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The standard monograph in this area is the book Exponential fitting by Ixaru and Vanden Berghe
(Kluwer, Boston - Dordrecht - London, 2004) but a fresh look on things is necessary because many new
contributions have been accumulated in themeantime.With no claim that our investigation is exhaustive
we consider various directions of interest, try to integrate thenewcontributions in a natural, easy to follow
way, and also detect some open problems of acute interest.
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1. Introduction

Exponential fitting is an area of flourishing interest in the last
fewdecades,with hundreds of papers published in various journals
on issues ranging from theory to applications. The onlymonograph
on this field is the book of Ixaru and Vanden Berghe [1]. This book
was published in 2004 but many important contributions have
appeared in the meantime and then a fresh review to include the
new achievements becomes appropriate.

Liviu Ixaru brought many valuable, seminal ideas which
substantially helped in shaping the field, and this is why I want
to dedicate this work to him, on his 70th birthday.

Liviu Ixaru was born on April 30, 1942 in Rascani-Balti (now in
the Republic of Moldova) as the only child of a family of teachers.
His primary and secondary school education was in Gaesti (a little
town not far from Bucharest), where he was a brilliant pupil with
largely diversified interests: literature, history, music (he was a
gifted mandolin player), foreign languages (he is fluent in a few
languages), andmathematics and physics, of course. His gift for the
latter, gently guided by his father, a teacher of mathematics and
physics in a secondary school, became obvious even in these years:
his first paper (an extension of a theorem in classical geometry)
was published just before he was 18, in a quite popular journal
among young mathematicians in Romania [2].

In 1959 he became a student at the Faculty of Mathematics and
Physics of the University of Bucharest and obtained in 1964 his
master degree in Theoretical Physics, with a thesis on the shell
model of the atomic nucleus under the guidance of Prof. Titeica.
After a short intermezzo in the Institute of Physics of the Romanian
Academy, in April 1965 he joined the department of Theoretical
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Physics of the Institute of Atomic Physics, where he continues to
work today.

In his first active years (1965–1970) he was working on
the theory of the spontaneous alpha decay of heavy nuclei. He
investigated the influence of the internal structure of the alpha
particle (until then this was taken as punctual) on the decay
rates, and he has shown that this leads to a decrease of the
rate, in accordance with the experimental evidence, see e.g. [3].
The activity during this investigation was crucial for shaping his
method in the years to come. Since a serious numerical effort
was needed, on one hand, and the computers available at that
time were rather primitive (in Romania, at least), on the other
hand, he soon understood that a significant progress in physics
is impossible without developing new numerical methods to
compensate for the weak equipment. In this way he became a
pioneer of computational physics in that country, and his first
result in this domain was a set of two papers, disseminated in
1969 as internal reports [4,5] but never published in regular
journals, in which he formulated the embryo of what in the
meantime became the successful CP methods for the Schrödinger
equation. Subsequent progress in this direction (error analysis [6],
improving the accuracy etc.) provided the basis of his Ph.D. thesis in
theoretical physics (1973) under Prof. Corciovei, [7]. As for papers
published in journals, see [8–13]. All these, and not only, were
at the basis of Chapter 3 in Ixaru’s book [14] which is the first
systematic description of these methods and which is still today
the main reference in this field. More recent advances include the
formulation of a CP version of order 12 (at that time, this was the
highest order reached by a numerical method), [15,16], extension
to the 2D Schrödinger equation and a new formulation of the LP
version, [17,18].

Liviu’s first contactwith the exponential fitting (ef)was in 1979.
Shortly before, Raptis and Allison had published a paper, [19],
based on Lyche’s theory [20], where the famous Numerov method
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was adapted by exponential fitting to become tuned on the
Schrödinger equation. Liviu realized that this version represents
only the lowest level of adaptation and that two more, higher
levels are available. The two new versions were presented in
joint papers with Rizea, [21,22]. They convinced the readers
that the exponential fitting is a very flexible approach and
thus they produced a major momentum for the development
of the whole field. Together with Coleman, Liviu has addressed
two important theoretical issues. The first regards the stability
properties of ef-basedmethods for differential equations, [23], and
the stability function and stability regions, as defined by them,
became fundamental concepts in any further investigation in this
area. The second refers to the expression of the error for ef-based
approximation formulae, [24]. In that paper they have shown that,
in contrast to the classical approximation formulae, where the
error has a Lagrange-like form, for ef-based formulae this is a
sum of two such terms. This result is important not only from a
theoretical but also from a practical point of view: it shows that
the error estimates in terms of the leading term of the error (lte), as
done quite often, are sometimes incorrect. In [25] Liviu addresses
another important issue: how large is the class of approximations
to be approached by the exponential fitting? He shows that
the ef is appropriate not only for deriving tuned algorithms for
differential equations but also for other numerical operations
such as numerical differentiation, quadrature or interpolation. He
introduced a general scheme to treat them, the so called six-step
flow chart, which became popular in different contexts later on.

In all his activity Liviu has paid a special attention on
having the theoretical results accompanied by ready-to-use codes,
[14,1,26,27], and also on developing specific applications on hot
problems. Thus, in a collaboration with Scott and Scott, [28],
a special ef-based quadrature formula was built up for the
computation of the Slater integrals. The new formula is by two
orders of magnitude faster than the standard approach. This work
has received the HPC prize (2006).

2. General remarks

The first acceptance which comes to mind for the expression
’exponential fitting’ (ef) is that of a procedure intended to approxi-
mate a function through a linear combination of exponential func-
tions. However, the actual object of this field is quite different: it is
just assumed that the functions of interest are of the form

y(x) =

I
i=1

fi(x) exp(µix), x ∈ [a, b] (2.1)

and the object of the ef consists of producing algorithms for op-
erations tuned on such functions as, for example, the numerical
approach of differential equations with solution of this form, nu-
merical differentiation, quadrature, interpolation of such functions
etc. The weights fi(x) are assumed to vary slowly enough to be
well approximated by low degree polynomials, and µi, called fre-
quencies, are complex constants. As a matter of fact, the expres-
sion exponential fitting with the stated meaning seems to have
been first used in the context of solving ODEs, by Liniger and
Willoughby [29].

There is a huge practical interest in working on such functions
becausemanyphenomena are described in terms of these. The case
of pure real and negative frequencies is essential in processes like
decay, damping or absorbtion while pairs of imaginary conjugate
frequencies are of help in describing oscillatory phenomena. For
example, if I = 2, f1(x) = f2(x) and µ1 = iω, µ2 = −iω with real
ω we have

y(x) = f1(x)[exp(iωx) + exp(−iωx)] = 2f1(x) cos(ωx).

Applications on problems involving oscillations, vibrations, rota-
tions or wave propagation, in various branches of engineering and
classical physics, or wavefunctions in quantum mechanics will
then benefit directly from such a treatment.

Seen from a mathematical point of view, the case when
y(x) is a slowly varying function, which is the starting point
when building up any classical algorithm (think, for example,
of the multistep algorithms for differential equations or of the
Newton–Cotes quadrature rules), is the particular case of (2.1)
when all frequencies vanish. It is then natural to expect that the
new algorithms, which depend on the frequencies, will tend to the
classical ones when these frequencies tend to zero.

To understand the core of the procedure we take the standard
case of the Numerovmethod. This is a two-stepmethod for solving
a second order ODE of form

y′′
= f (x, y), x ∈ [a, b], (2.2)

where f (x, y), f : ℜ × ℜ
n

→ ℜ
n. The algorithm is of the form

yn+1 + a1yn + yn−1 = h2
[b0(fn+1 + fn−1) + b1fn], (2.3)

where h is the stepwidth, xn±1 = xn ± h, yn is an approximation
to y(xn) and fn = f (xn, yn). It allows obtaining yn+1 in terms of
yn−1 and yn (forward propagation) or yn−1 in terms of yn and yn+1
(backwards propagation). If f (x, y) is linear in y the computation
of the new yn+1 or yn−1 is direct. Otherwise an iteration process is
needed.

To determine the coefficients a1, b0, b1, an operator represent-
ing the difference between the two sides of Eq. (2.3) is introduced,

L[h, a0, b0, b1]y(x) := y(x + h) + a1y(x) + y(x − h)

− h2
[b0(y′′(x + h) + y′′(x − h)) + b1y′′(x)], (2.4)

and it is required that L[h, a0, b0, b1]y(x) vanishes when y(x)
belongs to a certain set of functions. If this is the power function
set y(x) = 1, x, x2, . . . then we get the classical coefficients a1 =

−2, b0 = 1/12, b1 = 5/6. It is easy to find out that Ly with these
coefficients is vanishing for the subset ofM = 6 functions

y(x) = xn, n = 0, 1, . . . ,M − 1 = 5 (2.5)

and for any linear combination of them, of course. Expressed in
other words, the Numerov method with classical coefficients is
exact when the solution y(x) is a fifth degree polynomial.

A natural question is: can a set of M functions different from
the power functions be used to build up the coefficients? Raptis
and Allison have used

y(x) = xk, k = 0, 1, 2, 3, exp(±µx) (2.6)

where µ is either a real or a purely imaginary constant, and have
obtained: a1 = −2,

b0(Z) =



1
Z


1 −

Z
4 sinh2(

√
|Z |/2)


if Z > T

1
12

−
1

240
Z +

1
6048

Z2
−

1
172800

Z3
+

1
5322240

Z4

if − T ≤ Z ≤ T
1
Z


1 +

Z
4 sin2(

√
|Z |/2)


if Z < −T

and b2(Z) = 1 − 2b1(Z), where Z = (µh)2 (notice that Z is
real irrespective of whether µ is real or purely imaginary). T is a
threshold value chosen in terms of the wordlength used; the value
T = 0.1 is convenient for double precision computations.

This version is exact for y(x) = f1(x)+c1 sin(|µ|x)+c2 cos(|µ|x)
or y(x) = f1(x)+c1 sinh(µx)+c2 cosh(µx), ifµ is imaginary or real,
respectively, where f1(x) is a third degree polynomial and c1 and
c2 are constants. It has been built up for the Schrödinger equation,
and extends the algorithm of Stiefel and Bettis [30] for the orbit
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problem in celestial mechanics; the latter considered only the case
of imaginary µ.

The idea of using a basis of functions other than polynomials has
a long history, going back at least to the papers of Greenwood [31],
Brock and Murray [32] and Dennis [33], where sets of exponential
functions were used to derive the coefficients of the methods for
first order ODEs. Methods using trigonometric polynomials have
also been considered; for theoretical aspects see [34]. Salzer [35]
assumed that the solution is a linear combination of trigonometric
functions, of the form

y(x) =

J
j=0

[aj sin(jx) + bj cos(jx)], (2.7)

with arbitrary constant coefficients aj and bj, to obtain predic-
tor–corrector methods which are exact for this form; expressions
of the coefficients of thesemethods are given in that paper for small
values of J .

Versions for approximationswhich are exact for functions other
than polynomials have been developed also for quadrature, see,
e.g., [36], [37], [38], [39], [40], [41], [42], [43], and for interpolation,
see [44]. Different techniques have been used but the exponential
fitting has the advantage that it gives us the possibility of treating
the things in an unitary way. As a matter of fact, for given M the
exponential fitting allows using reference sets of the general form
y(x) = xk exp(µix),
k = 0, 1, 2, . . . ,mi − 1, i = 1, 2, . . . , I. (2.8)

The values of I and ofmultiplicitiesmi depend onM . Wemust have
M = m1 + m2 + · · · + mI (2.9)
(this is called a selfconsistency condition) but there is a big
flexibility otherwise; different assignments will lead to different
coefficients. Thus, for the method of Numerov (M = 6) if I = 1,
µ1 = 0 and m1 = 6 we reobtain the classical algorithm but when
I = 3, µ1 = 0, µ2 = −µ3 = µ where µ is either purely real or
imaginary, andm1 = 4,m2 = m3 = 1, we get the version of Raptis
and Allison [19].

Although the set (2.8) is so general, forms which contain pairs
of frequencies with opposite signs are preferred, viz.:
y(x) = 1, x, x2, . . . , xK , exp(±µix), x exp(±µix), . . . ,

xPi exp(±µix), i = 1, 2, . . . , I, (2.10)
with the selfconsistency condition
M = 1 + K + 2I + 2(P1 + P2 + · · · + PI), (2.11)
and the simplest case I = 1 of this,
y = 1, x, x2, . . . , xK , exp(±µx), x exp(±µx), . . . ,

xP exp(±µx), (2.12)
with the selfconsistency condition
M = 3 + K + 2P. (2.13)
One of the reasons behind this preference is that it allows a direct
treatment of oscillatory functions. If all frequencies are imaginary
then these sets can be expressed in terms of trigonometric
functions. Thus with µ = iω the set (2.12) becomes
y = 1, x, x2, . . . , xK , {xm sin(ωx), xm cos(ωx)},
m = 0, 1, 2, . . . , P, (2.14)

and then the exponential fitting becomes a trigonometric fitting.
For clarity we will distinguish between approximations de-

scribed by single formulas and those which need sets of formu-
las. The multistep algorithms for differential equations and the
Newton–Cotes rule for quadrature are of the first type, to be con-
trasted by the Runge–Kutta algorithms with consist of sets of for-
mulae, one for each internal stage and for the external stage. These
subclasses will be treated separately.

3. Single formula approximations

Here we consider operations covered by one operator L whose
general form is

L[h, a]y(x) = hl


1
h

 x+h

x−h
g(x′)y(x′) dx′

+

n
i=1

m−1
k=0

hkakiy(k)(x + xih)


. (3.1)

It contains the integral of y(x) and the values of y and of a number of
its derivatives at certain abscissa points in [x− h, x+ h]; a collects
all coefficients aki. The hk factors were introduced to secure that
the coefficients aki are dimensionless, while the front factor hl and
function g in the integrand were introduced in order to reproduce
particular forms existing in the literature. g(x) must be either a
number (typically 0 or 1) or a delta function.

There is a vast variety of operations covered by suchL, and here
are some simple illustrations:
Multistep algorithms for differential equations: Numerov rule (2.4)
corresponds to l = g = 0, n = m = 3, x1 = −1, x2 = 0, x3 = 1,
and all aki = 0 except for a01 = a03 = 1, a02 = a0, a21 = a23 =

−b0 and a22 = −b1.
Quadrature rules: Simpson rule X+h

X−h
y(x′)dx′

≈ h [a1y(X − h) + a2y(X) + a3y(X + h)], (3.2)

(for the classical version the coefficients are a1 = a3 = 1/3, a2 =

4/3) corresponds to l = g = 1, n = 3,m = 1, x1 = −1, x2 =

0, x3 = 1, and all aki = 0 except for a01 = −a1, a02 = −a2,
a03 = −a3.
Interpolation: Interpolation of a function in terms of values of
function and its first derivative at the endpoints of the interval:

y(X + th) ≈ a0(t)y(X − h) + a1(t)y(X + h)
+ h[b0(t)y′(X − h)

+ b1(t)y′(X + h)], −1 ≤ t ≤ 1 (3.3)

has operator L of form (3.1) with l = 1, g(x′) = δ(x′
− th), n =

m = 2, x1 = −1, x2 = 1, a0i = −ai(t), a1i = −bi(t).

3.1. Ixaru’s six-step flow chart

This was first formulated in [25] and it is also explained in
book [1]. Its purpose is to help deriving the coefficients of ef-
based formulae with L of form (3.1) and evaluating the error in
an efficient way for reference sets of the form (2.10).

The main ingredients are the moments and the reduced mo-
ments. The moments, classical Lm and ef-based Em, are defined as
follows:

Lm := L[h, a]xm |x=0, Em := L[h, a]xm exp(µx) |x=0, (3.4)

form = 0, 1, 2, . . .. Lm depends on h and a, while Em on h, z = µh
and a but the dependence on h factorizes out:

Lm(h, a) = hl+mL∗

m(a),

Em(h, z, a) = hl+mE∗

m(z, a).
(3.5)

L∗
m and E∗

m are called reduced moments. Two useful properties are:
(i) Reduced moments with higher index result by successive
differentiation of E∗

0 with respect to z,

E∗

m(z, a) =
∂mE∗

0 (z, a)
∂zm

. (3.6)
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(ii) Classical and ef-based reduced moments are related,

L∗

m(a) = lim
z→0

E∗

m(z, a). (3.7)

The six-step flow chart collects a number of theoretical results in
ready-to-use form:
Step i. Choose the appropriate form of L[h, a] (e.g., (2.4) for the

Numerov method) and find the expressions of its classical
reduced moments L∗

m(a),m = 0, 1, 2, . . . .
Hint: Write the expression of E∗

0 (z, a), then differentiate
with respect to z and take the limit z → 0.

Step ii. Examine the algebraic system

L∗

m(a) = 0, m = 0, 1, 2, . . . ,M − 1 (3.8)

to find out themaximalM forwhich this is compatible. For
the Numerov method we have L∗

0(a) = 2 + a1, L∗

2(a) =

2(1 − 2b0 − b1), L∗

2k(a) = 2 − 4k(2k − 1)b0, k = 2,
3, . . . , L∗

2k+1(a) = 0, k = 0, 1, . . . , such that it easy to
find out thatM = 6.

Step iii. Using the expression of E∗

0 (z, a) write the expressions of

G+(Z, a) :=
1
2
[E∗

0 (z, a) + E∗

0 (−z, a)], (3.9)

and

G−(Z, a) :=
1
2z

[E∗

0 (z, a) − E∗

0 (−z, a)], (3.10)

where Z := z2. Notice that the argument Z is real
irrespective of whether µ is real or purely imaginary.
Also write the expressions of their derivatives G±(p)(Z, a),
p = 1, 2, . . . with respect to Z .
Hint: express G±(Z, a) in terms of the functions ηs(Z),
s = −1, 0, 1, . . . (see Appendix). One of the advantages
will be a direct evaluation of the derivatives.

Step iv. Choose the reference set of M functions of form (2.10)
which is appropriate for the given form of y(x) and sat-
isfies the selfconsistency condition (2.11).
Remark 1: The selfconsistency condition implies that M
and K are of different parities: if M is even/odd then K is
odd/even.
Remark 2: The reference set is characterized by the integer
parameters I , K and Pi, i = 1, . . . , I . The set inwhich there
is no classical component is identified by K = −1 while
the set in which there is no exponential fitting component
with the pair of frequencies ±µi has Pi = −1. Parameters
Pi are called levels of tuning.
Remark 3: In most applications only one pair of frequen-
cies, set (2.12), was considered. For M = 6 (as for the
Numerov method) we have four possible variants: K =

5, P = −1 (classical version, abbreviated herein after S0);
K = 3, P = 0 (S1); K = 1, P = 1 (S2) and K = −1, P = 2
(S3). The last is the best suited for functions of the form

y(x) = f1(x) sin(ωx) + f2(x) cos(ωx) or
y(x) = f1(x) sinh(λx) + f2(x) cosh(λx) (3.11)

corresponding to imaginary µ = iω and real µ = λ, re-
spectively.
Remark 4: Accidental situations exist when the selfconsis-
tency condition is violated. A situation of this type and a
procedure adapted for the treatment of such a special case
is presented in Chapter 4 of book [1].

Step v. Solve the algebraic system

L∗

k(a) = 0, 0 ≤ k ≤ K , G±(p)(Zi, a) = 0,
0 ≤ p ≤ Pi, i = 1, 2, . . . , I,

(3.12)

for the coefficients a of the ef-based formula, where Zi :=

µ2
i h

2.

Step vi. Here we distinguish between the local truncation error,
denoted LTE, and its leading term, denoted lte. If a(Z) are
the obtained coefficients where Z = [Z1, Z2, . . . , ZI ] then
the leading term of the error is

lteef = (−1)P
∗
+Ihl+M T (Z)DK+1O1O2 · · ·OIy(X), (3.13)

where X is some point in the interval of interest, P∗
:=

P1 + · · · + PI , and

T (Z) =
L∗

K+1(a(Z))

(K + 1)!ZP1+1
1 · · · ZPI+1

I

, Dm
:=

dm

dxm

Oi := (D2
− µ2

i )
Pi+1.

As for the true local truncation error LTE, this is a sum of
two terms of form (3.13). Specifically, as shown in [24]
on the case of one single frequency (2.12), two functions
T±(Z) (T+(Z) ≥ 0, T−(Z) ≤ 0) with the property that
T+(Z)+T−(Z) = T (Z) and two points η±

∈ (x−h, x+h)
exist, such that the error is

LTEef = (−1)P
∗
+Ihl+M

[T+(Z) DK+1O1O2 · · ·

OIy(η+) + T−(Z) DK+1O1O2 · · ·OIy(η−)]. (3.14)

This result is certainly important from a theoretical point
of view, but not only, because the dependence on Z in T±

maybe quite different from that of their sum T . Think of an
example of a casewhen T+(Z) = 1/Z+1/Z2 and T−(Z) =

−1/Z . When Z → ∞ their sum T = 1/Z2 falls down
faster than T+ and therefore evaluations based on the lte
may be inaccurate. Fortunately, such situations are rather
rare in current practice. For an exceptional case see [24].

To illustrate the output of the six-point scheme we list below
the coefficients of the three genuine ef versions of the Numerov
method and their lte-s in terms of η functions. For details see
[25,1]. For the form of the true LTEef see [45].
S1, [19]: a1(Z) = −2,

b0(Z) =
(η0(Z/4) + 1)(η2

0(Z/16) − 2η1(Z/4))
8η2

0(Z/4)
,

b1(Z) = 1 − 2b0(Z),

(3.15)

lteS1 = −h6 1 − 12b0(Z)

12Z
(−µ2y(4)(xn) + y(6)(xn)). (3.16)

S2, [21]:

a1(Z) = −2, b0(Z) =
η1(Z/4)

4η−1(Z/4)
,

b1(Z) = η2
0(Z/4) − 2b0(Z)η−1(Z),

(3.17)

lteS2 = h6 Z
2η0(Z) − 4(η−1(Z) − 1)2

Z4η0(Z)
[µ4y′′(xn)

− 2µ2y(4)(xn) + y(6)(xn)]. (3.18)

S3, [22]:

a1(Z) = −(6η−1(Z)η0(Z) − 2η2
−1(Z) + 4)/D(Z),

b0(Z) = η1(Z)/D(Z),

b1(Z) = (4η2
0(Z) − 2η1(Z)η−1(Z))/D(Z),

(3.19)

where D(Z) = 3η0(Z) + η−1(Z),

lteS3 = −h6 N(Z)

F(Z)
[−µ6y(xn)

+ 3µ4y(2)(xn) − 3µ2y(4)(xn) + y(6)(xn)] (3.20)
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where N(Z) = 6η0(Z) + 2η−1(Z) − 6η−1(Z)η0(Z) + 2η2
−1(Z) − 4

and F(Z) = Z3D(Z). Notice that a single formula is needed for
each coefficient; no series expansion is required; compare b0 in
(3.15) and (2.7). Also notice that the coefficients are not defined
for certain negative values of Z . Thus for S1 the denominator of
b0 vanishes when Z = −(2nπ)2, n = 1, 2, . . .. These are called
critical values.

3.2. Multistep algorithms for differential equations

An r-th order equation of the form y(r)
= f (x, y) has to be

solved, and an s-step algorithm for its solution has the form

s
j=0

ajyn+j = hr
s

j=0

bjf (xn+j, yn+j), (3.21)

where as = 1 and |a0|+ |b0| ≠ 0. It allows computing the solution
yn+s at point xn+s if all yn+j, j = 0, 1, . . . , s− 1 are known. In most
cases only equations of low order (r = 1, 2) are encountered. For
classical algorithms the coefficients aj and bj are constants but for
the ef-based versions they depend on the products zi = µih, where
µi are the frequencies involved.

Two specific issues are of direct interest: convergence of the
algorithm, and how to choose the frequencies in order to obtain
the maximal benefit in runs.
Convergence. For classical algorithms, a well known theorem from
Dalquist says that the necessary and sufficient conditions for
convergence are that the algorithm is consistent and zero-stable.
This holds also true for ef-based algorithms but, because their
coefficients are no longer constants the concepts of consistency
and stability have to be adapted. Since all such things were
explained at large in [1] they will not be repeated here. We only
mention the main results:

Consistency is related to the value of M , Eq. (2.9) which is also
the exponent of h in the expression of the lte, see Eq. (3.13) for that
particular case. The algorithm is said to be of the order p = M − r
and it is consistent if p ≥ 1.

The stability regards the way how the errors accumulate when
the solution is propagated along the interval of interest. The zero-
stability refers to the limit case h → 0 but in applications where
only significantly nonvanishing steps are used, of course. This is
why the examination of the latter case is of major importance,
and this forms the object of the linear stability theory. In [1] the
first and second order equations were examined in detail in the ef
context. The idea consists of choosing a differential equationwhose
analytic solution does not increase indefinitely when x → ∞

and then checking whether the numerical solution conserves this
property. For first and second order equations the test equation is
y′

= λy, x ≥ 0 with Re λ < 0, and y′′
= −k2y, x ≥ 0 with k > 0,

respectively. Application of an s-step method on the test equation
will lead to an s-order difference equation whose characteristic
equation has s roots and the stability properties depend on the
magnitude of these roots. For the versions presented above for the
Numerov method with θ = ωh and Z = −θ2 the second order
difference equation is

yn+1 − 2R(ν; θ)yn + yn−1 = 0, n = 1, 2, . . . (3.22)

where ν = kh. Function

R(ν; θ) = −
a1(−θ2) + ν2b1(−θ2)

2[1 + ν2b0(−θ2)]
(3.23)

is called stability function. Notice that ν depends on the test
equation but θ on the numericalmethod, and also that there is no θ
dependence in the classical version S0. The characteristic equation
is d2 − 2R(ν; θ)d + 1 = 0 and if R(ν; θ) < 1 the two roots are

d1 = exp(iρh) and d2 = exp(−iρh). If so, the difference equation
has the general solution

yn = C1 exp(iρnh) + C2 exp(−iρnh)
= (C1 + C2) cos(ρxn) + i(C1 − C2) sin(ρxn), xn = nh,

where C1, C2 are arbitrary constants, and this is of the same form
as the analytic solution. For contrast, if R(ν; θ) > 1, one of the
roots is greater than zero inmagnitude and therefore the numerical
solutionwill increase indefinitely. In short the stability condition is
R(ν; θ) < 1, and the regions in the ν, θ plane where this condition
holds true are called stability regions.

These regions are presented on Fig. 1. We see that for all
versions the origin belongs to the stability region and therefore
they are convergent. We also see that the bisecting line θ = ν
belongs to the stability region for all ef-based versions. As for the
extension of the stability region, this differs from one version to
another, and, as a rule, it extends downwhen the tuning factor P is
increased.
P-stability. This concept refers to second order equations of form
(2.2) and it is described in detail in [23,1] for classical and genuine
ef-based methods. To put it on an intuitive basis, let us refer to
the versions of the Numerov method and the associate ν, θ plane.
Each version, e.g. S1, is actually a family of methods where each
individual method is fixed by the value of ν. On that plane any
such individualmethod in this family is representedby ahorizontal
line, and the method is said to be P-stable if the corresponding
line is integrally placed inside the stability region. However, we
see that this condition is never met in any of the four graphs,
and therefore none of the methods discussed above is P-stable.
This specification seemsnecessary because someauthors including
Wang [46] look along the bisecting line ν = θ to conclude that the
method is P-stable; the P-stability is also discussed in [47]. It is true
that this line is inside the stability region for all ef-based versions
but that line does not correspond to a fixed method. As a matter
of fact, the P-stable two-step method in [23] has a low order,
p = 2. In [48] P-stable methods methods of arbitrary high-order
have been considered. It can be proved that the symplectic EF-
Gauss method in [49,50] is also P-stable. In addition, [51] provides
interesting examples of arbitrary high-order P-stable EF-methods.
Conditionally P-stable methods also exist, see [52].

What influence may have the stability properties in current
runs? Let us place ourselves in the situation when we need only
qualitative information on the behavior of the solution. Thus we
assume that the true frequency is k = 16 but that some separate
estimations have wrongly indicated that ω = 20 would be a good
guess, and take h = 0.5. The point (ν = 8, θ = 10) is inside the
stability region for S1 but not for S2 and S3. This means that there
are real chances with S1 for a qualitative description for the real
solution (e.g., that it is oscillating) but not with the other two, in
spite of the fact that these have a higher tuning parameter.
Choosing the frequencies. The formula of the lte has three factors:
a power of h (which fixes the order p of the method; for a second
order equation we have p = M − 2), a function which depends
on the used frequencies (function T ), and a factor which combines
the frequencies with the solution and its derivatives. The natural
way to find suited values of the frequencies consists of vanishing
the differential factor and then computing the roots of the resulting
equation. Thus, for version S1 this vanishes when

µ2
= y(6)(xn)/y(4)(xn). (3.24)

Approaches in this spirit are reported in the literature, e.g., [53–56],
but technical problems appear when we want to put them into
practice. For example, a reasonable accurate determination of the
fourth and sixth order derivatives of the solution is needed for
(3.24), and this is rather difficult for general f (x, y). This is why
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Fig. 1. The stability maps for versions S0 , S1 , S2 and S3 of the Numerov method.

equations where different ways are available became so popular.
Such a case is when f (x, y) is linear in y, with the Schrödinger
equation

y′′
= (V (x) − E)y, x ∈ [a, b], (3.25)

as its standard representative. If on a subinterval [xmin, xmax] the
potential function has a weak variation, then a constant approxi-
mation V is reasonable. The general solution of the equation with
this V is a linear combinationwith constant coefficients of the form

y =


f1 sin(ωx) + f2 cos(ωx), ω =


E − V if E > V ,

f1 sinh(λx) + f2 cosh(λx), λ =


V − E if E ≤ V .

The point is that we can accept that the solution with the origi-
nal V (x) has the same form except that coefficients are now slowly
varying functions of x, as in Eq. (3.11), see [21], and therefore the
version S3 with the fitting frequency µ = iω for E > V and µ = λ
for E ≤ V is the best suited of all Numerov versions on the mesh
points xn in the quoted subinterval.

We now present a numerical example intended to illustrate
how versions of the Numerovmethodwith increasing values of the
tuning parameter P help improve the accuracy of the numerical
solution. Theory shows that when E increases then the error of

versions S0 to S3 increases as E3, E2, E3/2 and E, respectively,
see [21]; a recent separate investigation is in [57]. We take the
Woods–Saxon potential

V (x) = v0/(1 + t) + v1t/(1 + t)2, t = exp[(x − x0)/a], (3.26)

where v0 = −50, x0 = 7, a = 0.6 and v1 = −v0/a. Its shape is
such that only two values for V̄ are sufficient:

V =


−50 if 0 ≤ x ≤ 6.5
0 if x > 6.5

such that the parameters are updated only twice for each E. We
solve the resonance problem which consists of the determination
of the positive eigenvalues corresponding to the boundary condi-
tions

y(0) = 0, y(x) = cos(E1/2x) for some big x.

The physical interval x ≥ 0 is cut at b = 20, and the eigenvalues
are obtained by shooting at xc = 6.5. For any trial value for E the
solution is propagated forwards with the starting values y(0) =

0, y(h) = h up to xc + h, and backwards with the starting values
y(b) = cos(E1/2b), y(b − h) = cos(E1/2(b − h)) up to xc . If E is an
eigenvalue, the forwards and backwards solutions are proportional
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Table 1
Absolute errors Eexact − Ecomput in 10−6 units from the four versions of the Numerov
method for the resonance eigenenergy problem of the Schrödinger equation in
the Woods–Saxon potential (3.26) and its piecewise constant approximation V .
The empty areas indicate that the corresponding errors are bigger than the format
adopted in the table.

h S0 S1 S2 S3

Eexact = 53.588852
1/16 −259175 6178 −1472 587
1/32 −15872 367 −84 35
1/64 −989 22 −5 1
1/128 −62 1 0 0

Eexact = 163.215298
1/16 79579 −9093 721
1/32 −595230 4734 −525 46
1/64 −36661 292 −32 2
1/128 −2287 18 −1 0

Eexact = 341.495796
1/16 661454 −40122 1600
1/32 36703 −2116 126
1/64 −560909 2215 −126 7
1/128 −34813 136 −8 0

and then the numerical values of the products yf (xc +h)yb(xc) and
yb(xc + h)yf (xc) must coincide. That is to say that the resonance
eigenenergies are searched for by vanishing themismatch function

∆(E) = yf (xc + h)yb(xc) − yb(xc + h)yf (xc).

The error in the eigenvalues will then reflect directly the quality of
the solvers for the initial value problem used for the determination
of the solution y(x).

In Table 1 we list the absolute errors in three such eigenvalues
for all four versions of the Numerov method; the reference values,
which are exact in the written figures, have been generated in a
separate run with the method CPM(2) from [14] at h = 1/16. It is
seen that, as expected, all these versions are of order four but the
way in which the error increases with the energy differs from one
version to another, much like the theoretical prediction.

Many other ef-basedmultistepmethods have been investigated
in the literature but the terminology used in some of these papers
differs from that presented above. Thus, in a series of papers,
e.g., [58], Simos introduces methods with vanished phase-lag and
its derivatives. The analogy is direct: a method with vanished
phase-lag relative to frequency ω and k derivatives of this is a
method corresponding to set (2.10) for µ1 = iω and P1 = k or, if
only one frequency is present, to set (2.12) withµ = iω and P = k.
This allows indexing these methods by the parameters M, I, K , Pi
from the six-point scheme, and in this way the comparisons
become easier. Thus the methods developed in [59] are versions of
a four-stepmethodwhere some coefficients are fixed from the very
beginning, and the others are determined by asking that the phase-
lag is vanishing. All versions haveM = 6, I = 1 and (K , P) = (3, 0)
and therefore their accuracy is close to that of S1.

The methods presented in [60] are 10-step methods with M =

14 (that is, of order 12) and I = 1 in two versions, with (K , P) =

(11, 0) and (13, 1), respectively.
In [61] six versions of a 14-step method are presented. They

correspond to M = 16, I = 1 and (K , P) = (13, 0), (11, 1),
(9, 2), (7, 3), (5, 4), (3, 5), (1, 6). Note in passing that the optimal
version for the Schrödinger equation would be (−1, 7), but this is
not investigated.

The Cowell method is considered in [62] and a separate pro-
cedure for the computation of the coefficients is developed when
a few pairs of frequencies are involved, as in set (2.10). However,
these authors treat in detail only the case of a single pair I = 1
and they give the coefficients for M = 6, (K , P) = (3, 0), (1, 1);
M = 8, (K , P) = (5, 0), (3, 1), (1, 2); M = 10, (K , P) = (7, 0),
(5, 1), (3, 2) with imaginary µ.

Quite special is one of the versions reported by Simos, [58]. On
starting from a version proposed byWang [46] withM = 8, I = 1,
(K , P) = (5, 0), two extensions with the same M are developed.
The first has I = 2 and what is unusual is that the two frequencies
are imaginary and real, respectively:µ1 = iω andµ2 =

√
3ω. This

version has (K = −1, P1 = 2, P2 = 0). The second version has
I = 1, imaginary µ and (K , P) = (−1, 3) such that it is maximally
fitted for the Schrödinger equation.

All these results allow drawing some conclusions. First, as
expected, M increases with the number of steps and, also as
expected, the expressions of the coefficients become more and
more complicated. Possible solutions would consist in either
making coefficient generating codes available or converting these
expressions in terms of η functions. A conversion code in
Mathematica is available [63]. Second, the extension of the stability
regions is more and more reduced whenM and/or P are increased,
and therefore the computation is increasingly affected by stability
restrictions.

3.3. Other ef-based numerical operations

The problems arising for such operations are comparatively
simpler than for themethods for differential equations because the
values of the involved frequencies are usually known in advance at
least approximately, and therefore there is no need for any extra
effort to evaluate them, and also because difficult problems like
stability do not appear.
Numerical differentiation. EF-based versions of standard formulae
like three or five-point formulae for the first derivative or three-
point formula for the second derivative are available, [25,1].
Ad-hoc formulae have also been produced, as, for example, a three-
point formula for the first derivativewhich uses not only the values
of the function at the mesh points but also of its second derivative,
[1]. This is a direction to be considered attentively in the future
because in typical runs such values happen to be available from
the previous steps of the computation process, and thus the use of
such information helps increasing the accuracy at no extra cost.
Quadrature. For the ef-based version of the Simpson quadrature
rule at various levels of tuning, see [25] and references therein.
As for the ef-based version of the Newton–Cotes rule in standard
and extended form (that is, where not only the values of the
integrand but also those of a number of its derivatives are known)
see [64–66]. The Gauss–Legendre quadrature rule appropriate for
oscillatory integrands has also been investigated, [67–70]. As a
matter of fact, an investigation on the Gauss–Laguerre rule may be
of acute interest for applications.

Also related is the approach of the Volterra integral equations
in [71].
Interpolation. Frequency-dependent interpolation rules and their
error analysis were considered in [72,73].

4. Multiple formulae approximations: the case of multistage
methods for ordinary differential equations

The need for multiple formulae is generally related to the
multistage nature of the underlying methods. Examples include
the Runge–Kutta methods for first order ODEs, Runge–Kutta-
Nyström methods, two-step Runge–Kutta methods and two-step
hybrid methods for second order ODEs. Modern improvements
to some of these algorithms are also recalled, in particular RK
methods with equation depending coefficients [74,75].

4.1. Runge–Kutta methods

The algorithm of the s-stage RK method for the first order ODE
of form y′

= f (x, y) is
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Yi = yn + h
s

j=1

aijf (xn + cjh, Yj), i = 1, 2, . . . , s, (4.1)

yn+1 = yn + h
s

i=1

bif (xn + cjh, Yi) (4.2)

see, e.g. [76]. The stage abscissa points xn + cjh are generally taken
in [xn, xn+1 = xn + h]. The following s + 1 linear operators are
associated

Li[h, a]y(x) = y(x + cih) − y(x)

− h
s

i=1

aijy′(x + cjh), i = 1, 2, . . . , s, (4.3)

L[h, b]y(x) = y(x + h) − y(x) − h
s

i=1

biy′(x + cjh) (4.4)

which provide the starting ingredient to build up the ef version.
For shortage in the notation, a is an s by smatrix which collects aij,
b = {b1, b2, . . . , bs}, and c = {c1, c2, . . . , cs}T is a column vector.

The first attempt in this area is fromSimos [77] for the four stage
diagonally explicit method, that is with s = 4 and where only the
diagonal elements of a are nonvanishing. Simos’ method was re-
examined by Vanden Berghe et al. (see [78,1]) who found out that
this method is exact if y(x) = 1, x or if the right hand term in
the equation is simply f (x, y) = µy. They realized that, in order
to obtain ef-based explicit RK methods corresponding to a wider
functional set, more degrees of freedom have to be introduced in
the algorithm. Specifically, they assumed a form containing extra
multiplying factors γi of yn in the internal stages formulae, viz.:

Yi = γiyn + h
s

j=1

aijf (xn + cjhYj), i = 1, 2, . . . , s (4.5)

yn+1 = yn + h
s

i=1

bif (xn + cjhYi). (4.6)

They derived an ef-based explicit RK method which is exact if
y(x) = exp(±µx), µ ∈ C or if f = 1 or f = x, see also [79].
For µ = iω, ω ∈ R their method has the Butcher-like tableau

c γ a
b

(4.7)

of the form

0 1

1/2 cos(ν/2)
sin(ν/2)

ν

1/2
1

cos(ν/2)
0

tan(ν/2)
ν

1 1 0 0
2 sin(ν/2)

ν

b1 b2 b3 b4

(4.8)

with ν = ωh and

b1 = b4 =
2 sin(ν/2) − ν

2ν(cos(ν/2) − 1)
,

b2 = b3 =
ν cos(ν/2) − 2 sin(ν/2)

2ν(cos(ν/2) − 1)
.

In that paper the frequency ω has always been assumed as known
in advance but in practice this has to be determined. This problem
was examined in [80,1] and the used technique is similar with that
around Eq. (3.24). The expression of the local truncation error of
the method (4.8) is (see [80,1]):

LTE = −
h5

2880
[(y(2)

+ ω2y)(3) + α · (y(2)
+ ω2y)′′

+ β · (y(2)
+ ω2y)′ + γ · (y(2)

+ ω2y)] + O(h6)

where α, β and γ are functions depending on f and y. On this basis
the value

ω =


−

y(2)(xn)
y(xn)

is the recommended for the scalar equation. For a d-dimensional
differential system, they suggest the estimation

ω =

−

d
t=1

yt(xn)y
(2)
t (xn)

d
t=1

yt(xn)2
.

The expression of the occurring second derivatives can be directly
computed from the differential system or numerically approxi-
mated by suited differentiation formulae involving the computed
approximations to the solution. In the same paper [80] the authors
derive an ef-based three-stage implicit RK method which is of or-
der four and merges into the classical Lobatto IIIA method when
ν → 0. In the context of Runge–Kutta–Nyström methods it is
worth mentioning [81–83].

Recent contributions in the development of a theory of ef-based
families of multistage methods which generalize RK formulae are
the object of [84–96].

4.2. Error control

Up to now we have considered ef-based methods on a uniform
grid but the practical efficiency is certainly increased by using a
variable stepsize implementation. This asks for an estimate for
the local error. The first problem for ef-based methods is the
determination of the suitable frequency but once this frequency
has been fixed some popular techniques for estimating the local
error are at our disposal for being adapted for ef-based algorithms,
see [1,78,79,97].

There are twomain possible techniques. The first is based on the
Richardson extrapolation (see, for instance, [98]). We apply the ef-
based RKmethod of order p to compute the approximation yn+1 of
the solution at xn+1. The local error then is

y(xn+1) − yn+1 = C(y, f )hp+1
+ O(hp+2),

where C(y, f ) is someweight function.We next compute a second,
finer approximation by applying the same method twice with
steplength h/2. Denoting this as zn+1, the local error is now

y(xn+1) − zn+1 = 2C(y, f )(h/2)p+1
+ O(hp+2).

The ready-to use expression of the error in the first calculation
results directly:

y(xn+1) − yn+1 ≈
2p(zn+1 − yn+1)

2p − 1
.

Notice that this method is rather time consuming: it requires the
application of the algorithm three times on each step.

The second technique is faster. It consists of using an embedded
pair ofmethods of different orders and taking the solution from the
method with the highest order for reference. The first embedded
pair of ef-based Runge–Kutta methods has been derived by Franco
in [79] (also compare [1]). It consists of a pair of methods of
orders 4 and 5 respectively, each of them being exact for y(x) =

exp{(±µx), µ ∈ C}, whose Butcher-like array
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c γ a
b
b̄

has the form
0 1

1
2

η−1(Z/4) η0(Z/4)/2

1
2

1
η−1(Z/4)

0
η0(Z/4)

2η−1(Z/4)
1 1 0 0 η0(Z/4) 0

3
4

1
5
32

7
32

a53 a54 0

b1 b2 b3 b4 0

b1 b2 b3 b4 −
16
5

with

a53 = −
32η−1(Z/16) − 32η−1(Z) + 3.5η0(Z/4) + 5Zη0(Z)

16Zη0(Z/4)
,

a54 =
5 − 64η−1(Z/4)/(Zη0(Z/4)) + 64/(Zη0(Z/16))

32
,

b1 = b4 =
η0(Z/4) − 1

2(η−1(Z/4) − 1)
,

b2 = b3 =
η−1(Z/4) − η0(Z/4)
2(η−1(Z/4) − 1)

,

b1 =
3 − 3η−1(Z) − 8Zη0(Z/16) + 9.5Zη0(Z/4)

3Zη0(Z/4) − 3Zη0(Z)
,

b2 = b3 =
−16η−1(Z/16) + 19η−1(Z/4) − 3η0(Z/4)

3/4Zη2
0(Z/16)

,

b4 =
3 − 3η−1(Z) + 4Zη0(Z/16) + 9.5Zη0(Z/4) − 12Zη0(9Z/16)

3Zη0(Z/4) − 3Zη0(Z)
.

where Z = (µh)2. It is tacitly assumed here that µ is either real or
purely imaginary, such that Z is real. The gain in efficiency comes
from the fact that the first four internal stages are identical in the
two methods such that they should be computed once. Only the
fifth internal stage in the second method and the external stages
in the two have to be computed separately. We also mention that
the above formulation of the coefficients in terms of theη functions
has been derived in Ixaru’s book [1], while Franco considered only
the case of realµ to express them in terms of hyperbolic functions.
Finally we remark that, for Z tending to 0, the embedded pair
derived by Franco tends to the Zonnevald 4(3) pair [99], thus it can
be seen as the exponential fitting adaptation of the latter. The ef
adaptation of other embedded pairs is the object of [100], while the
derivation of ef-based embedded pairs of Runge–Kutta–Nyström
methods is reported in [101].

4.3. Collocation-based methods

Collocation methods are based on the idea of approximating
the exact solution of a given differential equation by a suitable
approximant, the collocation function, belonging to a chosen finite
dimensional space and then imposing the condition that this
function exactly satisfies the equation on a set of discrete points on
the integration interval, called collocation points. The classical form
of a collocation function is a polynomial but linear combinations
of other functions, for example 1, x, x2, . . . , xK , exp(±µx), are also
permitted. The ef-based collocation methods cover the latter case.

The problem of RK methods of collocation type enjoyed a
sustained interest in the literature. Thus, for the classical case it is

well known (see, for instance, [98,99]) that implicit Runge–Kutta
methods based on Gauss–Legendre, Radau IIA and Lobatto IIIA
nodes are of collocation type, thus the entries of the a matrix and
the vector b of the weights are the values of the integrals

aij =

 ci

0
Lj(t)dt, bj =

 1

0
Lj(t)dt, i, j = 1, 2, . . . , s,

where Lj(t) is the j-th fundamental Lagrange polynomial. The
corresponding exponential fitting version is the object of the
paper [102], where the authors have focused their attention on
methods using the Gauss–Legendre, Radau and Lobatto nodes, and
studied their convergence and stability properties. For instance, by
choosing the fitting space {1, x, exp(µx)}, the exponentially fitted
Lobatto IIIA method with two stages corresponds to the following
(c, A, bT )-Butcher tableau

0 0 0

1
1 + eν(ν − 1)

ν(eν − 1)
1 − a21

a21 a22

(4.9)

where ν = µh.We observe that, differently from [78], themethods
derived in [102] do not depend on the extra weight γi. The above
method is convergent, since the local truncation error is

LTE =
µy(2)

− y(3)

12
h3

+ O(h4).

Concerning the stability properties, it is possible to prove that
this method inherits the same stability properties of its classic
analog, thus it is A-stable. A similar analysis for the methods using
Gauss–Legendre and Radau IIA nodes is reported in [102].

The problem of choosing the collocation points in ef-based RK
methods of collocation type has been discussed in [103]. These
authors compared the cases of fixed and frequency-dependent
collocation points and have shown that using fixed points is much
more practical, especially for systems of differential equations.

Other contributions connected to this area are [104,82,105,44,
106,83,107–109] and references therein.

4.4. Symplectic integrators

The numerical solution of Hamiltonian problems received
special attention in the last decades, see [110] and the references
therein. The central problem is here that numerical methods must
be introduced which are able to preserve the invariants possessed
by the continuous problem. This is typically achieved by symplectic
Runge–Kutta methods, i.e. RK methods satisfying the additional
algebraic constraint

diag(b)a + aTdiag(b) − bbT
= 0,

because these numerically preserve quadratic invariants.
Since Hamiltonian problems frequently model phenomena in

celestial mechanics, molecular dynamics, plasma physics and so
on, which notoriously possess periodic or oscillatory functions, it
becomes important to combine the advantages of symplecticness
and special purpose methods (see [111–113]). A paper in this di-
rection is due to Tocino and Vigo-Aguiar, who derived in [112] the
conditions for a Runge–Kutta–Nyström method being symplectic.
The authors focused their attention on the problem

y′′(t) + ω2y(t) = f (y(t)),

where f (y) is the gradient of a potential scalar, and considered
the family of Runge–Kutta–Nyström (RKN) methods for the above
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problem, i.e.

yn+1 = Cyn + hDy′

n + h2
s

i=1

βif (Qi),

y′

n+1 = Ay′

n +
B
h
yn + h2

s
i=1

bif (Qi),

(4.10)

where Qi = Cyn + hDiy′
n + h2 s

j=1 aijf (Qj), i = 1, 2, . . . , s. The
following results holds.

Theorem 4.1. The modified RKN scheme (4.10) is symplectic if and
only if its parameters satisfy

AC − BD = 1,

βi


A − B

Di

Ci


= bi


D − C

Di

Ci


, i = 1, . . . , s,

bi


βj − aij

C
Ci


+ βiaij

B
Ci

= bj


βi − aji

C
Cj


+ βjaji

B
Cj

, i < j = 1, . . . , s.

No examples of methods have been derived in [112]. A more
constructive approach for the derivation of symplecticmethods for
the problem

ṗk = −
∂H
∂qk

, q̇k =
∂H
∂pk

, k = 1, . . . , d,

has been provided in [114] in the context of explicit RKN methods
of the form

Yi = yn + ciγihy′

n + h2
i−1
j=1

aijf (tn + cjh, Yj), i = 1, . . . , s

yn+1 = g1yn + hg2y′

n + h2
s

i=1

bif (tn + cih, Yi),

y′

n+1 = g3y′

n + h
s

i=1

bif (tn + cih, Yi).

In the case s = 2, symplecticity is achieved if

g1g3 = 1,
g3b1 − g2b1 = 0,
g3 + b2 + (g1c2γ2 − g2)b2 = 0,

b1b2 − b1b2 + g1b2a21 = 0.

In correspondence to the abscissa vector c = {0, 1}T , the above
systemof equations is satisfied by themethodwhose Butcher array

c γ a
bT

b̄T

has the form
0 1

1
sinh(ν)

ν

cosh(ν) − 1
ν2

sinh(ν)

ν(cosh(ν) + 1)
b1

a21 0

with ν = µh, g1 = 1, g2 = γ2 and g3 = 1. The derived method
is symplectic and exponentially fitted with respect to the fitting
space {1, x, exp(µx)}.

A famous symplectic RK method is that based on the Gauss–
Legendre nodes. The ef adaptation of this method is due to Van de
Vyver [50] and corresponds to the Butcher array (4.7)

3 −
√
3

6
2eν/2(1 + E + E2

+ E3)
√
E(1 + E)2(eν + 1)

(eν
− 1)(1 + E2)

ν(eν + 1)(1 + E)2

2(eν
− E2)

ν(eν + 1)(1 + E)2

1 − c1 γ1
2(eνE2

− 1)
ν(eν + 1)(1 + E)2

a11

eν
− 1

νec1ν (1 + E)
b1

with E = eν
√
3/3. Other symplectic (and also symmetric) ef-based

RK methods have been presented in [115,116,49,117,118].
An interesting theoretical analysis of the canonical properties

of ef-based RK methods is due to Calvo et al. [119], where the
structure preservation properties are derived in terms of simple
algebraic constraints which have to be fulfilled by the coefficients
of the method. In particular, for ef-based RKmethod, the following
results hold.

Theorem 4.2. An EFRK method (4.5),

(i) preserves linear invariants;
(ii) preserves quadratic invariants if and only if Ωij = bjγ −1

j aji +

biγ −1
i aij − bibj = 0, 1 ≤ i, j ≤ s;

(iii) is symplectic if Ωij = 0, 1 ≤ i, j ≤ s.

4.5. A new perspective: Runge–Kutta methods with equation depend-
ing coefficients

The act of associating the s + 1 operators (4.3)–(4.4) to the
algorithm (4.1)–(4.2) is a general practice in the literature of ef-
basedRKmethods (see, e.g., [120,1,77,80,48]) but thiswas critically
reconsidered in two recent papers, [74,75]. The point is that in spite
of the error in computing yn+1 by (4.2) cumulates the error related
to the final stage and those generated during the computation of
the intermediary values Yi in the internal stages, in Eqs. (4.3)–(4.4)
each stage is treated separately and then the error contamination
process is disregarded. Also, what we are actually interested in is
the error in final output yn+1 not in the values of Yi. This raises the
problem of modifying the way of constructing the coefficients of
the method such that the propagation of the error along the stages
becomes visible.

In paper [74] the case of the explicit two-stage RK method

0
c2 a21

b1 b2
is examined for the fitting space {1, exp(µx), x exp(µx)}.
Internal stages. In force of the localizing assumption yn = y(xn)
there is no error in Y1 and therefore associating the operator

L2[h, a]y(x)|x=xn = y(xn + c2h) − y(xn) − ha21y′(xn) (4.11)

to the second internal stage Y2 = yn + a21f (xn, Y1) is just natural.
By asking whether this is identically vanishing for y(x) = 1 and
exp(µx) one obtains a21(z) = (exp(c2z) − 1)/z and

lte = h2F(z)(y′′(xn) − µy′(xn)),

where F(z) = [−1 − c2z + exp(c2z)]/z2. The error in Y2 then is

LTE := y(xn + c2h) − Y2 = lte + O(h3). (4.12)

External stage. The natural form of the operator to be associated to
yn+1 = h[b1f (xn, Y1) + b2f (xn + c2h, Y2)] is

L̂[h, b]y(x)

x=xn

= y(xn + h) − y(xn) − h(b1y′(xn)

+ b2f (xn + c2h, Y2)), (4.13)
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but this cannot be treated in the usual way because it is nonlinear.
However, since

y′(xn + c2h) = f (xn + c2h, y(xn + c2h))
= f (xn + c2h, Y2 + LTE)

= f (xn + c2h, Y2) + lte fy(xn + c2h, Y2)

+ O(h3), (4.14)

and by neglecting the residual error O(h3), one gets a linearized
form of (4.13),

LR
[h, b]y(x)


x=xn

= y(xn + h) − y(xn) − hb1y′(xn)

− hb2[y′(xn + c2h)

− hM2F(z)(y′′(xn) − µy′(xn))], (4.15)

with notationM2 = hfy(xn +c2h, Y2). The difference of this revised
form (R) with respect to the standard (S) form (4.4) consists of the
appearance of the last term which takes into account the error
contamination effect. Asking whether each of the two forms is
exact for y(x) = 1, exp(µx), x exp(µx), it is obtained that

bS1(z) =
−1 − c2z + exp(z)(1 + (−1 + c2)z)

c2z2
,

bS2(z) =
1 − exp(z) + z exp(z)

c2z2 exp(c2z)
,

(4.16)

bR1(z) =
α(z)M2 + bS1(z)

γ (z)M2 + 1
, bR2(z) =

bS2(z)
γ (z)M2 + 1

,

where γ (z) =
1 − exp(c2z) + c2z

c2z2 exp(c2z)
,

α(z) =
(exp(z) − 1)γ (z)

z
.

(4.17)

For the new version we have

LTER
= −

h3

12
(−2 + 3c2)[y′′′(xn) − 2µy′′(xn) + µ2y′(xn)]

+O(h4), (4.18)

and therefore it is generally of order 2. However, if c2 = 2/3 then
the order becomes 3.

Also instructing is another remark. The leading term of the LTER

obviously vanishes for all three functions in the fitting space but
this does not mean that the algorithm is exact for these and
their linear combination. The reason is that when building up
the operator (4.15) for the final stage the residual error O(h3)
of (4.12) was completely disregarded. The influence of this error,
which vanishes only for y(x) = 1, exp(µx), is obviously like
O(h4) due to the factor h in (4.13). The consequence is that, in
spite of the lte of Eq. (4.18) vanishing for all three functions, the
algorithm is actually exact only for 1 and exp(µx) and their linear
combination. A conclusion of the same type holds true for all ef-
based RK algorithms.

In [75] Ixaru treats the three-stage explicit RK method

0
c2 a11
c3 0 a23

b1 b2 b3

in the same way. He is interested to see in what extent such
a treatment may produce different results than the standard
treatment in the field, e.g. as in [98]. He takes the power function
set for reference and obtains a21 = c2, a23 = c3, bi = bnumi /bdeni

where

bnum1 = c3(3c3 − 2) + c22 (6c3 − 3) + c2(2 − 6c23 )
+ c22 (c2 − 2c2c3 + 3c23 − 1)M2

+ (c3 − 1){c3[−3c22 − c3 + 2c2(1 + c3)]M3

+ c22c3(c2 − c3 − 1)M2M3},

bnum2 = 2 − 3c3 + [2c2 − 3c22 + (c3 − 1)c3]M3

+ (c2 − 1)c22M2M3,

bnum3 = −2 + 3c2 − (c2 − 1)c2M2,

bden1 = c2c3B, bden2 = c2B, bden3 = c3B,

with Mi = hfy(xn + cih, Yi), i = 2, 3 and

B = 6(c2 − c3) + c2(3c3 − 2c2)M2 + c3(2c3 − 3c2)M3

+ c2c3(c2 − c3)M2M3. (4.19)

He shows that the order is generally 3 but if c2 and c3 are correlated,

c3 =
3 − 4c2
4 − 6c2

, (4.20)

the order becomes 4, a valuewhich is usually attained only by four-
stage versions of the standard type.

The new versions introduced in [74,75] share a common un-
usual feature: their bi coefficients are equation dependent because
they contain the Jacobian function; for systems of ODEs these be-
come matrices. It follows that the coefficients must be updated at
each step but this additional effort is largely compensated by the
increased order and also, quite importantly, by massively better
stability properties.

To illustrate the latter on the two-stage versions R and S we
recall that the stability function of these versions is

R(ω, z) = 1 + ω[bV1 + bV2 ] + ω2a21(z)bV2 , V = R, S

see [74], and also recall that the region of the three-dimensional
(Re(ω), Im(ω), z) space on which the inequality

|R(ω, z)| < 1 (4.21)

is satisfied is called a region of stability Ω for that method.
On Fig. 2 we take c2 = 2/3 and show sections through the

stability regions by planes z = −1 and z = −4 for S/R version
on the left/right column. For the standard version a weak variation
with z of stability area is seen but, as expected, a massive increase
appears for the revised version.

For Ixaru’s method, two pairs c2, c3 are of special importance
with respect to stability because they give forth-order A-stable
methods. These are c2 = 1/2, c3 = 1, and c2 = 1, c3 = 1/2.
As a matter of fact, this is to our knowledge the first case when an
explicit fourth-order method is A-stable.

To illustrate the influence of the stability properties in current
runs, Ixaru takes the system:

y1
′

= (10λ + 9)y1 − 10(λ + 1)y2,

y2
′

= −9(λ + 1)y1 − (9λ + 10)y2,
(4.22)

x ∈ [xmin = 0, xmax = 5], y1(0) = y10, y2(0) = y20,

with the exact solution

y1(x) = 10(y10 − y20) exp(λ x) + (−9y10 + 10y20) exp(−x),

y2(x) = 9(y10 − y20) exp(λ x) + (−9y10 + 10y20) exp(−x).

He uses y10 = y20 = 1 and λ = −600. The solution is then indepen-
dent of λ: y1(x) = y2(x) = exp(−x), and if stability were not an
issue the results at h = 1/2 or 1/4 must be sufficiently accurate.
However, this does not happen for all methods, as seen in Table 2
where relative errors in y1(xmax) are given for different stepwidths
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Fig. 2. Sections through the stability region by plane z = const for fixed c2 =
2
3 : standard version (left column), revised version (right column).

Table 2
Relative errors from the classical RK4 method and four versions of the fourth-order Ixaru method for the test system (4.22). Notation a(b) means a × 10b .

h RK4 Ixaru method
c2 = 1/8 c2 = 1/4 c2 = 3/8 c2 = 1/2

1/2 8.51(+57) 3.35(+13) 1.95(+10) −2.11(+07) −4.41(−04)
1/4 −7.82(+83) −1.22(+35) 8.89(+26) −1.51(+18) −2.72(−05)
1/8 4.11(+216) −9.67(+68) −6.11(+51) −4.76(+34) −1.70(−06)
1/16 −NaN −4.96(+113) −1.27(+87) −1.26(+53) −1.06(−07)
1/32 −NaN −8.54(+164) −5.24(+108) −7.15(+38) −6.62(−09)
1/64 −NaN −2.13(+127) 2.13(+28) −4.34(−11) −4.12(−10)
1/128 −NaN 2.71(−11) 1.25(−11) −2.83(−12) −2.55(−11)
1/256 −9.84(−12) 1.42(−12) 1.57(−12) 1.51(−13) −1.13(−12)

(the relative errors in y2(xmax) have the same values) from the clas-
sical RK4 method, and from the Ixaru method with four values of
c2 (coefficients c3 are correlated by (4.20)) approaching 1/2 closer
and closer. It is seen that the alteration due to the instability ismas-
sive for the firstmethod to lower down from the left to the right, up
to a total extinction for the versionwith c2 = 1/2which is A-stable.

The examination of other methods in the same way appears as an
interesting objective for the further research.

Appendix

Ixaru’s functions η−1(Z), η0(Z), η1(Z), . . . , originally intro-
duced in [14], are defined as follows:

η−1(Z) =


cos(|Z |

1/2) if Z ≤ 0,
cosh(Z1/2) if Z > 0,

(A.1)

η0(Z) =

sin(|Z |
1/2)/|Z |

1/2 if Z < 0,
1 if Z = 0,
sinh(Z1/2)/Z1/2 if Z > 0,

(A.2)

while ηm(Z) withm > 0 are further generated by recurrence

ηm(Z) = [ηm−2(Z) − (2m − 1)ηm−1(Z)]/Z,

m = 1, 2, 3, . . . (A.3)

if Z ≠ 0, and by following values at Z = 0:

ηm(0) = 1/(2m + 1)!!, m = 1, 2, 3, . . . . (A.4)

Some useful properties are as follows:
(i) Series expansion:

ηm(Z) = 2m
∞
q=0

(q + m)!

q!(2q + 2m + 1)!
Zq, m = 0, 1, 3, . . . . (A.5)
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(ii) Asymptotic behavior at large |Z |:

ηm(Z) ≈


η−1(Z)/Z (m+1)/2 for oddm,

η0(Z)/Zm/2 for evenm.
(A.6)

(iii) Differentiation properties:

η′

m(Z) =
1
2
ηm+1(Z), m = −1, 0, 1, 2, . . . . (A.7)

Good fortran routines for computing these functions exist, e.g.
subroutine GEBASE in the CD attached to [1] or in code SLCPM12
from [16].
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