INSTITUTE of ATOMIC PHYSICS

Magurele-Bucharest

Gamma Laser Controlled by High External Fields

M Apostol

Institute of Physics and Nuclear Engineering, Magurele-Bucharest

May 2010

Laser Dichotomy, usually: (two levels)
Narrow width for coherence, broader width for pumping
Optical Laser: third broader level, for pumping ($\sim 1 \mathrm{eV}$)
Nuclear laser: large energy (10MeV), Doppler effect, loss of coherence

Irrealizable! (yes or not?)

A further difficulty: coupling constant

To see the Difference Opt Laser vs Nuclear Laser we need a Theory

Laser Theory: Does not exist!

Discovery of the maser and the laser: 1950-1960... by engineers, physicists...

Townes, Maiman, Basov, Prokhorov, (Weber), ...

As regards the Theory, Lamb: We know everything and there exist

Three Schools of Thought:

Lamb\&Scully, 2)Lax\&Louisell, 3)Haken\&Risken

Three Schools of Thought=No Theory!

The difficulty and the Failure of the Current "Theories"

Non-linear equations

Possible non-analyticity

Perturbation theory: fails

They "see" (predict) many things which do not exist
and do not see what does exist

What I mean by a Theory?

A simple problem:

Given: two quantum levels, interacting external and polarization fields (everything ideal)

Find: the population of the two levels, the population (intensity) of the fields as functions of time, preferrably stationary, coherence

A new concept:

Coherent coupling, all the atoms "excited" ("disexcited") in phase (stationary regime)

Direct coupling (3rd level not necessary), simple model

Sufficient condition: high external (pumping) field

Results: In principle, realizable, extremely low effficiency

Indeed non-analyticity

Practical idea (M Ganciu):

Relativistic electrons accelerated by intense laser pulses, Bremsstrahlung radiation, many photons, coupling with a 2 -level nuclear system

Usual problems with cross-section and Doppler scattering: in the coherent interaction context we may have surprises here (not discussed)

Still, another difficulty: coupling constant

Coherent interaction

Two levels $\hbar \omega_{0}=\varepsilon_{1}-\varepsilon_{0}$ (dipoles), mean inter-particle distance a, J_{01} matrix el particle current, interacting with a classical electromagnetic field

A coupling constant

$$
\lambda=\frac{2 g}{\hbar \omega_{0}}=\sqrt{\frac{2 \pi}{3 a^{3} \hbar \omega_{0}}} \frac{J_{01}}{\omega_{0}}
$$

Critical condition

$$
\lambda>1
$$

(at finite temperature $T<T_{c}$)

Second-order phase transition (super-radiance): macroscopic occupation of the two levels, macroscopic occup photon state, long-range order (of the quantum phases)

Typical atomic matter: $\lambda \sim 0.17$

Typical nuclear matter: $\lambda \sim 10^{-9}$ (this disparity makes the difference for the two lasers)

No chance for this transition

Mathematical Machinery: Fields

Vector potential (usual notations, transverse)

$$
\mathbf{A}(\mathbf{r})=\sum_{\alpha \mathbf{k}} \sqrt{\frac{2 \pi \hbar c^{2}}{V \omega_{k}}}\left[\mathbf{e}_{\alpha}(\mathbf{k}) a_{\alpha \mathbf{k}} e^{i \mathbf{k r}}+\mathbf{e}_{\alpha}^{*}(\mathbf{k}) a_{\alpha \mathbf{k}}^{*} e^{-i \mathbf{k r}}\right]
$$

Fields $\mathbf{E}=-(1 / c) \partial \mathbf{A} / \partial t, \mathbf{H}=\operatorname{curl} \mathbf{A}$

Three Maxwell's equations satisfied: $\operatorname{curl} \mathbf{E}=-\frac{1}{c} \partial \mathbf{H} / \partial t, \operatorname{div} \mathbf{H}=0$, $\operatorname{div} \mathbf{E}=0$

Similar expression for the external vector potential $\mathbf{A}_{0}(\mathbf{r})$, the corresponding Fourier coefficients being denoted by $a_{\alpha \mathbf{k}}^{0}, a_{\alpha \mathbf{k}}^{0 *}$

Classical lagrangian of radiation

$$
L_{f}=\frac{1}{8 \pi} \int d \mathbf{r}\left(E^{2}-H^{2}\right)
$$

Interaction lagrangian

$$
\begin{gathered}
L_{\text {int }}=\frac{1}{c} \int d \mathbf{r} \cdot \mathbf{j}\left(\mathbf{A}+\mathbf{A}_{0}\right)= \\
=\sum_{\alpha \mathbf{k}} \sqrt{\frac{2 \pi \hbar}{\omega_{k}}}\left[\mathbf{e}_{\alpha}(\mathbf{k}) \mathbf{j}^{*}(\mathbf{k})\left(a_{\alpha \mathbf{k}}+a_{\alpha \mathbf{k}}^{0}\right)+\mathbf{e}_{\alpha}^{*}(\mathbf{k}) \mathbf{j}(\mathbf{k})\left(a_{\alpha \mathbf{k}}^{*}+a_{\alpha \mathbf{k}}^{0 *}\right)\right]
\end{gathered}
$$

Current density

$$
\mathbf{j}(\mathbf{r})=\frac{1}{\sqrt{V}} \sum_{\mathbf{k}} \mathbf{j}(\mathbf{k}) e^{i \mathbf{k r}}
$$

(with $\operatorname{div} \mathbf{j}=0$, continuity equation)

Euler-Lagrange equations for the lagrangian $L_{f}+L_{i n t}$ lead to the wave equation with sources

$$
\ddot{a}_{\alpha \mathbf{k}}+\ddot{a}_{-\alpha-\mathbf{k}}^{*}+\omega_{k}^{2}\left(a_{\alpha \mathbf{k}}+a_{-\alpha-\mathbf{k}}^{*}\right)=\sqrt{\frac{8 \pi \omega_{k}}{\hbar}} \mathbf{e}_{\alpha}^{*}(\mathbf{k}) \mathbf{j}(\mathbf{k})
$$

which is the fourth Maxwell's equation $\operatorname{curl} \mathbf{H}=(1 / c) \partial \mathbf{E} / \partial t+4 \pi \mathbf{j} / c$

Mathematical Machinery: Particles

N independent, non-relativistic, identical particles $i=1, \ldots N$
Hamiltonian (internal degrees of freedom)

$$
H_{s}=\sum_{i} H_{s}(i)
$$

Orthonomal eigenfunctions $\varphi_{n}(i)$

$$
H_{s}(i) \varphi_{n}(j)=\varepsilon_{n} \delta_{i j}, \int d \mathbf{r} \varphi_{n}^{*}(i) \varphi_{m}(j)=\delta_{i j} \delta_{n m}
$$

Normalized eigenfunctions (for the whole ensemble)

$$
\psi_{n}=\sum_{i} c_{n i} \varphi_{n}(i)=\frac{1}{\sqrt{N}} \sum_{i} e^{i \theta_{n i}} \varphi_{n}(i)
$$

Field operator

$$
\Psi=\sum_{n} b_{n} \psi_{n}
$$

boson-like commutation relations $\left[b_{n}, b_{m}^{*}\right]=\delta_{n m},\left[b_{n}, b_{m}\right]=0$
Large, macroscopic values of the number of particles

$$
N=\sum_{n} b_{n}^{*} b_{n}
$$

The lagrangian

$$
L_{s}=\frac{1}{2} \int d \mathbf{r}\left(\Psi^{*} \cdot i \hbar \partial \Psi / \partial t-i \hbar \partial \Psi^{*} / \partial t \cdot \Psi\right)-\int d \mathbf{r} \Psi^{*} H_{s} \Psi
$$

or

$$
L_{s}=\frac{1}{2} \sum_{n} i \hbar\left[b_{n}^{*} \dot{b}_{n}-\dot{b}_{n}^{*} b_{n}\right]-\sum_{n} \varepsilon_{n} b_{n}^{*} b_{n}
$$

The hamiltonian

$$
H_{s}=\sum_{n} \varepsilon_{n} b_{n}^{*} b_{n}
$$

The corresponding equation of motion $i \hbar \dot{b}_{n}=\varepsilon_{n} b_{n}$ is Schrodinger's equation

It is worth noting that the same equation is obtained for b_{n} viewed as classical variables

Current density associated with this ensemble of particles

$$
\mathbf{j}(\mathbf{r})=\sum_{i} \mathbf{J}(i) \delta\left(\mathbf{r}-\mathbf{r}_{i}\right)=\frac{1}{V} \sum_{i \mathbf{k}} \mathbf{J}(i) e^{-i \mathbf{k r}_{i}} e^{i \mathbf{k r}}=\frac{1}{\sqrt{V}} \sum_{\mathbf{k}} \mathbf{j}(\mathbf{k}) e^{i \mathbf{k r}}
$$

The interaction lagrangian

$$
L_{i n t}=\sum_{n m \alpha \mathbf{k}} \sqrt{\frac{2 \pi \hbar}{V \omega_{k}}}\left[\mathbf{e}_{\alpha}(\mathbf{k}) \mathbf{I}_{m n}^{*}(\mathbf{k})\left(a_{\alpha \mathbf{k}}+a_{\alpha \mathbf{k}}^{0}\right)+\mathbf{e}_{\alpha}^{*}(\mathbf{k}) \mathbf{I}_{n m}(\mathbf{k})\left(a_{\alpha \mathbf{k}}^{*}+a_{\alpha \mathbf{k}}^{0 *}\right)\right] b_{n}^{*} b_{m}
$$

where

$$
\mathbf{I}_{n m}(\mathbf{k})=\frac{1}{N} \sum_{i} \mathbf{J}_{n m}(i) e^{-i\left(\theta_{n i}-\theta_{m i}\right)} e^{-i \mathbf{k r}_{i}}
$$

$\mathbf{J}_{n m}(i)$ are the matrix elements of the i-th particle current

Mathematical Machinery: Coherence

Interaction lagrangian re-written

$$
\begin{gathered}
L_{i n t}=\sum_{n m \alpha \mathbf{k}} \sqrt{\frac{2 \pi \hbar}{V \omega_{k}}} F_{n m}(\alpha \mathbf{k})\left(a_{\alpha \mathbf{k}}+a_{-\alpha-\mathbf{k}}^{*}\right) b_{n}^{*} b_{m} \\
F_{n m}(\alpha \mathbf{k})=\frac{1}{N} \sum_{i} \mathbf{e}_{\alpha}(\mathbf{k}) \mathbf{J}_{n m}(i) e^{i \mathbf{k} \mathbf{r}_{i}-i\left(\theta_{n i}-\theta_{m i}\right)}
\end{gathered}
$$

First arrange a lattice of $\theta_{n i}$
Reciprocal vectors $\mathbf{k}_{r}, r=1,2,3, \hbar \omega_{k}=\varepsilon_{n}-\varepsilon_{m}>0$
Arrange phases $\mathbf{k}_{r} \mathbf{r}_{p i}-\left(\theta_{n i}-\theta_{m i}\right)=K$

Then, $L_{\text {int }}$ non-vanishing

Two levels: $n=0, n=1$

Macroscopic occupation, use c-numbers $\beta_{0,1}$ for operators $b_{0,1}$ (coherent states $b_{0,1}\left|\beta_{0,1}\right\rangle=\beta_{0,1}\left|\beta_{0,1}\right\rangle$)

Photon perators $a_{\alpha \mathbf{k}_{r}}, k_{r}=k_{0}, \hbar \omega_{0}=c k_{0}$, replaced by c-numbers α

Interaction lagrangian

$$
L_{i n t}=\sqrt{\frac{2 \pi \hbar}{V \omega_{0}}} J_{01}\left[\left(\alpha+\alpha^{0}\right)+\left(\alpha^{*}+\alpha^{0 *}\right)\right]\left(\beta_{1}^{*} \beta_{0}+\beta_{1} \beta_{0}^{*}\right)
$$

The "classical" lagrangian

$$
\begin{gathered}
L_{f}=\frac{\hbar}{4 \omega_{0}}\left(\dot{\alpha}^{2}+\dot{\alpha}^{* 2}+2|\dot{\alpha}|^{2}\right)-\frac{\hbar \omega_{0}}{4}\left(\alpha^{2}+\alpha^{* 2}+2|\alpha|^{2}\right) \\
L_{s}=\frac{1}{2} i \hbar\left(\beta_{0}^{*} \dot{\beta}_{0}-\dot{\beta}_{0}^{*} \beta_{0}+\beta_{1}^{*} \dot{\beta}_{1}-\dot{\beta}_{1}^{*} \beta_{1}\right)-\left(\varepsilon_{0}\left|\beta_{0}\right|^{2}+\varepsilon_{1}\left|\beta_{1}\right|^{2}\right) \\
L_{i n t}=\frac{g}{\sqrt{N}}\left[\left(\alpha+\alpha^{0}\right)+\left(\alpha^{*}+\alpha^{0 *}\right)\right]\left(\beta_{0} \beta_{1}^{*}+\beta_{1} \beta_{0}^{*}\right)
\end{gathered}
$$

Coupling constant

$$
g=\sqrt{\pi \hbar / 6 a^{3} \omega_{0}} J_{01}
$$

Equations of motion

$$
\begin{aligned}
& \ddot{A}+\omega_{0}^{2} A=\frac{2 \omega_{0} g}{\hbar \sqrt{N}}\left(\beta_{0} \beta_{1}^{*}+\beta_{1} \beta_{0}^{*}\right) \\
& i \hbar \dot{\beta}_{0}=\varepsilon_{0} \beta_{0}-\frac{g}{\sqrt{N}}\left(A+A^{0}\right) \beta_{1} \\
& i \hbar \dot{\beta}_{1}=\varepsilon_{1} \beta_{1}-\frac{g}{\sqrt{N}}\left(A+A^{0}\right) \beta_{0} \\
& A=\alpha+\alpha^{*}, A^{0}=\alpha^{0}+\alpha^{0 *}
\end{aligned}
$$

Total hamiltonian

$$
\begin{gathered}
H_{f}^{t o t}=\frac{\hbar}{4 \omega_{0}}\left(\dot{A}+\dot{A}^{0}\right)^{2}+\frac{\hbar \omega_{0}}{4}\left(A+A^{0}\right)^{2} \\
H_{s}=\varepsilon_{0}\left|\beta_{0}\right|^{2}+\varepsilon_{1}\left|\beta_{1}\right|^{2} \\
H_{i n t}=-\frac{g}{\sqrt{N}}\left(A+A^{0}\right)\left(\beta_{0} \beta_{1}^{*}+\beta_{1} \beta_{0}^{*}\right)
\end{gathered}
$$

Conserved, energy E,

$$
H_{f}^{t o t}+H_{s}+H_{i n t}=E
$$

Number of particles, conserved

$$
\left|\beta_{0}\right|^{2}+\left|\beta_{1}\right|^{2}=N
$$

Stationary solutions $\beta_{0,1}=B_{0,1} e^{i \theta}$; equations of motion become

$$
\begin{gathered}
\ddot{A}+\omega_{0}^{2} A=\frac{4 \omega_{0} g}{\hbar \sqrt{N}} B_{0} B_{1} \\
i \hbar \dot{B}_{0}-\hbar \dot{\theta} B_{0}=\varepsilon_{0} B_{0}-\frac{g}{\sqrt{N}}\left(A+A^{0}\right) B_{1} \\
i \hbar \dot{B}_{1}-\hbar \dot{\theta} B_{1}=\varepsilon_{1} B_{1}-\frac{g}{\sqrt{N}}\left(A+A^{0}\right) B_{0}
\end{gathered}
$$

The last two equations tell that $B_{0,1}$ and $\dot{\theta}=\Omega$ are constant

Particular solution of the first equation

$$
A=\frac{4 g}{\hbar \omega_{0} \sqrt{N}} B_{0} B_{1}
$$

In the absence of the external field $\left(A^{0}=0\right)$ the solutions are given by

$$
\begin{gathered}
A=\frac{2 g}{\hbar \omega_{0}} \sqrt{N}\left[1-\left(\hbar \omega_{0} / 2 g\right)^{4}\right]^{1 / 2} \\
B_{0}^{2}=\frac{1}{2} N\left[1+\left(\hbar \omega_{0} / 2 g\right)^{2}\right] \\
B_{1}^{2}=\frac{1}{2} N\left[1-\left(\hbar \omega_{0} / 2 g\right)^{2}\right]
\end{gathered}
$$

and frequency

$$
\Omega=\omega_{0}\left[-\frac{1}{2}+\frac{2 g^{2}}{\hbar^{2} \omega_{0}^{2}}\right]
$$

where $\varepsilon_{1}-\varepsilon_{0}=\hbar \omega_{0}$ has been used and ε_{0} was put equal to zero.

We can see: the ensemble of particles and the associated electromagnetic field can be put into a coherent state, the occupation amplitudes oscillating with frequency Ω, providing the critical condition

$$
g>g_{c r}=\hbar \omega_{0} / 2, \lambda=2 g / \hbar \omega_{0}>1
$$

The total energy of the coherence domain is given by

$$
E=-\frac{g^{2}}{\hbar \omega_{0}} N\left[1-\left(\hbar \omega_{0} / 2 g\right)^{2}\right]^{2}=-\hbar \Omega B_{1}^{2}
$$

It is lower than the non-interacting ground-state energy $N \varepsilon_{0}=0$

It may be viewed as the formation enthalpy of the coherence domains

This effect of seting up a coherence in matter is different from the lasing effect, precisely by this formation enthalpy

Rather, the picture emerging from the solution given here resembles to some extent a quantum phase transiton

The coupled ensemble of matter and radiation is unstable for a macroscopic occupation of the atomic quantum states and the associated photon states.

External field

Stationary solutions

$$
\begin{gathered}
A=2 \lambda \sqrt{N} \frac{\sqrt{\Omega(\Omega+1)}}{2 \Omega+1} \\
B_{0}^{2}=N \frac{\Omega+1}{2 \Omega+1}, B_{1}^{2}=N \frac{\Omega}{2 \Omega+1}
\end{gathered}
$$

$\lambda=2 g / \hbar \omega_{0}$
Ω (measured in ω_{0}) given by

$$
\Omega(\Omega+1)=\frac{\lambda^{2}}{4 N}\left(\frac{2 \Omega+1}{2 \Omega+1-\lambda^{2}}\right)^{2} A^{02}
$$

Check that these solutions coincide formally with the solutions for zero external field), except for $\Omega(\Omega>0)$ being given by $2 \Omega+1-\lambda^{2}=0$ (the pole)

Dispersion equation above has always a unique solution $\Omega>0$, which shows that the coherent state is possible and can be set up under the action of the external field. Since $\lambda \ll 1$ however, the effect is small for weak external fields.

Assume the external field high enough, such as parameter $x=\lambda A^{0} / \sqrt{N}$ is finite Take advantage of $\lambda \ll 1$ and simplify the above equations (leading contributions in λ)

Get the frequency

$$
\Omega=\frac{1}{2}\left(\sqrt{x^{2}+1}-1\right)
$$

and

$$
\begin{gathered}
A=\frac{\lambda^{2}}{\sqrt{x^{2}+1}} A^{0}=\lambda \sqrt{N} \frac{x}{\sqrt{x^{2}+1}} \\
B_{0}^{2}=\frac{1}{2} N\left(1+\frac{1}{\sqrt{x^{2}+1}}\right), B_{1}^{2}=\frac{1}{2} N\left(1-\frac{1}{\sqrt{x^{2}+1}}\right)
\end{gathered}
$$

These solutions coincide with the solutions for zero external field provided we make the formal change $\lambda^{2} \rightarrow \sqrt{x^{2}+1}(>1)$

See that the polarization field A is much weaker than the external field $A^{0}($ since $\lambda \ll 1)$

Total energy (leading contributions in λ)

$$
\begin{gathered}
H_{f}^{t o t}=\frac{1}{4} A^{02}+N \frac{x^{2}}{2 \sqrt{x^{2}+1}} \\
H_{s}=\frac{1}{2} N\left(1-\frac{1}{\sqrt{x^{2}+1}}\right), H_{\text {int }}=-N \frac{x^{2}}{2 \sqrt{x^{2}+1}}
\end{gathered}
$$

See that the increase in the field energy due to the polarization field is canceled out by the interaction energy $\left(H_{i n t}\right)$, allowing thus to pump energy in the upper level $\left(H_{s}\right)$ by an external field

The discharge of the energy H_{s} is a lasing effect

Field energy $H_{f}=\frac{1}{4} \hbar \omega_{0} A^{02}$
Lasing energy $H_{s}=\frac{1}{4} N \hbar \omega_{0} x^{2}=\lambda^{2} H_{f}!!!($ small $\lambda)$
This makes the difference: $\lambda=10^{-9}$ for gamma, $\lambda=0.1$ for optical lasers

Discussion\&Conclusions

Assume the total bremsstrahlung energy radiated by one electron δE

Out of it, only the fraction corresponding to $\hbar \omega_{0}$ is effective in the process considered here

Denote by f this fraction

It can be estimated (roughly) by

$$
f=\frac{I\left(\omega_{0}\right)}{\int d \omega I(\omega)} \Delta \omega_{0}
$$

where $I(\omega)$ is the intensity of the bremsstrahlung radiation and $\Delta \omega_{0}$ is the spread in frequency of the level $\hbar \omega_{0}$

Rough estimation $f=\Delta \omega_{0} / \Delta \omega$, where $\Delta \omega$ is a reasonable frequency range of the bremsstrahlung radiation

Get an estimate for A^{0} by

$$
f \delta E \delta N=\frac{1}{4} \hbar \omega_{0} A^{02}
$$

where δN is the number of electrons in the pulse

Previous estimations: a laser pulse with wavelength 1μ, intensity $10^{18} \mathrm{w} / \mathrm{cm}^{2}$ and size $r=1 \mathrm{~mm}$, may accelerate relativistic electrons in a rarefied plasma with a group velocity close to the velocity of light (energy $\simeq 17 \mathrm{MeV}$ for instance, for a sample with $10^{18} \mathrm{~cm}^{-3}$ plasma electrons)

The number of these electrons is of the order of $\delta N=10^{11}$ per pulse

Take, as a rough approximation, $\Delta \omega_{0}=10 \mathrm{keV}$ and $\Delta \omega=100 \mathrm{MeV}$, and get $f=10^{-4}$

Estimate the energy δE as the Coulombian energy of a nucleus with charge Z at distance of the order of $a: \delta E=Z e^{2} / a \simeq 10^{3} \mathrm{eV}$

Get $A^{0} \simeq 60$ for $\hbar \omega_{0}=10 \mathrm{MeV}$

For a spot of linear size $r=1 \mathrm{~mm}$ the number N of nuclei can be taken approximately $N \simeq 10^{19}$

So we have $x=\lambda A^{0} / \sqrt{N} \simeq 10^{-18}$ for $\lambda=10^{-9}$

This is a very small value for the parameter x, which indicates an extremely poor efficiency of the process

Total field energy per spot is of the order of $10^{10} \mathrm{eV}$

It corresponds to cca $A^{02} \simeq 10^{3}$ photons of energy 10 MeV

Total lasing energy $\sim \lambda^{2} \times 10^{10} \mathrm{eV} \simeq 10^{-8} \mathrm{eV}!!!\left(H_{s}=\lambda^{2} H_{f}\right)$

No hope

Recall

$$
f \delta E \delta N=\frac{1}{4} \hbar \omega_{0} A^{02}
$$

Recall

$$
\delta N=n_{p} r^{2} \lambda_{l} \frac{\omega_{p}^{2}}{4 m c^{2} \omega_{l}^{2}} \sqrt{\pi \varepsilon_{e l} W_{0}}
$$

Use it for $x=\lambda A^{0} / \sqrt{N}: \quad x^{2} \simeq 10^{-43} \sqrt{\frac{W_{0}}{r^{3}}}\left(10^{-36}\right)$
Increase $W_{0}=10 \mathrm{~kJ}$ by 2 orders; decrease $r=1 \mathrm{~mm}$ by 2 orders; gain 4 orders Totally Insufficient!!!

Other comments

Frequency spread $\Delta \omega_{0}$ related to the lifetime of the upper level, $\tau \sim$ $\hbar / \Delta \omega_{0}$

For $\Delta \omega_{0}=10 \mathrm{keV}$ we get $\tau \sim 10^{-19} \mathrm{~s}$, which is very small in comparison with the laser pulse duration $\sim 10^{-12} s$

Would be desirable to have a more sharper energy level, which reduces further the efficiency of the process

Technical evaluation of the experimental implementation of such a process there are many other points to be assessed, like, for instance, the cross-section of the nuclear photoreaction, the Doppler effect, the consequences of a multi-level nuclear model, etc

In the context of a coherent interaction such questions may acquire different aspects than the usual ones

Though hopeless, such points might still be left for a forthcoming investigation

In conclusion, we may say that a coherent interaction of a twolevel nuclear system with a high-intensity radiation field may lead, in principle, to a lasing effect, controlled by the external field, though with an extremely low efficiency

A technical point

Recall equation

$$
i \hbar \dot{\beta}_{1}=\hbar \omega_{0} \beta_{1}-\frac{g}{\sqrt{N}}\left(A+A^{0}\right) \beta_{0}
$$

Neglect here A; Schrodinger equation for the amplitude of the excitation rate

Compute it to the 1 st order of the perturbation theory (standard)

$$
|\beta|^{2}=\left(\frac{2 g A^{0}}{\hbar \sqrt{N}}\right)^{2} \frac{\sin ^{2}\left(\Delta \omega_{0} t / 2\right)}{\left(\Delta \omega_{0}\right)^{2}}=2 \pi t\left(\frac{g A^{0}}{\hbar \sqrt{N}}\right)^{2} \delta\left(\Delta \omega_{0}\right)
$$

where $\Delta \omega_{0}=\omega-\omega_{0}$

The rate of excitation

$$
w=|\beta|^{2} / t=\frac{\pi \omega_{0}^{2}}{2} x^{2} \delta\left(\Delta \omega_{0}\right)
$$

multiplied with the number of states $\Delta \nu=2 V\left(4 \pi k_{0}^{2} \Delta k_{0}\right) /(2 \pi)^{3}$ gives $w \Delta \nu=2 r^{3} \omega_{0}^{4} x^{2} / 3 c^{3}$ (for $V=4 \pi r^{3} / 3$) and an excitation yield per pulse

$$
|\beta|^{2}=w \Delta \nu r / c=\frac{2}{3}\left(\omega_{0} r / c\right)^{4} x^{2}
$$

This is to be compared with the yield in the stationary regime $B_{1}^{2} / N=$ $x^{2} / 4$

$$
|\beta|^{2} / N \simeq 10^{23} x^{2}
$$

The rate of disexcitation processes!!! (Beware the perturb calcls!)

It is worth interesting another aspect

Making use of $x=10^{-18}$ we get an excitation yield $|\beta|^{2}=10^{6}$ in the time $\tau=r / c \simeq 10^{-12} s$, i.e. $|\beta|^{2} / \tau \simeq 10^{17}$ excitation processes per second (and a similar figure for the number of disexcitation proecsses)

This means that a given nucleus undegoes $10^{17} / N \simeq 10^{-2}$ excitation processes per second

Similar process for an optical laser: $\hbar \omega_{0}=1 e V$, energy $W_{0}=$ $10^{23} \mathrm{eV}$ (per spot), coupled directly to a two-level atomic system with the same energy $\hbar \omega_{0}=1 \mathrm{eV}$

Field energy $W_{0}=\hbar \omega_{0} A^{02} / 4$ gives much more photons, $A^{0} \simeq 10^{11}$
Lasing energy $H_{s}=\lambda^{2} W_{0} \simeq 10^{22} e V(\simeq 1 J)$, for $\lambda \simeq 0.5$ (for $\hbar \omega_{0}=$ 1 eV)
(actually much more!)
This is a much higher energy than for the nuclear system, as expected
It corresponds to $x \simeq 10$, which shows indeed that the pumping is more efficient

Similarly, the excitation yield $\left(|\beta|^{2}\right)$ is $\simeq 10^{16}$, i.e. 10^{28} excitation processes per second, and 10^{9} such processes for a given atomic particle

This is a much more efficient process that the corresponding process for a nuclear system

The main reason for this disparity resides in the difference between the coupling constants λ.

Acknowledgments Indebted to the Workshop on Extreme Light Infrastructure (ELI), Magurele, February 1, 2010.

