THALES

Components & subsystems

Industrial, Science and Medical applications (ISM) 🚱

Contribute to success of scientific programs in biology, industry, healthcare, energy sources...

World leader in microwave & RF sources and imaging devices for scientific research and for professional applications

Partnership with the most prestigious research centers and universities worldwide.

A very wide range of electron tubes for research and professional applications

THALES

Microwave tubes performances

The microwave are used to transport the energy. The scientific machines require very large amount of pulsed and CW, RF power.

Working frequencies: 50 MHz to 200 MHz

Power range : 1MW CW to 100 MW peak

Electron tubes are the power devices in:

Particule accelerators for

• Research, Synchrotrons

(Fundamental physics research research in biology, chimistry, medicine,...)

- Therapy
- Industry (food decontamination, sterilization)
- Security (non detructive control of trucks, containers...)

Fusion machines for

Energy production experiments

THALES

Commercial :

Advanced Photon Source (Argonne Labs), LEP (CERN), DESY, JET, Tore Supra, FTU, ESRF, IPR

Military : ELSA, SDI

In contact with the world's physical sciences research community:

ESRF, GANIL, LURE, ANKA, BESSY, COSY, DESY, GSI, LNF, NIKHEF, MIT-Bates, CERN, PSI, Rutherford Appleton, Daresbury, LBNL, BNL, CHESS, Fermi, LANL, ANL, SLAC, KEK, RIKEN, Spring-8, AGS, NSRL, DAFNE, BINP, TRIUMF, SBSL at SUNY, PLS Korea, NSC India

6

CERN ring

In relation with the most awared universities and laboratories

Scientific calculs

Developments in collaboration with research laboratories such as : CEA, EPFL, Karlsruhe, los Alamos ...

Multicathode electron gun

Particles accelerators 🕞

300 kW cw of RF power klystron

8

Research applications

- The microwave tubes are used to accelerate charged particles at very high velocity to perform fundamental research in physics
 - Linear e accelerator: Orsay (F), SLAC(US)
 - e injectors
 - Large circular colliders: LEP (CERN)
 - Synchrotron radiation sources: ESRF, ELETTRA, BESSY
 - Protons accelerators: LHC (CERN)

Neutron sources (material physics, transmutation ...)

LEDA > APT & SNS

- **IPHI > TRISPAL & CONCERT**
- New e- e+ linear collider: NLC (US), TESLA (D)
- Specific application: lonosphere UHF radar

Klystron for sterilization

9

Industrial applications

The microwave tubes are used to accelerate an electron beam at high energy, to obtain an intense X-radiation.

This radiation is used for:

- Food sterilization
- Decontamination
- Non destructive control

Therapy applications

The microwave tube feeds a particule accelerator to accelerate an electron beam, to obtain an X-radiation for cancer therapy

51

THALES

High peak power Klystron for therapy machine

Fusion experiments 🕞

Energy production Thermonuclear controlled fusion

Plasma Heating, current drive, profile control in Tokamaks or Stellarators with 0.5 to 2 MW very long pulses and CW

- ION Cyclotron Resonance Heating (ICRH) Several MHz up to 120 MHZ

- Lower Hybrid Resonance Heating (LHRH) 1 to 8 GHz
- Electron Cyclotron Resonance Heating (ECRH) 30 to 170 GHz

Examples: Tokamaks JET, Tore Supra, Frascati, ITER Stellarators W-7X project

THALES

Design and construction of fusion tube in collaboration

THALES

Gyrotron 140 GHz, 1 MW CW for Stellarator Wendelstein 7-X at IPP Greifswald (Germany)

Designed and constructed as a join collaboration with FZK-Karlsruhe, CRPP-Lausanne, IPF-Stuttgart, CEA-Cadarache

Thermonuclear controlled fusion

Plasma Heating in Tokamaks or Stellarators

Type of plasma resonnance	Frequency domain	type of tube
ION Cyclotron Resonance	10 to 50 MHz	Tetrode or diacrodes
Heating (ICRH)		
Lower Hybrid Resonance	3 to 10 GHz	Klystrons
Heating (LHRH)		
Electron Cyclotron Resonance	80 to 200 GHz	Gyrotrons
Heating (ECRH)		

Klystrons, TWTs and Gyrotrons

Maximum output power vs frequency

Frequency Band	P 350 MHz	L	S	С	X	Ku	Ka	F 118 GHz	140 GHz
Peak output Power (1)		30 MW	45 MW	5 MW					
Average output power (1)		250 kW	60 kW	10 kW					
Output power (2)	1.3 MW CW	4 MW (10 ms)	650 kW (10 s)		1 MW (1 s)	2.5 kW CW	120 W CW	500 kW (210 s)	1 MW CW

1) = Pulsed Tubes

(2) = Long pulse and CW Tubes (pulse length)

The power grid tubes comprise a wide range of tetrodes, triodes, IOTs and diacrodes

Tetrode TH 781

TETRODES:

Current RF Modulation in KG₁

DC Acceleration in G₂ A and, at the same time, slowing down of the e⁻ bunches Gains & 14 dB ; Efficiencies & 65 % (depending of the USWR) Limitations : overheating of the Anode (e⁻ bombardement) overheating of the screen grid G₂ (reactive current losses) Results : 1,25 MW CW at 60 MHz and 300 KW CW at 200 MHz DIACRODES :

Double ended tetrode, Important increase of the product "Pout x Freq." At 70-80 MHz : 2 MW CW and at 200 MHz : 1 MW CW or 3 MW/2ms/650kW

IOT :

RF modulated gridded Pierce's gun + a klystron output cavity TV applications (80 kW peak of sync); but 250/300 kW feasible. 1.3 GHz, 15 kW IOT for new generation accelerators

High power klystrons 🚱

Klystrons

are linear beam tubes, where the electron beam(s) travel(s) through resonant cavities separated by narrow drift tubes.

The diameter of these tubes is much less than one wavelength, so there is no inter-cavity coupling.

The input cavity is connected to the signal to be amplified and the output cavity to the utilization.

5 MW/ 100 kW long pulses at 1.3 GHz

Highest pe

17

45 MW for 4.

Separated functions : e⁻ gun, e⁻ beam, cavities, drift tubes, window (s), collector, (electro- magnet...)

No more cathode emission modulation, but velocities modulation converted into a density modulation (or e⁻ bunching) thanks to the cavities and to the drift tubes.

Electron bunches slowing down in the last cavity, where the e⁻ kinetic energy is transformed into electromagnetic energy.

Gains 4° 50 dB ; Efficiencies 50 to 65 % (microperveance 1,5 to .5 µperv)

Limitations : overheating of the collector, the output cavity

Breakdown in the gun (DC), in the last cavity (RF) Windows

<u>Results</u> : 1,3 MW at 3 to 500 MHz (→ = 65 %)

500 to 750 kW at 3,7 GHz (→ = 45 %)

45-60 MW peak (up to 150 MW), S band, 1-4 µs, 325 kV

MBK (Multi Beam Klystrons)

Gyrotrons

are fast-wave tubes, characterized by an electromagnetic wave whose phase velocity is greater than the speed of the light.

The interaction is located in a single cavity crossed by a strongly spiraling electron beam.

Principle of operation

Overmoded interaction cavity (ex : $TE_{5,1}$ or $TE_{28,8}$...) : large dimensions despite the small millimeter operating wavelengths.

Hollow beam (MIG e⁻ gun) where the individual electrons spiral at Ω = eB/m with Ω is just slightly smaller than the operating frequency w (F = 140 GHz, B # 4.5 T)

Azimuthal bunching thanks to the relativistic variation of the e^{-} mass (γm_{o})

Characteristics

Oscillators

High frequencies

Efficiencies 430 % up to 45 % with depressed collector

Limitations			
Very high ma	gnetic field (supracondu	uctor electromagnet)	
Output circui	it and modes conversion		
Heat dissipat	tion (cavity, collector)		
Window			
<u>Results</u>			
8 GHz	1 MW/ 2 sec.		
118 GHz	350 kW/ 200 sec.		
140 GHz	900 kW/ 8 sec. and 500 kW/ 3 minutes		

Continuous 1 MW CW : horizontal line up to # 200 MHz

The pulsed tubes are concentrated between 1 and 10 GHz : 100 MW/ $\!\mu s$ or 10 MW/ms

Comments :

-No only new concepts but also technology improvements

-Strong efforts to decrease the costs and to increase the reliability

-Close collaborations between laboratories and industries (design, technology, tests...)

- -A lot of development are still requested toward :
- Better performances (efficiencies, larger pulses, very high peak powers...)
- Easiness of the operations and of the use
- Lower Cost of the whole RF generator, including the supplies and the

cooling system)

Performances of electron tubes for fusion \bigcirc

Output power / frequencies

Thanks you for your attention

Contribute to success of scientific programs in biology, industry, healthcare, energy...

THALES

²³ **Components & Subsystems**