

Research to solve problems

Cristian P. LUNGU

National Institute for Laser, Plasma and Radiation Physics, Bucharest, Romania

OUTLINE

1. Motivation: ILW project

2. TVA principle

3. Be coatings on inconel and marker tiles

4. Other applications of TVA technology

JET ITER-like wall experiment

TVA DEPOSITION

(except beryllium)

I-V characteristics of the TVA plasma running in Ag vapors for different heating currents

Deposition rate as function of the cathode heating current

THE ADVANTAGES OF THE TVA TECHNOLOGY

- the high purity of the layers (high vacuum conditions);
- no gas consumption;
- the films are growing from the plasma created in the pure vapors of the evaporating material
- the formed films are continuously bombarded by the genuine ions and the advantages are:
 - no gas inclusions
 - good adherence
 - the ions energy can be controlled by cathode external heating and anode voltage
 - the deposition rates = 1 to 10 nm/sec.

Licensed laboratory to work with beryllium and beryllium containing composites

Vacuum deposition system:

- stainless steel chamber,
- glass, quartz and
- germanium windows;
- volume; 250 l,
- base pressure; 6*10⁻⁷ torr
- mechanical pump (60 m³/h),
- buster pump (200 m³/h),
- diffusion pump (3000 l/s)

BERILLYUM

TVA evaporator and plasma running in pure Be vapors

XRD

Be film: polycrystalline

Be Marker coated tiles for ILW

Principle of Ni and Be depositions on MARKER tiles

Cross-section of Be blocks

Fig. 16 TC28, 50 cycles of 3.5 MW/m² for 10s, optical image.

Impurity analysis of Be blocks

Fig. 25, TC26, 50 cycles of 3.5 MW/m² for 10s, BSE image and line scan across the interlayer. O and O background signal at Ni interlayer is caused by artificial effect (high background signal from Ni (high Z) compared with Be (low Z)).

PRODUCTION-Run 5/13.05.2010 IMG_4155 (**Before** Ni+Be deposition) PRODUCTION-Run 5/13.05.2010 IMG_4185 (After Ni+Be deposition)

Thermal evaporation in vacuum of Be (Manufacturing of Be / inconel tiles) (in cooperation with NUCLEAR FUEL PLANT (NFP) Mioveni-Pitesti, Romania

Schematic arrangement for thermal evaporation in vacuum

Photograph of the substrate holder

Scanning Electron Microscopy, Microscope XL 30 ESEM PHILIPS (1000 x and 5000 x)

SEM images: microstructure of the Be/Inconel coating from TOP surface

 Consists of platelets, occasionally hexagonal morphology, which originated from crystallographic structure

Size of platelet ~5
 µm

SEM image obtained at FZJ Juelich

2 high heat flux (HHF) test schemes: ✓ (i) screening tests, ✓ (ii) cyclic heat load tests

JET requirements: 0.5 MW/m² for 20 s (10 MJ/m²) (i) Screening tests

Aim: determine the allowable energy density limit of the Be coating Tests: energy density of 4 MJ/m² to **20 MJ/m²**, (0.4 MW/m² to 1.8 MW/m² for 10 s ; **2.6 MW/m²** for 6.2 s)

(ii) Cyclic heat load tests

Aim: study the degradation of the Be coatings by thermal fatigue Tests: 50 cycles of 1 MW/m² in 10 s corresponding to 10 MJ/m².

✓ Observation during the high heat flux testing

- Surface temperature was monitored with a 10 Hz infra-red (IR) camera
- Surface temperature was measured at a black-coloured surface with an emissivity of 0.85.

Surface morphology of Be/Inconel (Inconel_2) after 50 thermal cyclic loads at 1 MW/m², 10 s (10 MJ/m²).

Cross section of Be/Inconel (Inconel_2) after 50 thermal cyclic loads at 1 MW/m², 10 s (10 MJ/m²).

PRODUCTION OF BERYLLIUM COATED INCONEL TILES

Inner Wall Guard Limiter 112 Be Coated Inconel Tiles Inner Wall Cladding Tiles 272 Be Coated Inconel Tiles Dump Plates: 512 Be Coated Inconel Tiles

Summary

- <u>Thermionic vacuum arc (TVA) method</u> developed at the National Institute for Laser, Plasma and Radiation, Bucharest, Romania, was used for:
 - Optimization of deposition of pure films: 2-3 μm Ni, 7-9 μm Be
 - Preparation of marker tiles: test samples, test coupons, qualification of the deposition method, pre-production run, production runs
- <u>Thermal evaporation in vacuum method</u> developed at Nuclear fuel Plant, Mioveni-Pitesti, was used for:
 - Production of Be coatings 7-9 µm on inconel tiles: test samples, qualification of the deposition method, pre-production run, production runs

Other applications of the TVA method

- ≻GMR TMR films
- High temperature resistant to oxidation films
- Low friction carbon based composites

CIS Solar Cell Electrodes Deposition and Characterization

Preparation and characterization of hard antireflective coatings

Giant and tunneling magnetoresistive (GMR, TMR) films

Multi elements deposition system

Composite and multilayer coatings

Magnetic force microscopy (MFM): GMR films

Topographic Magnetic Force Microscopy (MFM) image

Magnetic domains distribution of a Fe-Cu film

GMR in Fe-Cu at RT and thermally treated: (uniform dimensional distribution of formed domains)

GMR in Ni-Cu composite layer

GMR in Cu-permalloy

High temperature oxidation resistant composites: Re, Re-Ni-Cr, Ni-Al multilayer

- Plasma ignition in pure Re vapours: thoriated tungsten filament heated by a 90-100 A a.c. current.
- The emitted electrons: were focused on the Re anode by a Mo Whenelt cylinder.
- The anode: Re rod of 8-10 mm in diameter and supported by a Mo flange.
- The distance between the thermoemissive filament and the Re anode: 3-4 mm
- The angle between the electron beam and the vertical line: 60°.

Experimental set-up used for simultaneously depositions of Re, Ni and Cr

I-V charateristics of Re plasma as function of the filament current

Mixed layer formation – low friction composites

HRTEM of Ni-C layer

Images of the structure of the upper layer: tubular features with about 10 nm width and 50-100 nm length appear together with small grains with a lateral size of about 5 nm. The mentioned features are surrounded by a brighter carbon matrix.

Coefficient of friction of C-Ni composite

CIS Solar Cell Electrodes Deposition and Characterization

CulnSe2 (CIS) is an attractive material for high efficient, light-weight and cost effective flexible thin film solar cells.

A variety of flexible substrates: metallic foils, plastic materials, of thickness 0.02 mm are used to the CIS cell circuit.

The plastic materials are metallized by depositing a thin layer (approx. 0.5 μ m) of Mo, Ni, Au, Ag, etc. by thermionic vacuum arc method for the back contact of the solar cell.

The metallized plastic materials are used as a cathode in an one-step electrodeposition process for growth of CIS thin film absorber material.

Plasma in Ni vapors

PREPARATION AND CHARACTERIZATION OF HARD ANTIREFLEXIVE DLC COATINGS

Preparation of the protective, antireflective coatings for optical components: windows, lenses Wavelength range: (IR); 4-20 microns

