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Laser Dichotomy, usually: (two levels)

Narrow width for coherence, broader width for pumping

Optical Laser: third broader level, for pumping (∼ 1eV )

Nuclear laser: large energy (10MeV ), Doppler e�ect, loss of coher-
ence

Irrealizable! (yes or not?)

A further di�culty: coupling constant

To see the Di�erence Opt Laser vs Nuclear Laser we need a
Theory
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Laser Theory: Does not exist!

Discovery of the maser and the laser: 1950-1960... by engineers,
physicists...

Townes, Maiman, Basov, Prokhorov, (Weber), ...

As regards the Theory, Lamb: We know everything and there exist

Three Schools of Thought:

Lamb&Scully, 2)Lax&Louisell, 3)Haken&Risken

Three Schools of Thought=No Theory!
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The di�culty and the Failure of the Current "Theories"

Non-linear equations

Possible non-analyticity

Perturbation theory: fails

They "see" (predict) many things which do not exist

and do not see what does exist
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What I mean by a Theory?

A simple problem:

Given: two quantum levels, interacting external and polarization
�elds (everything ideal)

Find: the population of the two levels, the population (intensity) of
the �elds as functions of time, preferrably stationary, coherence
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A new concept:

Coherent coupling, all the atoms "excited" ("disexcited") in phase
(stationary regime)

Direct coupling (3rd level not necessary), simple model

Su�cient condition: high external (pumping) �eld

Results: In principle, realizable, extremely low e��ciency

Indeed non-analyticity
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Practical idea (M Ganciu):

Relativistic electrons accelerated by intense laser pulses, Bremsstrahlung
radiation, many photons, coupling with a 2 -level nuclear system

Usual problems with cross-section and Doppler scattering: in the co-
herent interaction context we may have surprises here (not discussed)

Still, another di�culty: coupling constant
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Coherent interaction

Two levels ~ω0 = ε1− ε0 (dipoles), mean inter-particle distance a, J01

matrix el particle current, interacting with a classical electromagnetic
�eld

A coupling constant

λ =
2g

~ω0
=

√
2π

3a3~ω0

J01

ω0

Critical condition

λ > 1
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(at �nite temperature T < Tc)

Second-order phase transition (super-radiance): macroscopic occu-
pation of the two levels, macroscopic occup photon state, long-range
order (of the quantum phases)

Typical atomic matter: λ ∼ 0.17

Typical nuclear matter: λ ∼ 10−9 (this disparity makes the di�erence
for the two lasers)

No chance for this transition
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Mathematical Machinery: Fields

Vector potential (usual notations, transverse)

A(r) =
∑

αk

√√√√2π~c2

V ωk

[
eα(k)aαke

ikr + e∗α(k)a∗αke
−ikr

]

Fields E = −(1/c)∂A/∂t, H = curlA

Three Maxwell's equations satis�ed: curlE = −1
c∂H/∂t, divH = 0,

divE = 0

Similar expression for the external vector potential A0(r), the corre-
sponding Fourier coe�cients being denoted by a0αk, a0∗αk
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Classical lagrangian of radiation

Lf =
1

8π

�
dr

(
E2 −H2

)

Interaction lagrangian
Lint =

1
c

�
dr · j (A + A0) =

=
∑
αk

√
2π~
ωk

[
eα(k)j∗(k)

(
aαk + a0αk

)
+ e∗α(k)j(k)

(
a∗αk + a0∗αk

)]

Current density

j(r) =
1√
V

∑

k

j(k)eikr

(with divj = 0, continuity equation)
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Euler-Lagrange equations for the lagrangian Lf+Lint lead to the wave
equation with sources

äαk + ä∗−α−k + ω2
k

(
aαk + a∗−α−k

)
=

√
8πωk
~

e∗α(k)j(k)

which is the fourth Maxwell's equation curlH = (1/c)∂E/∂t+ 4πj/c
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Mathematical Machinery: Particles

N independent, non-relativistic, identical particles i = 1, ...N

Hamiltonian (internal degrees of freedom)

Hs =
∑

i

Hs(i)

Orthonomal eigenfunctions ϕn(i)

Hs(i)ϕn(j) = εnδij ,

�
drϕ∗n(i)ϕm(j) = δijδnm

Normalized eigenfunctions (for the whole ensemble)

ψn =
∑

i

cniϕn(i) =
1√
N

∑

i

eiθniϕn(i)
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Field operator
Ψ =

∑
n
bnψn

boson-like commutation relations [bn, b∗m] = δnm, [bn, bm] = 0

Large, macroscopic values of the number of particles
N =

∑
n
b∗nbn

The lagrangian

Ls =
1

2

�
dr

(
Ψ∗ · i~∂Ψ/∂t− i~∂Ψ∗/∂t ·Ψ)−

�
drΨ∗HsΨ

or
Ls =

1

2

∑
n
i~

[
b∗nḃn − ḃ∗nbn

]
−

∑
n
εnb

∗
nbn
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The hamiltonian
Hs =

∑
n
εnb

∗
nbn

The corresponding equation of motion i~ḃn = εnbn is Schrodinger's
equation

It is worth noting that the same equation is obtained for bn viewed as
classical variables

Current density associated with this ensemble of particles

j(r) =
∑

i

J(i)δ(r− ri) =
1

V

∑

ik

J(i)e−ikrieikr =
1√
V

∑

k

j(k)eikr
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The interaction lagrangian

Lint =
∑

nmαk

√
2π~
V ωk

[
eα(k)I∗mn(k)

(
aαk + a0αk

)
+ e∗α(k)Inm(k)

(
a∗αk + a0∗αk

)]
b∗nbm

where
Inm(k) =

1

N

∑

i

Jnm(i)e−i(θni−θmi)e−ikri

Jnm(i) are the matrix elements of the i-th particle current
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Mathematical Machinery: Coherence

Interaction lagrangian re-written

Lint =
∑

nmαk

√
2π~
V ωk

Fnm(αk)
(
aαk + a∗−α−k

)
b∗nbm

Fnm(αk) =
1

N

∑

i

eα(k)Jnm(i)eikri−i(θni−θmi)

First arrange a lattice of θni

Reciprocal vectors kr, r = 1,2,3, ~ωk = εn − εm > 0

Arrange phases krrpi − (θni − θmi) = K
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Then, Lint non-vanishing

Two levels: n = 0, n = 1

Macroscopic occupation, use c-numbers β0,1 for operators b0,1 (co-
herent states b0,1

∣∣∣β0,1
〉
= β0,1

∣∣∣β0,1
〉
)

Photon perators aαkr, kr = k0, ~ω0 = ck0, replaced by c-numbers α

Interaction lagrangian

Lint =

√
2π~
V ω0

J01

[(
α+ α0

)
+

(
α∗ + α0∗)] (

β∗1β0 + β1β
∗
0
)
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The "classical" lagrangian

Lf = ~
4ω0

(
α̇2 + α̇∗2 + 2 |α̇|2

)
− ~ω0

4

(
α2 + α∗2 + 2 |α|2

)

Ls = 1
2i~

(
β∗0β̇0 − β̇∗0β0 + β∗1β̇1 − β̇∗1β1

)
−

(
ε0 |β0|2 + ε1 |β1|2

)

Lint =
g√
N

[(
α+ α0

)
+

(
α∗ + α0∗)] (

β0β
∗
1 + β1β

∗
0

)

Coupling constant
g =

√
π~/6a3ω0J01

19



Equations of motion

Ä+ ω2
0A = 2ω0g

~
√
N

(
β0β

∗
1 + β1β

∗
0

)

i~β̇0 = ε0β0 − g√
N

(
A+A0

)
β1

i~β̇1 = ε1β1 − g√
N

(
A+A0

)
β0

A = α+ α∗, A0 = α0 + α0∗
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Total hamiltonian

Htot
f = ~

4ω0

(
Ȧ+ Ȧ0

)2
+ ~ω0

4

(
A+A0

)2

Hs = ε0 |β0|2 + ε1 |β1|2

Hint = − g√
N

(
A+A0

) (
β0β

∗
1 + β1β

∗
0

)

Conserved, energy E,

Htot
f +Hs +Hint = E

Number of particles, conserved

|β0|2 + |β1|2 = N
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Stationary solutions β0,1 = B0,1e
iθ; equations of motion become

Ä+ ω2
0A = 4ω0g

~
√
N
B0B1

i~Ḃ0 − ~θ̇B0 = ε0B0 − g√
N

(
A+A0

)
B1

i~Ḃ1 − ~θ̇B1 = ε1B1 − g√
N

(
A+A0

)
B0

The last two equations tell that B0,1 and θ̇ = Ω are constant

Particular solution of the �rst equation

A =
4g

~ω0
√
N
B0B1
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In the absence of the external �eld (A0 = 0) the solutions are given
by

A = 2g
~ω0

√
N

[
1− (~ω0/2g)

4
]1/2

B2
0 = 1

2N
[
1 + (~ω0/2g)

2
]

B2
1 = 1

2N
[
1− (~ω0/2g)

2
]

and frequency

Ω = ω0

[
−1

2
+

2g2

~2ω2
0

]

where ε1 − ε0 = ~ω0 has been used and ε0 was put equal to zero.
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We can see: the ensemble of particles and the associated electromag-
netic �eld can be put into a coherent state, the occupation amplitudes
oscillating with frequency Ω, providing the critical condition

g > gcr = ~ω0/2 , λ = 2g/~ω0 > 1

The total energy of the coherence domain is given by

E = − g2

~ω0
N

[
1− (~ω0/2g)

2
]2

= −~ΩB2
1

It is lower than the non-interacting ground-state energy Nε0 = 0

It may be viewed as the formation enthalpy of the coherence domains
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This e�ect of seting up a coherence in matter is di�erent from the
lasing e�ect, precisely by this formation enthalpy

Rather, the picture emerging from the solution given here resembles
to some extent a quantum phase transiton

The coupled ensemble of matter and radiation is unstable for a macro-
scopic occupation of the atomic quantum states and the associated
photon states.
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External �eld

Stationary solutions

A = 2λ
√
N

√
Ω(Ω+1)
2Ω+1

B2
0 = N Ω+1

2Ω+1 , B
2
1 = N Ω

2Ω+1

λ = 2g/~ω0

Ω (measured in ω0) given by

Ω(Ω + 1) =
λ2

4N

(
2Ω + 1

2Ω + 1− λ2

)2
A02

Check that these solutions coincide formally with the solutions for zero
external �eld), except for Ω (Ω > 0) being given by 2Ω + 1− λ2 = 0
(the pole)
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Dispersion equation above has always a unique solution Ω > 0, which
shows that the coherent state is possible and can be set up under
the action of the external �eld. Since λ ¿ 1 however, the e�ect is
small for weak external �elds.

Assume the external �eld high enough, such as parameter x = λA0/
√
N

is �nite Take advantage of λ ¿ 1 and simplify the above equations
(leading contributions in λ)

Get the frequency

Ω =
1

2

(√
x2 + 1− 1

)
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and
A = λ2√

x2+1
A0 = λ

√
N x√

x2+1

B2
0 = 1

2N

(
1 + 1√

x2+1

)
, B2

1 = 1
2N

(
1− 1√

x2+1

)

These solutions coincide with the solutions for zero external �eld
provided we make the formal change λ2 →

√
x2 + 1(> 1)

See that the polarization �eld A is much weaker than the external
�eld A0 (since λ¿ 1)
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Total energy (leading contributions in λ)

Htot
f = 1

4A
02 +N x2

2
√
x2+1

Hs = 1
2N

(
1− 1√

x2+1

)
, Hint = −N x2

2
√
x2+1

See that the increase in the �eld energy due to the polarization �eld is
canceled out by the interaction energy (Hint), allowing thus to pump
energy in the upper level (Hs) by an external �eld

The discharge of the energy Hs is a lasing e�ect
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Field energy Hf = 1
4~ω0A

02

Lasing energy Hs = 1
4N~ω0x

2 = λ2Hf !!! (small λ)

This makes the di�erence: λ = 10−9 for gamma, λ = 0.1 for optical
lasers
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Discussion&Conclusions

Assume the total bremsstrahlung energy radiated by one electron δE

Out of it, only the fraction corresponding to ~ω0 is e�ective in the
process considered here

Denote by f this fraction

It can be estimated (roughly) by

f =
I(ω0)�
dωI(ω)

∆ω0

where I(ω) is the intensity of the bremsstrahlung radiation and ∆ω0

is the spread in frequency of the level ~ω0
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Rough estimation f = ∆ω0/∆ω, where ∆ω is a reasonable frequency
range of the bremsstrahlung radiation

Get an estimate for A0 by

fδEδN =
1

4
~ω0A

02

where δN is the number of electrons in the pulse

Previous estimations: a laser pulse with wavelength 1µ, intensity
1018w/cm2 and size r = 1mm, may accelerate relativistic electrons in
a rare�ed plasma with a group velocity close to the velocity of light
(energy ' 17MeV for instance, for a sample with 1018cm−3 plasma
electrons)
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The number of these electrons is of the order of δN = 1011 per pulse

Take, as a rough approximation, ∆ω0 = 10keV and ∆ω = 100MeV ,
and get f = 10−4

Estimate the energy δE as the Coulombian energy of a nucleus with
charge Z at distance of the order of a: δE = Ze2/a ' 103eV

Get A0 ' 60 for ~ω0 = 10MeV

For a spot of linear size r = 1mm the number N of nuclei can be
taken approximately N ' 1019
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So we have x = λA0/
√
N ' 10−18 for λ = 10−9

This is a very small value for the parameter x, which indicates an
extremely poor e�ciency of the process

Total �eld energy per spot is of the order of 1010eV

It corresponds to cca A02 ' 103photons of energy 10MeV

Total lasing energy ∼ λ2 × 1010eV' 10−8eV !!! (Hs = λ2Hf)
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No hope

Recall
fδEδN =

1

4
~ω0A

02

Recall

δN = npr
2λl

ω2
p

4mc2ω2
l

√
πεelW0

Use it for x = λA0/
√
N : x2 ' 10−43

√
W0
r3

(10−36)

Increase W0 = 10kJ by 2 orders; decrease r = 1mm by 2 orders; gain
4 orders Totally Insu�cient!!!
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Other comments

Frequency spread ∆ω0 related to the lifetime of the upper level, τ ∼
~/∆ω0

For ∆ω0 = 10keV we get τ ∼ 10−19s, which is very small in compar-
ison with the laser pulse duration ∼ 10−12s

Would be desirable to have a more sharper energy level, which reduces
further the e�ciency of the process
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Technical evaluation of the experimental implementation of such a
process there are many other points to be assessed, like, for instance,
the cross-section of the nuclear photoreaction, the Doppler e�ect,
the consequences of a multi-level nuclear model, etc

In the context of a coherent interaction such questions may acquire
di�erent aspects than the usual ones

Though hopeless, such points might still be left for a forthcoming
investigation

In conclusion, we may say that a coherent interaction of a two-
level nuclear system with a high-intensity radiation �eld may lead, in
principle, to a lasing e�ect, controlled by the external �eld, though
with an extremely low e�ciency
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A technical point

Recall equation

i~β̇1 = ~ω0β1 −
g√
N

(
A+A0

)
β0

Neglect here A; Schrodinger equation for the amplitude of the exci-
tation rate

Compute it to the 1st order of the perturbation theory (standard)

|β|2 =

(
2gA0

~
√
N

)2
sin2 (∆ω0t/2)

(∆ω0)
2 = 2πt

(
gA0

~
√
N

)2

δ (∆ω0)

where ∆ω0 = ω − ω0
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The rate of excitation

w = |β|2 /t = πω2
0

2
x2δ(∆ω0)

multiplied with the number of states ∆ν = 2V (4πk20∆k0)/(2π)
3 gives

w∆ν = 2r3ω4
0x

2/3c3(for V = 4πr3/3) and an excitation yield per pulse

|β|2 = w∆νr/c =
2

3
(ω0r/c)

4 x2

This is to be compared with the yield in the stationary regime B2
1/N =

x2/4

|β|2 /N ' 1023x2

The rate of disexcitation processes!!! (Beware the perturb calcls!)
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It is worth interesting another aspect

Making use of x = 10−18 we get an excitation yield |β|2 = 106 in the
time τ = r/c ' 10−12s, i.e. |β|2 /τ ' 1017 excitation processes per
second (and a similar �gure for the number of disexcitation proecsses)

This means that a given nucleus undegoes 1017/N ' 10−2 excitation
processes per second
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Similar process for an optical laser: ~ω0 = 1eV , energy W0 =
1023eV (per spot), coupled directly to a two-level atomic system
with the same energy ~ω0 = 1eV

Field energy W0 = ~ω0A
02/4 gives much more photons, A0 ' 1011

Lasing energy Hs = λ2W0 ' 1022eV (' 1J), for λ ' 0.5 (for ~ω0 =
1eV )

(actually much more!)

This is a much higher energy than for the nuclear system, as expected

It corresponds to x ' 10, which shows indeed that the pumping is
more e�cient
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Similarly, the excitation yield (|β|2) is ' 1016, i.e. 1028 excitation
processes per second, and 109 such processes for a given atomic
particle

This is a much more e�cient process that the corresponding process
for a nuclear system

The main reason for this disparity resides in the di�erence between
the coupling constants λ.
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