

using directly the formula (3) as those using (1) on Θref. The

verification is left to the reader.

A ∩ B A B A ∪ B
m(.) 0.4 0.2 0.1 0.3

Table V
QUANTITATIVE INPUTS FOR EXAMPLE 5

C′ A′ ∪ C′ B′ ∪ C′ A′ ∪ B′ ∪ C′

m(.) 0.4 0.2 0.1 0.3

Table VI
QUANTITATIVE INPUTS ON THE REFINED FRAMEΘREF

A B A ∩ B PIC(.)
PrNP l(.) 0.7895 0.7368 0.5263 0.0741
CuzzP (.) 0.8400 0.8000 0.6400 0.1801
BetP (.) 0.8500 0.8000 0.6500 0.1931
PraP l(.) 0.8736 0.8421 0.7157 0.2789
PrP l(.) 0.9083 0.8544 0.7627 0.3570
PrHyb(.) 0.9471 0.9165 0.8636 0.5544
DSmPε=0.001(.) 0.9990 0.9988 0.9978 0.9842
PrBel(.) NaN NaN 1 1
DSmPε=0(.) 1 1 1 1

Table VII
RESULTS FOR EXAMPLE 5.

VIII. EXAMPLES ON A 3D FRAME

We work hereafter on the 3D frame Θ = {A, B, C}.

A. Example 6 (Shafer’s model and a non-Bayesian mass)

This example is drawn from [15]. Let’s assume Shafer’s

model and the non-Bayesian belief mass given by m(A) =
0.35, m(B) = 0.25, m(C) = 0.02, m(A ∪ B) = 0.20,
m(A∪C) = 0.07,m(B∪C) = 0.05 andm(A∪B∪C) = 0.06.
The results of the mappings are given in Table VIII. One sees

that DSmPε→0 provides the same result as PrBel which
corresponds here to the best result in term of PIC metric.

A B C PIC(.)
PrNP l(.) 0.4722 0.3889 0.1389 0.0936
CuzzP (.) 0.5029 0.3937 0.1034 0.1377
BetP (.) 0.5050 0.3950 0.1000 0.1424
PraP l(.) 0.5294 0.3978 0.0728 0.1861
PrP l(.) 0.5421 0.4005 0.0574 0.2149
PrHyb(.) 0.5575 0.4019 0.0406 0.2517
DSmPε=0.001(.) 0.5665 0.4037 0.0298 0.2783
PrBel(.) 0.5668 0.4038 0.0294 0.2793
DSmPε=0(.) 0.5668 0.4038 0.0294 0.2793

Table VIII
RESULTS FOR EXAMPLE 6.

B. Example 7 (Shafer’s model and a non-Bayesian mass)

Let’s assume Shafer’s model and change a bit the non-

Bayesian input mass by taking m(A) = 0.10, m(B) = 0,
m(C) = 0.20, m(A ∪ B) = 0.30, m(A ∪ C) = 0.10,
m(B ∪C) = 0 and m(A∪B ∪C) = 0.30. The results of the
mappings are given in Table IX. One sees that DSmPε→0

provides the best PIC value than all other mappings since

PrBel is mathematically undefined. If one takes artificially
PrBel(B) = 0, one gets the same result as with DSmPε→0.

A B C PIC(.)
PrBel(.) 0.5333 NaN 0.4667 NaN

PrNP l(.) 0.4000 0.3000 0.3000 0.0088
CuzzP (.) 0.3880 0.2470 0.3650 0.0163
BetP (.) 0.4000 0.2500 0.3500 0.0164
PraP l(.) 0.3800 0.2100 0.4100 0.0342
PrP l(.) 0.4486 0.2186 0.3328 0.0368
PrHyb(.) 0.4553 0.1698 0.3749 0.0650
DSmPε=0.001(.) 0.5305 0.0039 0.4656 0.3500

Table IX
RESULTS FOR EXAMPLE 7.

C. Example 8 (Hybrid DSm model)

We consider the hybrid DSm model in which all inter-

sections of elements of Θ are empty, but A ∩ B. In this
case, GΘ reduces to 9 elements {∅, A ∩ B, A, B, C, A ∪
B, A ∪ C, B ∪ C, A ∪ B ∪ C}. The input masses of focal
elements are given by m(A ∩ B) = 0.20, m(A) = 0.10,
m(C) = 0.20, m(A ∪ B) = 0.30, m(A ∪ C) = 0.10, and
m(A ∪ B ∪ C) = 0.10. In order to apply Sudano’s and
Cuzzolin’s mappings, we need to work on the refined frame

Θref with Shafer’s model as depicted on Figure 1 and masses

given in the Table X.

D′ A′ ∪ D′ C′

m(.) 0.2 0.1 0.2

A′ ∪ B′ ∪ D′ A′ ∪ C′ ∪ D′ A′ ∪ B′ ∪ C′ ∪ D′

m(.) 0.3 0.1 0.1

Table X
QUANTITATIVE INPUTS ON THE REFINED FRAME FOR EXAMPLE 8

One sees from the Table XI that DSmPε→0 provides the

best results in term of PIC metric. The refined frame has been

defined as: Θref = {A′ ! A\(A∩B), B′ ! B\(A∩B), C′ !

C, D′ ! A ∩ B} according to Figure 1.

A B C PIC(.)
PrNPl(.) 0.4722 0.3889 0.1389 0.0936
CuzzP (.) 0.5029 0.3937 0.1034 0.1377
BetP (.) 0.5050 0.3950 0.1000 0.1424
PraP l(.) 0.5294 0.3978 0.0728 0.1861
PrP l(.) 0.5421 0.4005 0.0574 0.2149
PrHyb(.) 0.5575 0.4019 0.0406 0.2517
DSmP�=0.001(.) 0.5665 0.4037 0.0298 0.2783
PrBel(.) 0.5668 0.4038 0.0294 0.2793
DSmP�=0(.) 0.5668 0.4038 0.0294 0.2793

Table XIII
RESULTS FOR EXAMPLE 6.

B. Example 7 (Shafer’s model and a non-Bayesian mass)

Let’s assume Shafer’s model and change a bit the non-Bayesian input mass by taking m(A) = 0.10, m(B) = 0, m(C) = 0.20,
m(A ∪ B) = 0.30, m(A ∪ C) = 0.10, m(B ∪ C) = 0 and m(A ∪ B ∪ C) = 0.30. The results of the mappings are given
in Table ??. One sees that DSmP�→0 provides the best PIC value than all other mappings since PrBel is mathematically
undefined. If one takes artificially PrBel(B) = 0, one gets the same result as with DSmP�→0.

A B C PIC(.)
PrBel(.) 0.5333 NaN 0.4667 NaN
PrNPl(.) 0.4000 0.3000 0.3000 0.0088
CuzzP (.) 0.3880 0.2470 0.3650 0.0163
BetP (.) 0.4000 0.2500 0.3500 0.0164
PraP l(.) 0.3800 0.2100 0.4100 0.0342
PrP l(.) 0.4486 0.2186 0.3328 0.0368
PrHyb(.) 0.4553 0.1698 0.3749 0.0650
DSmP�=0.001(.) 0.5305 0.0039 0.4656 0.3500

Table XIV
RESULTS FOR EXAMPLE 7.

C. Example 8 (Hybrid DSm model)

We consider the hybrid DSm model in which all intersections of elements of Θ are empty, but A ∩ B. In this case, GΘ

reduces to 9 elements {∅, A∩B, A, B,C, A∪B, A∪C, B ∪C, A∪B ∪C}. The input masses of focal elements are given by
m(A ∩B) = 0.20, m(A) = 0.10, m(C) = 0.20, m(A ∪B) = 0.30, m(A ∪ C) = 0.10, and m(A ∪B ∪ C) = 0.10. In order
to apply Sudano’s and Cuzzolin’s mappings, we need to work on the refined frame Θref with Shafer’s model as depicted on
Figure ?? and masses given in the Table ??.

D
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A
� ∪D

�
C

�

m(.) 0.2 0.1 0.2
A

� ∪B
� ∪D

�
A

� ∪ C
� ∪D

�
A

� ∪B
� ∪ C

� ∪D
�

m(.) 0.3 0.1 0.1

Table XV
QUANTITATIVE INPUTS ON THE REFINED FRAME FOR EXAMPLE 8

One sees from the Table ?? that DSmP�→0 provides the best results in term of PIC metric. The refined frame has been
defined as: Θref = {A� � A \ (A ∩B), B� � B \ (A ∩B), C � � C, D� � A ∩B} according to Figure ??.

A B C PIC(.)
PrNPl(.) 0.4722 0.3889 0.1389 0.0936
CuzzP (.) 0.5029 0.3937 0.1034 0.1377
BetP (.) 0.5050 0.3950 0.1000 0.1424
PraP l(.) 0.5294 0.3978 0.0728 0.1861
PrP l(.) 0.5421 0.4005 0.0574 0.2149
PrHyb(.) 0.5575 0.4019 0.0406 0.2517
DSmP�=0.001(.) 0.5665 0.4037 0.0298 0.2783
PrBel(.) 0.5668 0.4038 0.0294 0.2793
DSmP�=0(.) 0.5668 0.4038 0.0294 0.2793

Table XIII
RESULTS FOR EXAMPLE 6.

B. Example 7 (Shafer’s model and a non-Bayesian mass)

Let’s assume Shafer’s model and change a bit the non-Bayesian input mass by taking m(A) = 0.10, m(B) = 0, m(C) = 0.20,
m(A ∪ B) = 0.30, m(A ∪ C) = 0.10, m(B ∪ C) = 0 and m(A ∪ B ∪ C) = 0.30. The results of the mappings are given
in Table ??. One sees that DSmP�→0 provides the best PIC value than all other mappings since PrBel is mathematically
undefined. If one takes artificially PrBel(B) = 0, one gets the same result as with DSmP�→0.

A B C PIC(.)
PrBel(.) 0.5333 NaN 0.4667 NaN
PrNPl(.) 0.4000 0.3000 0.3000 0.0088
CuzzP (.) 0.3880 0.2470 0.3650 0.0163
BetP (.) 0.4000 0.2500 0.3500 0.0164
PraP l(.) 0.3800 0.2100 0.4100 0.0342
PrP l(.) 0.4486 0.2186 0.3328 0.0368
PrHyb(.) 0.4553 0.1698 0.3749 0.0650
DSmP�=0.001(.) 0.5305 0.0039 0.4656 0.3500

Table XIV
RESULTS FOR EXAMPLE 7.

C. Example 8 (Hybrid DSm model)

We consider the hybrid DSm model in which all intersections of elements of Θ are empty, but A ∩ B. In this case, GΘ

reduces to 9 elements {∅, A∩B, A, B,C, A∪B, A∪C, B ∪C, A∪B ∪C}. The input masses of focal elements are given by
m(A ∩B) = 0.20, m(A) = 0.10, m(C) = 0.20, m(A ∪B) = 0.30, m(A ∪ C) = 0.10, and m(A ∪B ∪ C) = 0.10. In order
to apply Sudano’s and Cuzzolin’s mappings, we need to work on the refined frame Θref with Shafer’s model as depicted on
Figure ?? and masses given in the Table ??.

D
�

A
� ∪D

�
C

�

m(.) 0.2 0.1 0.2
A

� ∪B
� ∪D

�
A

� ∪ C
� ∪D

�
A

� ∪B
� ∪ C

� ∪D
�

m(.) 0.3 0.1 0.1

Table XV
QUANTITATIVE INPUTS ON THE REFINED FRAME FOR EXAMPLE 8

One sees from the Table ?? that DSmP�→0 provides the best results in term of PIC metric. The refined frame has been
defined as: Θref = {A� � A \ (A ∩B), B� � B \ (A ∩B), C � � C, D� � A ∩B} according to Figure ??.

Mass inputMass input

Using Shafer’s model A B C
A ∩B A B A ∪B

m(.) 0.4 0.2 0.1 0.3

Table I
QUANTITATIVE INPUTS FOR EXAMPLE 5

A B C A ∪B A ∪ C B ∪ C A ∪B ∪ C
m(.) 0.35 0.25 0.02 0.20 0.07 0.05 0.06

Table II
QUANTITATIVE INPUTS FOR EXAMPLE 5

A B C A ∪B A ∪ C B ∪ C A ∪B ∪ C
m(.) 0.10 0 0.20 0.30 0.10 0 0.30

Table III
QUANTITATIVE INPUTS FOR EXAMPLE 5

We consider the hybrid DSm model in which all intersections of elements of Θ are empty, but A ∩ B. In this case, GΘ

reduces to 9 elements {∅, A∩B, A, B,C, A∪B, A∪C, B ∪C, A∪B ∪C}. The input masses of focal elements are given by
m(A ∩B) = 0.20, m(A) = 0.10, m(C) = 0.20, m(A ∪B) = 0.30, m(A ∪ C) = 0.10, and m(A ∪B ∪ C) = 0.10. In order
to apply Sudano’s and Cuzzolin’s mappings, we need to work on the refined frame Θref with Shafer’s model as depicted on
Figure ?? and masses given in the Table ??.

A ∩B ≡ D� A ≡ A� ∪D� C ≡ C�

m(.) 0.2 0.1 0.2

Table IV
QUANTITATIVE INPUTS ON THE REFINED FRAME FOR EXAMPLE 8

A ∪B ≡ A� ∪B� ∪D� A ∪ C ≡ A� ∪ C� ∪D� A ∪B ∪ C ≡ A� ∪B� ∪ C� ∪D�

m(.) 0.3 0.1 0.1

Table V
QUANTITATIVE INPUTS ON THE REFINED FRAME FOR EXAMPLE 8

One sees from the Table ?? that DSmP�→0 provides the best results in term of PIC metric. The refined frame has been
defined as: Θref = {A� � A \ (A ∩B), B� � B \ (A ∩B), C � � C, D� � A ∩B} according to Figure ??.

DSmP�(A) =
m(A) + � · C(A)
m(A) + � · C(A)

· m(A) +
0

m(B) + � · C(B)
· m(B) +

m(A) + � · C(A)
m(A) + m(B) + � · C(A ∪B)

· m(A ∪ B) (1)

DSmP�(B) =
0

m(A) + � · C(A)
· m(A) +

m(B) + � · C(B)
m(B) + � · C(B)

· m(B) +
m(B) + � · C(B)

m(A) + m(B) + � · C(A ∪B)
· m(A ∪ B) (2)

DSmP�(A∪B) =
m(A) + � · C(A)
m(A) + � · C(A)

·m(A) +
m(B) + � · C(B)
m(B) + � · C(B)

·m(B) +
m(A) + m(B) + � · C(A ∪B)
m(A) + m(B) + � · C(A ∪B)

·m(A∪B) (3)

Since we use Shafer’s model, C(A) = C(B) = 1 and C(A ∪B) = 2,

the previous expressions reduce to

DSmP�(A) = m(A) +
m(A) + �

m(A) + m(B) + 2 · � · m(A ∪B)

DSmP�(B) = m(B) +
m(B) + �

m(A) + m(B) + 2 · � · m(A ∪B)

DSmP�(A ∪B) = m(A) + m(B) + m(A ∪B) = 1

A ∩B A B A ∪B
m(.) 0.4 0.2 0.1 0.3

Table I
QUANTITATIVE INPUTS FOR EXAMPLE 5

A B C A ∪B A ∪ C B ∪ C A ∪B ∪ C
m(.) 0.35 0.25 0.02 0.20 0.07 0.05 0.06

Table II
QUANTITATIVE INPUTS FOR EXAMPLE 5

A B C A ∪B A ∪ C B ∪ C A ∪B ∪ C
m(.) 0.10 0 0.20 0.30 0.10 0 0.30

Table III
QUANTITATIVE INPUTS FOR EXAMPLE 5

We consider the hybrid DSm model in which all intersections of elements of Θ are empty, but A ∩ B. In this case, GΘ

reduces to 9 elements {∅, A∩B, A, B,C, A∪B, A∪C, B ∪C, A∪B ∪C}. The input masses of focal elements are given by
m(A ∩B) = 0.20, m(A) = 0.10, m(C) = 0.20, m(A ∪B) = 0.30, m(A ∪ C) = 0.10, and m(A ∪B ∪ C) = 0.10. In order
to apply Sudano’s and Cuzzolin’s mappings, we need to work on the refined frame Θref with Shafer’s model as depicted on
Figure ?? and masses given in the Table ??.

A ∩B ≡ D� A ≡ A� ∪D� C ≡ C�

m(.) 0.2 0.1 0.2

Table IV
QUANTITATIVE INPUTS ON THE REFINED FRAME FOR EXAMPLE 8

A ∪B ≡ A� ∪B� ∪D� A ∪ C ≡ A� ∪ C� ∪D� A ∪B ∪ C ≡ A� ∪B� ∪ C� ∪D�

m(.) 0.3 0.1 0.1

Table V
QUANTITATIVE INPUTS ON THE REFINED FRAME FOR EXAMPLE 8

One sees from the Table ?? that DSmP�→0 provides the best results in term of PIC metric. The refined frame has been
defined as: Θref = {A� � A \ (A ∩B), B� � B \ (A ∩B), C � � C, D� � A ∩B} according to Figure ??.

DSmP�(A) =
m(A) + � · C(A)
m(A) + � · C(A)

· m(A) +
0

m(B) + � · C(B)
· m(B) +

m(A) + � · C(A)
m(A) + m(B) + � · C(A ∪B)

· m(A ∪ B) (1)

DSmP�(B) =
0

m(A) + � · C(A)
· m(A) +

m(B) + � · C(B)
m(B) + � · C(B)

· m(B) +
m(B) + � · C(B)

m(A) + m(B) + � · C(A ∪B)
· m(A ∪ B) (2)

DSmP�(A∪B) =
m(A) + � · C(A)
m(A) + � · C(A)

·m(A) +
m(B) + � · C(B)
m(B) + � · C(B)

·m(B) +
m(A) + m(B) + � · C(A ∪B)
m(A) + m(B) + � · C(A ∪B)

·m(A∪B) (3)

Since we use Shafer’s model, C(A) = C(B) = 1 and C(A ∪B) = 2,

the previous expressions reduce to

DSmP�(A) = m(A) +
m(A) + �

m(A) + m(B) + 2 · � · m(A ∪B)

DSmP�(B) = m(B) +
m(B) + �

m(A) + m(B) + 2 · � · m(A ∪B)

DSmP�(A ∪B) = m(A) + m(B) + m(A ∪B) = 1
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Results for some 3D examples

E. Example 5 (Free DSm model)

Let’s assume the free DSm model (i.e. A∩B "= ∅) and the
generalized mass given in Table V. In the case of free-DSm (or

hybrid DSm) models, the pignistic probability and the DSmP

can be derived directly fromm(.) without the refinement of the
frameΘ whereas Sudano’s and Cuzzolin’s probabilities cannot

be derived directly from their formulas (4)-(9) for such models.

However, they can be obtained indirectly after a refinement of

the frame Θ into Θref which satisfies Shafer’s model. More

precisely, instead of working directly on the 2D frame Θ =
{A, B} with m(.) given in Table V, we need to work on the
3D frame Θref = {A′ ! A\{A∩B}, B′ ! B \{A∩B}, C′ !

A∩B} satisfying Shafer’s model with the equivalent bbam(.)
defined as in Table VI. The results are then given in Table

VII. One sees that PIC(DSmPε→0) is the maximum value.

PrBel does not work correctly because it cannot be directly
evaluated for A and B since the underlying PrBel(A′) and
PrBel(B′) are mathematically undefined in such case. If one
works on the refined frame Θref and one applies the DSmP
mapping of the bba m(.) defined in Table VI, one obtains
naturally the same results for DSmP as those given in table

VII. Of course the results of BetP in Table VII are the same

using directly the formula (3) as those using (1) on Θref. The

verification is left to the reader.

A ∩ B A B A ∪ B
m(.) 0.4 0.2 0.1 0.3

Table V
QUANTITATIVE INPUTS FOR EXAMPLE 5

C′ A′ ∪ C′ B′ ∪ C′ A′ ∪ B′ ∪ C′

m(.) 0.4 0.2 0.1 0.3

Table VI
QUANTITATIVE INPUTS ON THE REFINED FRAMEΘREF

A B A ∩ B PIC(.)
PrNP l(.) 0.7895 0.7368 0.5263 0.0741
CuzzP (.) 0.8400 0.8000 0.6400 0.1801
BetP (.) 0.8500 0.8000 0.6500 0.1931
PraP l(.) 0.8736 0.8421 0.7157 0.2789
PrP l(.) 0.9083 0.8544 0.7627 0.3570
PrHyb(.) 0.9471 0.9165 0.8636 0.5544
DSmPε=0.001(.) 0.9990 0.9988 0.9978 0.9842
PrBel(.) NaN NaN 1 1
DSmPε=0(.) 1 1 1 1

Table VII
RESULTS FOR EXAMPLE 5.

VIII. EXAMPLES ON A 3D FRAME

We work hereafter on the 3D frame Θ = {A, B, C}.

A. Example 6 (Shafer’s model and a non-Bayesian mass)

This example is drawn from [15]. Let’s assume Shafer’s

model and the non-Bayesian belief mass given by m(A) =
0.35, m(B) = 0.25, m(C) = 0.02, m(A ∪ B) = 0.20,
m(A∪C) = 0.07,m(B∪C) = 0.05 andm(A∪B∪C) = 0.06.
The results of the mappings are given in Table VIII. One sees

that DSmPε→0 provides the same result as PrBel which
corresponds here to the best result in term of PIC metric.

A B C PIC(.)
PrNP l(.) 0.4722 0.3889 0.1389 0.0936
CuzzP (.) 0.5029 0.3937 0.1034 0.1377
BetP (.) 0.5050 0.3950 0.1000 0.1424
PraP l(.) 0.5294 0.3978 0.0728 0.1861
PrP l(.) 0.5421 0.4005 0.0574 0.2149
PrHyb(.) 0.5575 0.4019 0.0406 0.2517
DSmPε=0.001(.) 0.5665 0.4037 0.0298 0.2783
PrBel(.) 0.5668 0.4038 0.0294 0.2793
DSmPε=0(.) 0.5668 0.4038 0.0294 0.2793

Table VIII
RESULTS FOR EXAMPLE 6.

B. Example 7 (Shafer’s model and a non-Bayesian mass)

Let’s assume Shafer’s model and change a bit the non-

Bayesian input mass by taking m(A) = 0.10, m(B) = 0,
m(C) = 0.20, m(A ∪ B) = 0.30, m(A ∪ C) = 0.10,
m(B ∪C) = 0 and m(A∪B ∪C) = 0.30. The results of the
mappings are given in Table IX. One sees that DSmPε→0

provides the best PIC value than all other mappings since

PrBel is mathematically undefined. If one takes artificially
PrBel(B) = 0, one gets the same result as with DSmPε→0.

A B C PIC(.)
PrBel(.) 0.5333 NaN 0.4667 NaN

PrNP l(.) 0.4000 0.3000 0.3000 0.0088
CuzzP (.) 0.3880 0.2470 0.3650 0.0163
BetP (.) 0.4000 0.2500 0.3500 0.0164
PraP l(.) 0.3800 0.2100 0.4100 0.0342
PrP l(.) 0.4486 0.2186 0.3328 0.0368
PrHyb(.) 0.4553 0.1698 0.3749 0.0650
DSmPε=0.001(.) 0.5305 0.0039 0.4656 0.3500

Table IX
RESULTS FOR EXAMPLE 7.

C. Example 8 (Hybrid DSm model)

We consider the hybrid DSm model in which all inter-

sections of elements of Θ are empty, but A ∩ B. In this
case, GΘ reduces to 9 elements {∅, A ∩ B, A, B, C, A ∪
B, A ∪ C, B ∪ C, A ∪ B ∪ C}. The input masses of focal
elements are given by m(A ∩ B) = 0.20, m(A) = 0.10,
m(C) = 0.20, m(A ∪ B) = 0.30, m(A ∪ C) = 0.10, and
m(A ∪ B ∪ C) = 0.10. In order to apply Sudano’s and
Cuzzolin’s mappings, we need to work on the refined frame

Θref with Shafer’s model as depicted on Figure 1 and masses

given in the Table X.

D′ A′ ∪ D′ C′

m(.) 0.2 0.1 0.2

A′ ∪ B′ ∪ D′ A′ ∪ C′ ∪ D′ A′ ∪ B′ ∪ C′ ∪ D′

m(.) 0.3 0.1 0.1

Table X
QUANTITATIVE INPUTS ON THE REFINED FRAME FOR EXAMPLE 8

One sees from the Table XI that DSmPε→0 provides the

best results in term of PIC metric. The refined frame has been

defined as: Θref = {A′ ! A\(A∩B), B′ ! B\(A∩B), C′ !

C, D′ ! A ∩ B} according to Figure 1.
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PraP l(.) 0.5294 0.3978 0.0728 0.1861
PrP l(.) 0.5421 0.4005 0.0574 0.2149
PrHyb(.) 0.5575 0.4019 0.0406 0.2517
DSmP�=0.001(.) 0.5665 0.4037 0.0298 0.2783
PrBel(.) 0.5668 0.4038 0.0294 0.2793
DSmP�=0(.) 0.5668 0.4038 0.0294 0.2793

Table XIII
RESULTS FOR EXAMPLE 6.
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DSmP�=0.001(.) 0.5305 0.0039 0.4656 0.3500

Table XIV
RESULTS FOR EXAMPLE 7.
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Figure ?? and masses given in the Table ??.

D
�

A
� ∪D

�
C

�

m(.) 0.2 0.1 0.2
A

� ∪B
� ∪D

�
A

� ∪ C
� ∪D

�
A

� ∪B
� ∪ C

� ∪D
�

m(.) 0.3 0.1 0.1

Table XV
QUANTITATIVE INPUTS ON THE REFINED FRAME FOR EXAMPLE 8

One sees from the Table ?? that DSmP�→0 provides the best results in term of PIC metric. The refined frame has been
defined as: Θref = {A� � A \ (A ∩B), B� � B \ (A ∩B), C � � C, D� � A ∩B} according to Figure ??.
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We consider the hybrid DSm model in which all intersections of elements of Θ are empty, but A ∩ B. In this case, GΘ

reduces to 9 elements {∅, A∩B, A, B,C, A∪B, A∪C, B ∪C, A∪B ∪C}. The input masses of focal elements are given by
m(A ∩B) = 0.20, m(A) = 0.10, m(C) = 0.20, m(A ∪B) = 0.30, m(A ∪ C) = 0.10, and m(A ∪B ∪ C) = 0.10. In order
to apply Sudano’s and Cuzzolin’s mappings, we need to work on the refined frame Θref with Shafer’s model as depicted on
Figure ?? and masses given in the Table ??.
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Table XV
QUANTITATIVE INPUTS ON THE REFINED FRAME FOR EXAMPLE 8

One sees from the Table ?? that DSmP�→0 provides the best results in term of PIC metric. The refined frame has been
defined as: Θref = {A� � A \ (A ∩B), B� � B \ (A ∩B), C � � C, D� � A ∩B} according to Figure ??.

Mass inputMass input

Using Shafer’s model A B C
A ∩B A B A ∪B

m(.) 0.4 0.2 0.1 0.3

Table I
QUANTITATIVE INPUTS FOR EXAMPLE 5

A B C A ∪B A ∪ C B ∪ C A ∪B ∪ C
m(.) 0.35 0.25 0.02 0.20 0.07 0.05 0.06

Table II
QUANTITATIVE INPUTS FOR EXAMPLE 5

A B C A ∪B A ∪ C B ∪ C A ∪B ∪ C
m(.) 0.10 0 0.20 0.30 0.10 0 0.30

Table III
QUANTITATIVE INPUTS FOR EXAMPLE 5

We consider the hybrid DSm model in which all intersections of elements of Θ are empty, but A ∩ B. In this case, GΘ

reduces to 9 elements {∅, A∩B, A, B,C, A∪B, A∪C, B ∪C, A∪B ∪C}. The input masses of focal elements are given by
m(A ∩B) = 0.20, m(A) = 0.10, m(C) = 0.20, m(A ∪B) = 0.30, m(A ∪ C) = 0.10, and m(A ∪B ∪ C) = 0.10. In order
to apply Sudano’s and Cuzzolin’s mappings, we need to work on the refined frame Θref with Shafer’s model as depicted on
Figure ?? and masses given in the Table ??.

A ∩B ≡ D� A ≡ A� ∪D� C ≡ C�

m(.) 0.2 0.1 0.2

Table IV
QUANTITATIVE INPUTS ON THE REFINED FRAME FOR EXAMPLE 8

A ∪B ≡ A� ∪B� ∪D� A ∪ C ≡ A� ∪ C� ∪D� A ∪B ∪ C ≡ A� ∪B� ∪ C� ∪D�

m(.) 0.3 0.1 0.1

Table V
QUANTITATIVE INPUTS ON THE REFINED FRAME FOR EXAMPLE 8

One sees from the Table ?? that DSmP�→0 provides the best results in term of PIC metric. The refined frame has been
defined as: Θref = {A� � A \ (A ∩B), B� � B \ (A ∩B), C � � C, D� � A ∩B} according to Figure ??.

DSmP�(A) =
m(A) + � · C(A)
m(A) + � · C(A)

· m(A) +
0

m(B) + � · C(B)
· m(B) +

m(A) + � · C(A)
m(A) + m(B) + � · C(A ∪B)

· m(A ∪ B) (1)

DSmP�(B) =
0

m(A) + � · C(A)
· m(A) +

m(B) + � · C(B)
m(B) + � · C(B)

· m(B) +
m(B) + � · C(B)

m(A) + m(B) + � · C(A ∪B)
· m(A ∪ B) (2)

DSmP�(A∪B) =
m(A) + � · C(A)
m(A) + � · C(A)

·m(A) +
m(B) + � · C(B)
m(B) + � · C(B)

·m(B) +
m(A) + m(B) + � · C(A ∪B)
m(A) + m(B) + � · C(A ∪B)

·m(A∪B) (3)

Since we use Shafer’s model, C(A) = C(B) = 1 and C(A ∪B) = 2,

the previous expressions reduce to

DSmP�(A) = m(A) +
m(A) + �

m(A) + m(B) + 2 · � · m(A ∪B)

DSmP�(B) = m(B) +
m(B) + �

m(A) + m(B) + 2 · � · m(A ∪B)

DSmP�(A ∪B) = m(A) + m(B) + m(A ∪B) = 1

A ∩B A B A ∪B
m(.) 0.4 0.2 0.1 0.3

Table I
QUANTITATIVE INPUTS FOR EXAMPLE 5

A B C A ∪B A ∪ C B ∪ C A ∪B ∪ C
m(.) 0.35 0.25 0.02 0.20 0.07 0.05 0.06

Table II
QUANTITATIVE INPUTS FOR EXAMPLE 5

A B C A ∪B A ∪ C B ∪ C A ∪B ∪ C
m(.) 0.10 0 0.20 0.30 0.10 0 0.30

Table III
QUANTITATIVE INPUTS FOR EXAMPLE 5

We consider the hybrid DSm model in which all intersections of elements of Θ are empty, but A ∩ B. In this case, GΘ

reduces to 9 elements {∅, A∩B, A, B,C, A∪B, A∪C, B ∪C, A∪B ∪C}. The input masses of focal elements are given by
m(A ∩B) = 0.20, m(A) = 0.10, m(C) = 0.20, m(A ∪B) = 0.30, m(A ∪ C) = 0.10, and m(A ∪B ∪ C) = 0.10. In order
to apply Sudano’s and Cuzzolin’s mappings, we need to work on the refined frame Θref with Shafer’s model as depicted on
Figure ?? and masses given in the Table ??.

A ∩B ≡ D� A ≡ A� ∪D� C ≡ C�

m(.) 0.2 0.1 0.2

Table IV
QUANTITATIVE INPUTS ON THE REFINED FRAME FOR EXAMPLE 8

A ∪B ≡ A� ∪B� ∪D� A ∪ C ≡ A� ∪ C� ∪D� A ∪B ∪ C ≡ A� ∪B� ∪ C� ∪D�

m(.) 0.3 0.1 0.1

Table V
QUANTITATIVE INPUTS ON THE REFINED FRAME FOR EXAMPLE 8

One sees from the Table ?? that DSmP�→0 provides the best results in term of PIC metric. The refined frame has been
defined as: Θref = {A� � A \ (A ∩B), B� � B \ (A ∩B), C � � C, D� � A ∩B} according to Figure ??.

DSmP�(A) =
m(A) + � · C(A)
m(A) + � · C(A)

· m(A) +
0

m(B) + � · C(B)
· m(B) +

m(A) + � · C(A)
m(A) + m(B) + � · C(A ∪B)

· m(A ∪ B) (1)

DSmP�(B) =
0

m(A) + � · C(A)
· m(A) +

m(B) + � · C(B)
m(B) + � · C(B)

· m(B) +
m(B) + � · C(B)

m(A) + m(B) + � · C(A ∪B)
· m(A ∪ B) (2)

DSmP�(A∪B) =
m(A) + � · C(A)
m(A) + � · C(A)

·m(A) +
m(B) + � · C(B)
m(B) + � · C(B)

·m(B) +
m(A) + m(B) + � · C(A ∪B)
m(A) + m(B) + � · C(A ∪B)

·m(A∪B) (3)

Since we use Shafer’s model, C(A) = C(B) = 1 and C(A ∪B) = 2,

the previous expressions reduce to

DSmP�(A) = m(A) +
m(A) + �

m(A) + m(B) + 2 · � · m(A ∪B)

DSmP�(B) = m(B) +
m(B) + �

m(A) + m(B) + 2 · � · m(A ∪B)

DSmP�(A ∪B) = m(A) + m(B) + m(A ∪B) = 1

Probabilistic transformations
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Results for some 3D examples

With a hybrid model

We work hereafter on the 3D frame Θ = {A, B, C}.

Mass input

With the Free model 

!"
#$

!"
#$

!"
#$

!"
A

#$
B

% C

D′

C′

B′A′

!"
#$

!"
#$

!"
#$!"

A
#$

B

!%C

D′

G′

C′

E′ F ′

B′A′

A ∩ B ∩ C A ∩ B A
m(.) 0.1 0.2 0.3

A ∪ B A ∪ B ∪ C
m(.) 0.1 0.3

Transformations PIC(.)
PrBel(.) NaN

PrNP l(.) 0.0414
CuzzP (.) 0.0621
PraP l(.) 0.0693
BetP (.) 0.1176
PrP l(.) 0.1940
PrHyb(.) 0.2375
DSmPε=0.001(.) 0.8986

Mass input

A′ B′ C′ D′ PIC(.)
PrBel(.) NaN NaN 0.3000 0.7000 NaN

PrNP l(.) 0.2728 0.1818 0.1818 0.3636 0.0318
CuzzP (.) 0.2000 0.1333 0.2667 0.4000 0.0553
BetP (.) 0.2084 0.1250 0.2583 0.4083 0.0607
PraP l(.) 0.1636 0.1091 0.3091 0.4182 0.0872
PrP l(.) 0.2035 0.0848 0.2404 0.4713 0.1124
PrHyb(.) 0.1339 0.0583 0.2656 0.5422 0.1928
DSmPε=0.001(.) 0.0025 0.0017 0.2996 0.6962 0.5390

A ∩B ≡ D� A ≡ A� ∪D� C ≡ C�

m(.) 0.2 0.1 0.2

A ∪B ≡ A� ∪B� ∪D� A ∪ C ≡ A� ∪ C� ∪D� A ∪B ∪ C ≡ A� ∪B� ∪ C� ∪D�

m(.) 0.3 0.1 0.1
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Qualitative DSmP (qDSmP)

C. More operations with labels
On the interval [0, 1] we consider the labels Li, 0 ≤ i ≤ n + 1, n ≥ 0 such that Li = i/(n + 1). But we extend this closed

interval to the right and to the left in order to be able to do all needed label operations in any fusion calculation. Therefore

Ln+2 = n+2
n+1 , Ln+3 = n+3

n+1 , . . . and respectively L−i = −Li = −i
n+1 , so we get L−1, L−2, . . . . In general Li = i/(n + 1) for

any i ∈ Z = {. . . ,−2,−1, 0, 1, 2, . . .} where Z is the set of all integers. Now we define four more operators involving labels.

1) Addition of labels with real scalars: If r ∈ R (the set of real numbers) and i ∈ Z, then:

Li + r = r + Li = L[i+r(n+1)] (23)

where [x] means the closest integer to x. This operator is justified because Li + r = i
n+1 + r = i+r(n+1)

n+1 ≈ L[i+r(n+1)] and

it is needed in the qualitative extension of DSmP formula.

2) Subtraction between labels and real scalars:

Li − r = L[i−r(n+1)] (24)

because Li − r = i
n+1 − r = i−r(n+1)

n+1 ≈ L[i−r(n+1)] and similarly r − Li = L[r(n+1)−i] because r − Li = r − i
n+1 =

r(n+1)−i
n+1 ≈ L[r(n+1)−i].

3) & 4) Powers and roots of labels:
(Li)k = L

[ ik

(n+1)k−1 ]
(25)

for k ∈ R because (Li)k = ( i
n+1 )k =

ik

(n+1)k−1

n+1 ≈ L
[ ik

(n+1)k−1 ]
.

If k ∈ Q, which is the set of fractions (rational numbers), we get the radical operation of labels. Therefore,

p
�

Li = L
[ p
√

i.(n+1)p−1]
(26)

because we replace k = 1/p in the formula (25).

D. Quasi-normalization of qm(.)
There is no way to define a normalized qm(.), but a qualitative quasi-normalization [7] is nevertheless possible when

considering equidistant linguistic labels because in such case, qm(Xi) = Li, is equivalent to a quantitative mass m(Xi) =
i/(n + 1) which is normalized if: �

X∈GΘ

m(X) =
�

k

ik/(n + 1) = 1,

but this one is equivalent to: �

X∈GΘ

qm(X) =
�

k

Lik = Ln+1.

In this case, we have a qualitative normalization, similar to the (classical) numerical normalization. But, if the labels L0, L1,

L2, . . ., Ln, Ln+1 are not equidistant, so the interval [0, 1] cannot be split into equal parts according to the distribution of

the labels, then it makes sense to consider a qualitative quasi-normalization, i.e. an approximation of the (classical) numerical

normalization for the qualitative masses in the same way:

�

X∈GΘ

qm(X) = Ln+1.

In general, if we don’t know if the labels are equidistant or not, we say that a qualitative mass is quasi-normalized when the

above summation holds.

E. Qualitative extension of DSmP
The qualitative extension of (14), denoted qDSmP (.) is given by qDSmP�(∅) = 0 and ∀X ∈ GΘ \ {∅} by

qDSmP�(X) =
�

Y ∈GΘ

�

Z⊆X∩Y
C(Z)=1

qm(Z) + � · C(X ∩ Y )

�

Z⊆Y
C(Z)=1

qm(Z) + � · C(Y )
qm(Y ) (27)

where all operations in (27) are referred to labels, that is q-operators on linguistic labels defined in IX-B and not classical

operators on numbers. In the same manner, due to our construction of labels and qualitative operators, we can transform any

quantitative fusion rule (or arithmetic expression) into a qualitative fusion rule (or qualitative expression).

qDSmP Formula :

where all operators involved in qDSmP and PIC formulas are referred to 
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where Hmax = log2(M) and in order to compute the logarithms, one utilized the isomorphism Li = i/(n + 1).
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5
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Simple example for qDSmP

Θ = {θ1, θ2} Shafer model

qDSmP�=0(θ1 ∩ θ2) = qDSmP�=0(∅) = L0

qDSmP�=0(θ1) = L1 + xθ1 = L1 + L0.25 = L1.25

qDSmP�=0(θ2) = L3 + xθ2 = L3 + L0.75 = L3.75

L = {L0, L1, L2, L3, L4, L5}

qm(θ1) = L1, qm(θ2) = L3 and qm(θ1 ∪ θ2) = L1Input:

qm(θ1 ∪ θ2) = L1 is redistributed to θ1 and θ2 proportionally with respect to
their qualitative masses L1 and L3 respectively.
Since both L1 and L3 are different from L0, we can take the tuning parameter
� = 0 for the best transfer. � is taken different from zero when a mass of a set
involved in a partial or total ignorance is zero (for q-masses, it means L0).
Therefore,

xθ1

L1
=

xθ2

L3
=

L1

L1 + L3
=

L1

L4
= L 1

4 ·5 = L 5
4

= L1.25

and one gets
xθ1 = L1 × L1.25 = L 1·(1.25)

5
= L 1.25

5
= L0.25

xθ2 = L3 × L1.25 = L 3·(1.25)
5

= L 3.75
5

= L0.75

Result
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Simple example for qDSmP (cont’d)

Since Hmax = log2 n = log2 2 = 1, one obtains:

PIC = 1 +
1
1

· [qDSmP�=0(θ1) log2(qDSmP�=0(θ1))

+ qDSmP�=0(θ2) log2(qDSmP�=0(θ2))]
= 1 + L1.25 log2(L1.25) + L3.75 log2(L3.75) ≈ L0.94

since we considered the isomorphic transformation Li = i/(m + 1) (in our par-
ticular example m = 4 interior labels).
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Concluding remarks on DSmP

DSmP provides the maximum of PIC because it is based on proportional redistribution of partial and total 
uncertainty masses to elements of cardinal one with respect to their corresponding masses and cardinalities. 

DSmP works directly for any model (Shafer's, hybrid, or free DSm model) of the frame of the problem and the 
result can be obtained at any level of precision by the tuning positive parameter

IV. CONCLUSIONS

Motivated by the necessity to use a better (more informational) probabilistic approximation of belief assignment m(.) for
applications involving soft decisions, we have developed a new probabilistic transformation, called DSmP , for approximating
m(.) into a subjective probability measure.
DSmP provides the maximum of the Probabilistic Information Content (PIC) of the source because it is based on proportional
redistribution of partial and total uncertainty masses to elements of cardinal 1 with respect to their corresponding masses and
cardinalities.

DSmP works directly for any model (Shafer’s, hybrid, or free DSm model) of the frame of the problem and the result can
be obtained at any level of precision by a tuning positive parameter � > 0.

DSmP�=0 coincides with Sudano’s PrBel transformation for the cases when all masses of singletons involved in ignorances
are nonzero.

PrBel formula is restricted to work on Shafer’s model only while DSmP�>0 is always defined and for any model.

We proved that BetP and Cuzzolin’s transformations do not perform well in term of PIC criterion.

DSmP can be extended to the qualitative domain to approximate qualitative belief assignments provided by human sources
in natural language.
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BetP and Cuzzolin's transformations do not perform well in term of PIC criterion. 

DSmP has been extended to the qualitative domain to approximate qualitative belief assignments provided by 
human sources in natural language into «qualitative» probability.
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Multicriteria Decision Making Support using DSmT-AHP
AHP (Analytic Hierarchy Process) is a multi-criteria decision-making 
method developed by T. Saaty in eighties based on the derivation of 
priority from preferences. 
1) Model the problem as a hierarchy and establish priorities  among the elements of the hierarchy by 
making a series of judgments based on pairwise comparisons matrices. Priority = normalized Perron-
Frobenius (PF) vector of  the matrix

2) Check the consistency of the judgments and eventually revise the comparison matrices by reasking the 
experts

3) Synthesize these judgments to yield a set of overall priorities for the hierarchy (weighted arithmetic/
geometric mean).

4) Come to a final decision based on the results (from global priority vector)

Preferences matrix

C1   C2   C3

e.g. weight of car ‘D’ 
according  to criteria C1

AHP result

Weighted Arithmetic Mean



1) Construction of uncertain comparison matrices and take bba = 
normalized PF vector of each matrix
2) Use PCR5 rule (or PCR6), to combine bba's to get a final priority ranking. 
3) Decision-making (max. of credibility, max. of plausibility, max. of 
different proba transformations (BetP(.), DSmP(.), etc…)

DSmT-AHP is an extension of AHP using belief functions and the Proportional 
Conflict Redistribution rule no. 5 proposed in Dezert-Smarandache Theory 
(DSmT) of information fusion. 

Main steps of DSmT-AHP:

How to consider different importances of sources in the fusion ? 
Use importance discounting technique on each source combined with 
non normalized extension of PCR5 or PCR6

and then normalize the resulting bba.



A simple example for DSmT-AHP (3 cars, 2 criteria)

Importance discounting

PCR5 without importance discounting 

Belief-based AHP solution 

PCR5 with importance discounting
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Browsing some applications

Land cover change prediction for pollution prevention 
[Corgne et al. 2004]

SPOT + IRS-LISS III images + GIS + agricultural experts

380 CHAPTER 17. APPLICATION OF DSMT FOR LAND COVER CHANGE PREDICTION

Land use for winter 2001/2002 (from

remote sensing data)
Prediction (rate)

bare soils 266 fields 121 (0.46 %)

covered soils 1588 fields 1239 (0.78 %)

Total 1856 fields 1360 (0.73 %)

Table 17.3: Performance of hybrid DSm rule for land prediction

.

Figure 17.3: Prediction performance with the hybrid DSm rule on the Yar watershed (Brittany).

Power and resource aware distributed smart fusion [Kadambe 2004]

Optimization of disparate DSN architecture to minimize power consumption and optimize 

multitarget detection and classification (typical application of dynamic fusion).

Estimation of target behavior tendencies [Tchamova et. al 2003]

Sonar amplitude measurements + fuzzification interface + DSmT

298 CHAPTER 13. ESTIMATION OF TARGET BEHAVIOR TENDENCIES USING DSMT

is supported by Approaching model, because that mode corresponds to the minimum entropies values,

which means that it is the more informative one.
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Figure 13.7: Evolution of the pignistic entropy for updated states.

The Approaching model is dominant, because the measured amplitude values during these scans stable

reside in the state Big, as it is obvious from the fuzzification interface (fig.13.2). In the same time, Reced-

ing model supports the overlapping region S ∩ B, which is transition towards the state Small. Between

scans 16th and 90th the Receding model becomes dominant since the variations of amplitude changes

are minimal and their amplitude values stable support the state Small. During these scans Approaching

model has a small reaction to the measurement statistics, keeping paradoxical state S ∩ B.What it is

interesting and important to note is that between scans 16th and 30th the difference of entropies between

Approaching and Receding models increases, a fact, that makes us to be increasingly sure that the Re-

ceding mode is becoming dominant. Then, between scans 75th and 90th the difference of these entropies

is decreasing, which means that we are less and less sure, that Receding model remain still dominant.

After switching scan 91th the Approaching model becomes dominant one, until scan 100th. In general the

reaction of the considered models to the changes of target motion is not immediate, because the whole

behavior estimation procedure deals with vague propositions Small, Big, and sequences of amplitude

values at consecutive scans often reside stable in one and the same states.

Comparing the results in figure 13.6 with the results in figure 13.5, it is evident, that although some

disorder in the estimated behavior tendencies, one can make approximately correct decision due to the

possibility of DSmT to deal with conflicts and that way to contribute for a better understanding of target

behavior and evaluation of the threat.

Generalized data association for MTT in clutter [Tchamova et. al 2004-2006]

Multitarget tracking with kinematics and attribute measurements

[References available in DSmT Books 1,2 & 3]
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Browsing some applications

Neutrosophic frameworks for situation analysis [Jousselme/Maupin 2004]

Evaluation of neutrosophic logic and DSmT to cope with the ontological and epistemic 

problems of situation analysis and awareness

340 CHAPTER 16. NEUTROSOPHIC FRAMEWORKS FOR SITUATION ANALYSIS

Pew [12], a situation is “a set of environmental conditions and system states with which the participant is

interacting that can be characterized uniquely by a set of information, knowledge, and response options”.

16.2.1 Situation awareness as a mental state

For Endsley and Garland [1] Situation awareness (SAW) is “the perception of the elements in the environ-

ment within a volume of time and space, the comprehension of their meaning and the projection of their

status in the near future”. SAW is also defined in [13] as “the active mental representation of the status

of current cognitive functions activated in the cognitive system in the context of achieving the goals of a

specific task”. In particular, SAW involves three key tasks: (1) Perception, (2) Comprehension and (3)

Projection, in a general multiagent context (Fig. 16.1).

SITUATION AWARENESS

Projection
of future status

Comprehension
of current situation

Perception
of elements in

current

situation

Figure 16.1: The three basic processes of situation awareness according to Endlsey and Garland (modified

from [1]), in a multiagent context.

In contemporary cognitive science the concept of mental representation is used to study the interface

between the external world and mind. Mental states are seen as relations between agents and mental

representations. Formally, and following Pitt’s formulation [14], for an agent to be in a psychological state

Ψ with semantic property Γ is for that agent to be in a Ψ-appropriate relation to a mental representation

of an appropriate kind with semantic property Γ. As far as mental states are concerned, purely syntactic

approaches are not adequate for representation since semantic concepts need to be modeled.

Explicit reasoning on knowledge and the problems linked to its representation are distinctive features of

situation analysis. Our position is to refer to the sources of knowledge usually considered in epistemology,

namely, Perception, Memory, Reasoning, Testimony and Consciousness [15], and extend Endsley’s model

of situation awareness [1] where perception appears as the only source of knowledge.

Default reasoning: Solution to the Tweety Penguin Triangle Problem 
[Dezert/Smarandache 2004]

Analysis and comparison of Bayesian, Shaferian reasonings w.r.t. DSmT 

within weighted contradicting rules-based systems.

Fusion with continuous bba!s in DSmT [Dambreville 2005-2006]

Robot Map building from Sonar Sensors and DSmT 

(SLAM application) 
[Li, Dezert et al. 2006]
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Browsing some applications

Target Type Tracking [Dezert, Tchamova et al. 2006]

Image segmentation and target classification based on 

real radar data and PCR rules [Martin, Osswald 2006]

Performance improvement of Multitarget Tracking using DSmT 
[Tchamova et al. 2005-2006]

Development of a DSmT Matlab toolbox [Djiknavorian & Grenier 2006] 

+ PCR algorithms [Martin & Osswald 2006, 2008]
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Browsing some applications

Robot Map building and self Localization on 

real sonar data based on PCR5 [Li & al. 2007]

MS Particle filtering with PCR5 for target 

tracking [Kirchner & al. 2007]

Biometric match score fusion based on DSmT [Vatsa 2008]

Gallery Images Probe Images

Example of conflicting data – Face recognition algorithm accepts and fingerprint
recognition algorithm rejects

Probe Images
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Browsing some applications

Decision Level Multiple Cameras Fusion Using Dezert-

Smarandache Theory, [Garcia, Altamirano 2009]

Attribute information evaluation in C&C systems, 

[Krenc & Kawalec 2009]

Performance evaluation of tracking algorithms including attribute 

data [Dezert,Tchamova,Bojilov 2009]
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Browsing some applications

Utilizing classifier conflict for sensor management and 

user interaction [Van Norden, Jonker 2009] 

Automatic goal allocation for a planetary rover with DSmT 

[Vasile,Ceriotti 2009] 

Information fusion for natural hazards in mountains 

[Tacnet,Batton,Dezert 2009] 

Improvement of multiple ground targets tracking with 

fusion of identification attributes [Pannetier et al. 2008-2009]
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Browsing some applications

Satellite image fusion using DSmT 

[Bouakache,Belhadj-Aissa,Mercier 2009]

Multimodal information retrieval based on DSmT. Application to 

computer-aided medical diagnosis [Quellec et al. 2008-2009]

Fusion of ESM allegiance reports using DSmT 

[Djiknavorian,Valin, Grenier 2009]

Map regenerating forest stands based on DST and DSmT combination rules 

[Mora,Fournier,Foucher 2009]
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Browsing some applications

Satellite image fusion using DSmT 

[Bouakache,Belhadj-Aissa,Mercier 2009]

Multimodal information retrieval based on DSmT. Application to 

computer-aided medical diagnosis [Quellec et al. 2008-2009]

Fusion of ESM allegiance reports using DSmT 

[Djiknavorian,Valin, Grenier 2009]

Map regenerating forest stands based on DST and DSmT combination rules 

[Mora,Fournier,Foucher 2009]

Processing of information in C2 systems [Krenc 2010]

Maritime surveillance and threat assessment [Van Norden 2010]

Risk prevention against natural hazards in mountains [Tacnet 2009]
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DSmT works beyond the limits of the applicability of the DST

DSmT takes into account the intrinsic nature/granularity of information

DSmT works for any models and for static and dynamic fusion

DSmT allows to combine uncertain, conflicting and imprecise quantitative beliefs

DSmT allows to combine uncertain and conflicting qualitative beliefs

DSmT proposes new belief conditioning rules

The reliability and importance of sources, when known, can be easily taken into 
account 

DSmT is a natural extension of previous works done by Yager, Dubois & Prade, 
Smets and others to circumvent limitations of Dempsterʼs rule through new rules of 
combination. 

DSmT proposes new mathematical foundations for information fusion expressed 
in terms of quantitative or qualitative beliefs with the following specificities:

DSmT can be applied in most fusion applications where DST “works on the razor 
edge”, but it can also cover a wider class of applications because of its new appealing 
specificities. It can also be used for Multicriteria decision making support. 

Conclusions
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