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2.1. Overview

The main research topics for this year have been organized in two milestomes with strong theoretical and experimental relevance:

1. Vortex nucleation and synergetic development of vorticity and current filaments
2. Combined effect of ratchet and curvature pinch on impurity evolution in tokamak plasmas

The first topic develops the original idea proposed by the Plasma Theory Group concerning the importance of the vorticity field in the dynamics of plasmas, which evolves to self organization. We have shown
 that the vorticity cannot have arbitrary equilibrium profiles in two-dmensional plasmas and that the distribution of vorticity is given by the solutions of a nonlinear equation. We have found solutions that have a dipolar character but with circular symmetry, which means a ring of vorticity at the plasma edge. We have studied this year this type of solutions and their implication on plasma evolution. This state, which is compatible with the H mode, is not the absolute extremum of the action functional, therefore it still evolves and the concentration of vorticity is enhanced. Ertel's theorem and variational constraints impose that the particle density and the current density follow the vorticity such that they accumulate and create local maxima superposed on the layer where the vorticity is concentrated. Isolated Kelvin Helmholtz events generate double spiral vortex structures which can be stabilized in the form of a ring-type (tubular) vortex if a threshold is exceeded such as the topological constraint applies. The spiral stretching of the vorticity induces a transient current density increase which is also favorable to the swirl stabilization of the vorticity filament. The current perturbation initiates a nonlinear tearing of the current sheet, leading to filamentation of the current density. We show that both the particle density and the current density layers are broken and cuasi-singular structures. These connections presents the possibility to generate filaments that are local maxima of the three parameters: vorticity, particle density and current density. The filamentation process is fast. These results are presented in [1].
We propose this as a basic model for the Edge Localized Modes.


The second topic is the development of our previous work
 where we have shown that the gradient of the confining magnetic field generates a pinch (average velocity) in turbulent plasmas. It is a ratchet type process that appears in test particle approach due to the modification of guiding center trajectories. It determines the contamination of the plasma from the source of impurities localized at the border. Particle collisions and plasma poloidal rotation have been included in the test particle model. We have shown that strong nonlinear effects appear when trajectory trapping or eddying is effective [1]. 

An additional effect of the magnetic field gradient appears when particle density is considered: the divergence of the ExB drift produces a pinch velocity, the curvature or turbulent equipartition pinch
. We have shown that the density pinch is not equal to the curvature pinch and that it is strongly influenced by the ratchet effect
. The effect of the pinch velocity Vn on the average density profile appears in the dimensionless parameter p=aVn/D (where a is the minor radius and D is the diffusion coefficient) rather than in the absolute value. This parameter, the peaking factor, is an estimation of the average density gradient determined by the equilibration of the advective and diffusive transport when the boundary fluxes are negligible. We have shown that density peaking can be driven by the ratchet pinch while the curvature pinch contributes to the peaking factor with a constant (small) value of the order a/R. These results are presented in [2], [3].

The conclusions of these studies is that impurity accumulation (density peaking) can appear due to the gradient of the magnetic field only in strong turbulence (characterized by trajectory trapping) and in the presence of a slow poloidal rotation, with velocity of the order of 103m/sec for JET plasmas. The dependence of the peaking factor p on  the collision frequency is similar to the JET H-mode database.
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2.2. Detailed results
2.2.1. Vortex nucleation and synergetic development of vorticity and current filaments
The vorticity field in tokamak evolves to self organization and is concentrated in a narrow layer at the edge. The particle density and the current density have local maxima on the same layer, leading to destabilization of the rotation, breaking up of the layer and filamentation. We propose this as a basic model for the Edge Localized Modes.

Large scale vorticity is injected in tokamak plasma via external heating (NBI, ICRH) and evolves to an equilibrium profile via the balance of torque. The drive-dissipation is not the unique factor in the dynamics since the vorticity cannot have an arbitrary equilibrium profile in a  2d  plasma. We have shown in [1] that it has natural profiles corresponding to the spatial distributions of the streamfunction  
[image: image1.emf]

  of the poloidal velocity which are extrema of a particular action functional. The extrema of that action functional are governed by a differential equation
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Solving this equation one identifies natural profiles of the vorticity which in the phase space represent attractors. Essentially the vorticity separates into two regions with opposite signs: in the center it is collected the vorticity of one sign and at the perifery it is expelled the vorticity of the opposite sign. This is a particular form of dipolar structure, of the same nature as, for example, the Larichev-Reznik modon, but in cylindrical geometry it has superior stability compared to the situation where the regions of opposite vorticity are side-by-side, and it is compatible with global rotation.

The states consisting of this radial separation are actually not stationary, they continue to evlove on a slow time scale toward the strict localisation of the vorticity of the appropriate sign in a region close to the edge, leading to a narrowing of the layer of poloidal rotation. An indication of the direction of evolution is given by the following density of  "energy"  (
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According to the Ertel's theorem the particle density  
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  will tend to create a local maximum superimposed on the maximum of the vorticity  
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. We argue that a similar process leads to concentration of the current density  
[image: image8.wmf](

)

t

r

j

,

  in the form of a layer of local maximum, (a current sheet) coinciding with the layer of the extremum of the peripheric vorticity. The position of the current density extremum evolves such as to coincide with the vorticity extremum since it removes terms of the "baroclinic" (but MHD-) type in the dynamics. 
The fact that the current density evolves such as its extrema coincide with the extrema of vorticity has been seen in both relaxed or transient MHD states and has been found experimentally in DIII-D [7]. The states described above, essentially based on vorticity radial distribution derived from Eq.(1) have relevance for the H mode. Several experimental studies of the H mode in tokamak have shown the presence of a narrow layer of sheared poloidal rotation, which acts as a barrier to the transport of energy. With the continuous (slow time scale) concentration of vorticity into the narrow layer near the last closed magnetic surface, and the induced increase of particle density and current density in the same layer, this state becomes fragile to perturbations that have not been included in the action functional. Two perturbations are known to appear: vorticity concentration into filaments; and tearing of the current sheet with formation of local concentrations of current limited by a separatrix with two Y-type singular points. These two processes are acting together and synergetically.

[image: image9.emf] Figure  


The Edge Localised Modes (ELM) appear as a fast, very strong, perturbation of this layer eventually leading to the suppression of the sheared rotation and its replacement by a periodic chain of filaments. The evolution, which starts from the strongly sheared rotation layer and leads to a set of filaments with high concentration of vorticity, particle density and current density has its origin in the vortex nucleation.

At the origin of the vortex nucleation is the fact that, for a fluid in rotation, it is energetically more favorable to generate localised vortical structures immersed in the flow than to maintain the uniform structure of the flow field. This has been shown for rotating Navier-Stokes fluids, protoplanetary disks, planetary atmosphere; the standard examples are the rotating Bose-Einstein condensates and the superfluids. In a  3d study of the atmospheric mesocyclone [3] it has been identified a very rapid concentration of the vorticity, in which the narrow circular band of vorticity is replaced with a set of strongly concentrated filaments disposed periodically on the circle, a process in which the two-dimensional aspect is dominant (the concentration takes place due to negative convergence of vorticity toward the final very localized structures). The example of superfluids deserves some discussion [superfluid**]. The velocity of a superfluid is potential  
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  (i.e. irrotational) as long as there are no vortices present in the fluid. When vortices nucleate, they appear as line deffects, stable string-like structures with a central hard core and with the order parameter (complex function whose phase is  
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 ) vanishing in the center of the core. A vortex is a line singularity in the coherent order-parameter field. For superfluids the phase of the order parameter varies with  
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  when turning around the core. The circulation around the core is quantized  
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 . The energy per unit length (the line tension of the vortex string) is 
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  is the ratio is of the distance between two vortices and the radius of the core. The condition of creation of a vortex ring with radius  
[image: image17.emf]R

  and core radius  
[image: image18.emf]a

  has been formulated by Feynman : the velocity of the superfluid component must be greater than the velocity self-induced by the ring  
[image: image19.wmf](

)

1

ln

8

-

=

>

a

R

R

C

ring

sf

V

V

  and the self-energy of the flow in a vortex ring is 
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Since it is a threshold for nucleation, this energy is taken by Langer Fischer at the exponent of a barrier-type expression for the probability of nucleation 


[image: image21.wmf])

5

(

exp

0

÷

÷

ø

ö

ç

ç

è

æ

-

G

=

G

kT

E

ring


A rotating superfluid should be seen as a metastable state of a supersaturated vapor. There is a finite probability of nucleation of the stable phase. The generation of a vortex is similar to the condensation of a droplet of a liquid phase from a gas at the critical state and the energy is lowered. It is proved by numerical simulations and by mathematical analysis of the bounds for the minimisers that a superconducting fluid rotated in a two dimensional geometry evolves through a series of transitions consisting of nucleation of vortices. The uniform state, rotating but without vortices is stable up to a certain angular velocity. Then a vortex nucleates in the fluid. For even higher velocities another vortex is nucleated and so on. This process manifests hysteresis due to the interplay between the branch with vortices and the branch with uniform fluid. Summarizing, for superfluids the nucleated vortices are topological and the equation is the Nonlinear Schrodinger Equation. It is actually the same as what results from the field-theoretical model of point-like vortices for the Euler equation [4]. We will use this below.

The physical process of generation of filaments inside the sheared velocity layer, followed by their growth until the suppression of the poloidal flow cannot be attributed to a spontaneous nucleation as in superfluids, i.e. the superfluid paradigma of vortex nucleation cannot be directly applied to the ELM problem. However there is a physical process of generation of localised structures of vorticity due to a transient Kelvin-Helmholtz (KH) event. In such an event a piece of fluid from the region of high vorticity is transported inside the flow and deformed into a double spiral. We can now invoke the field-theoretical model of the ion-hydrodynamics, build on the discrete model of point-like vortices interacting in plane by the short range potential,  
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  [2]. This leads to Eq.(1) but this model is non-Abelian and has trivial topology. It has been noted, however, that this model descends to an Abelian dominated dynamics [6], where the equation of the stationary states (instead of Eq.(1)) is
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Notably, this model restores the topological constraint (the energy is bounded from below by a topological flux  
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and has ring-type vortical solutions. We can consider that such a state saturates and stabilizes the double-spiral distribution of vorticity emerging from the KH event.

Depending on the dimensions, the element of vorticity that is absorbed into the shear layer can have different evolutions. If the double spiral blob is small it takes a long time before being dissipated by the parallel electron dynamics and it is easily advected via the Magnus force modified by the effect of pressure variation, inside the layer. The vortex nucleation converts a part of the angular momentum in the volume of the layer into a discrete set of blobs of vorticity, which later are disipated. This provides implicitely an additional mechanism of transport of angular momentum leading to saturation of the velocity in the sheared layer. When the amplitude of the double spiral from the transient KH event is high enough, the threshold given by the topological bound Eq.(bound) is overcomed and the double spiral transforms into a ring vortex whose stability is protected by the topological bound.

In the local coordinate system attached to the double spiral, the evolution consists of a contractive motion of the tip of the spiral, toward the center of the spiral
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This is actually a pinch of the full structure and consists of the stretching of the initial plasma element along the path of the spiral with simultaneous advancement of the rotating spiral body toward the center (diffusion takes place simultaneously). The radial compression  
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  is determined from the spiral field
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The wavenumber of the spiral is  
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  and the winding number of the spiral is given by the angle between the tangent to the spiral and the circle centered at the center of the spiral  
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 . This is a trailing spiral, that come from exterior and arrive in the center  
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 . The parallel current is pushed to the parallel direction by the local pinch of the vorticity associated with the evolution of the double spiral in a KH event. Being a transient event and at low collisionality, the only damping of the current in the parallel direction comes from the poloidal magnetic pumping, but this is reduced because the squeezing factor is high, due to the strong radial electric field in the sheared velocity layer. The current in the parallel direction being enhanced from the vorticity pinch (in the double spiral) it will provoke a local magnetic structure that will produce a swirl, and this swirl enhances the stabilization of the vorticity filamentation process.

This dynamics can explain the formation and stabilization of the vortical structures inside the layer of poloidal rotation but we still need to explain the break up of the layer. Two processes can be invoked, both leading to dynamics which is typical for the Chaplygin gas with strange polytropic or negative temperature. They have been discussed by Trubnikov [8] and by Bulanov and Sasorov [9].

The concentration of the vorticity in the rotation layer induces a concentration of current density in the same layer, i.e. a current sheet (see Fig.9 of Burrell et. al [7]). The current sheet is unstable to the tearing instability and it can be torn apart into strips of current. The geometry adopted by Trubnikov [8] is adequate for studying the tearing of the particle density distribution in the layer. The width is initially  
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  and it evolves to a profile  
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  which is variable along the direction  
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  of the layer (poloidal). The coordinate  
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  is perpendicular on the layer in the equilibrium position (radial). The magnetic field has a shear  
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  (this should be the Harris profile) and the  
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  component of the magnetic potential  
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  in the unperturbed state. The magnetic field has the magnitude  
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  at the upper and lower limits of the layer (with opposite directions).

The process consists of the deformation of the profile of the leyer  
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 . In the layer there is the current and on every unit length of the layer along  
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  the total current is  
[image: image45.emf]i

z

0

 .

The first assumption is that in the long wave limit the magnetic field at the surfaces of the deformed layer does not differ too much of  
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 . Then the total current per unit of  
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 -length is always the same  
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We note that the product  
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  is actually the density of the plasma and the equation of continuity is  
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  where  
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  is the velocity of plasma along the direction of the layer,  
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 . One can introduce a normalized density of plasma  
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  and the previous equation becomes the usual density conservation 
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The equation of motion is
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The system is invariant along the 
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 direction which means that the generalized momenta of the electrons and of ions are conserved 
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The difference of the two velocities is obtained from the continuity equation, expressed in terms of the quantity  
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  and the equation of motion becomes
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The constant is  
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 . This is a Chaplygin gas and is subject to the so-called  "drop-on-ceil" instability, known that transforms a uniform layer of density into a discrete set of patches with high concentration of the density separated by regions with almost vanishing magnitude of the density.

The equations (eq52) and (eq56) are solved by Trubnikov using a hodograph transformation. The formulas are
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  is introduced such that the unperturbed state is located at  
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 . Trubnikov obtains a solution that exhibits modulation of the particle density of the layer in the form of periodic, very narrow, quasi-singular maxima, between which the density is extremely small. The quickest growing solution is the periodic one
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The density varies between the limits
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The solution describes periodic hills whose maxima become infinite at  
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The break up of a strong current shear ( 
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 ) and the concentration of the current density in periodic filamentary structures has been studied by Bulanov and Sasorov [9]. When a tearing takes place and a strip of width  
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  on the  
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  (poloidal) direction is formed, the motion of the edge of the tear  
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This velocity is higher than the sound speed and shows that the tearing progresses very fastly, leading to the vanishing of the current density  
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  on large poloidal intervals and concentration to quasi-singular value of  
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  at certain filaments which are disposed periodically.

This dynamics is particularly interesting since it starts from a perturbation of  
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  which can be produced by the stabilized vorticity filamentation discussed above. The two process mentioned above are strictly nonlinear, i.e. they cannot be identified perturbatively.

In conclusion, we summarize the connections that have been identified. The natural distribution of the vorticity in the meridional plasma section has a dipolar character but with circular symmetry, which means a ring of vorticity at the plasma edge. This state is not the absolute extremum of the action functional, therefore it still evolves and the concentration of vorticity is enhanced. Ertel's theorem and variational constraints impose that the particle density and the current density follow the vorticity such that they accumulate and create local maxima superposed on the layer where the vorticity is concentrated. Isolated KH events generate double spiral vortex structures, which can be stabilized in the form of a ring-type (tubular) vortex if a threshold is exceeded such as the topological constraint applies. The spiral stretching of the vorticity induces a transient current density increase, which is also favorable to the swirl stabilization of the vorticity filament. The current perturbation initiates a nonlinear tearing of the current sheet, leading to filamentation of the current density. These connections presents the possibility to generate filaments that are local maxima of the three parameters: vorticity, particle density and current density. The filamentation process is fast and is a possible explanation of the large ELMs.
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2.2.2. Combined effect of ratchet and curvature pinch on impurity evolution in 
tokamak plasmas

 
A considerable experimental, theoretical and numerical effort is dedicated to the understanding and control of impurity transport in magnetically confined plasmas. Impurity behavior is a complex problem related to confinement and transport of the bulk ions and electrons in plasma and to plasma-wall interaction. This is a very important issue for the development of fusion reactors. In particular, several models have been proposed for explaining the average velocity (also called pinch or direct transport) that was observed in experiments. A recent model for the direct transport in turbulent magnetically confined plasmas is the ratchet pinch proposed in [1]. The E×B stochastic drift of the charged particles was shown to determine a direct transport through a ratchet type statistical process. An average velocity appears if the magnetic field is space-dependent. The ratchet process is a generic name for a large class of average velocities that are generated by unbiased noise. This name suggests the motion of a circular saw with asymmetric saw-teeth. We have shown in [1] that the stochastic E×B drift velocity produced by a stochastic potential φ and a strong confining magnetic field that is space-dependent produces a ratchet effect. We have also shown that this ratchet process has the property of current inversion: the sign of the average velocity VR depends on the parameters of the stochastic potential. This velocity is in the direction of the gradient of the confining magnetic field and its sign depends on the characteristic parameters of the turbulence represented by the Kubo number K: against (positive) at small K and along (negative) for K>1. The Kubo number is the parameter that accounts for the presence of trapped particles in the stochastic field, which perform almost closed eddying motion. Trapping appears at K≈1 and it becomes stronger as K increases. For typical tokamak plasma conditions the ratchet velocity is of the order of 1m/s and in principle it is large enough to have a strong influence on transport.

The ratchet pinch appears in test particle approach and thus it represents the effect of the non-homogeneity of the magnetic field on particle trajectories. We note that an additional effect appears when particle density is considered: the divergence of the velocity determines the modulation of the density along trajectories and the concentration in the regions where the divergence of the velocity is negative. This density concentration produces a pinch velocity, the curvature or turbulent equipartition pinch [2], [3]. This compressibility effect does not appear in the test particle approach and it makes the density pinch different of the test particle pinch. We have studied the general problem of the pinch induced nonhomogeneous magnetic field on a passively advected density in Ref. [4]. We have shown that the ratchet effect influences the density pinch and combines with the curvature pinch.

The aim of this project in 2008 is to study the combined effect of the ratchet and curvature pinch in turbulent plasmas taking into account particle collisions and an average velocity Vp that describes plasma poloidal rotation. 


We have derived in [4] the equation for the average density from the continuity equation using a method that takes into account the effect of the inhomogeneous magnetic field on particle trajectories. The formal solution for general characteristics of the turbulence was obtained and the average displacement was derived. We have shown that  the density pinch velocity is the sum of the ratchet and curvature pinches for both quasilinear turbulence and nonlinear regime:
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where D is the diffusion coefficient, VR is the ratchet pinch, Vc is the curvature pinch and LB is the characteristic scale of the magnetic field variation. This equation also shows that the curvature pinch in the nonlinear turbulence has the same structure as in the quasilinear case but contains the effect of trajectory trapping in the diffusion coefficient D=D(K). 

The average velocity VR and the diffusion coefficients were determined using a semi-analytical statistical approach, the decorrelation trajectory method [5]. The turbulent transport in magnetized plasmas is a strongly nonlinear process characterized by the trapping (or eddying) of the trajectories, which can determine a strong influence on the transport coefficient and on the statistical characteristics of the trajectories. Trapping produces non-Gaussian distribution of the displacements, memory effects and coherence in the stochastic motion. The decorrelation trajectory method and the nested subensemble approach [6] are able to describe these strong nonlinear effects. We have considered a complex model that contains collisions and plasma rotation. The calculations and the analyze of the nonlinear effects that appear in the average velocity and in the diffusion coefficient are presented in [7] and [8]. We present here a short review of these results.

The total average velocity in the presence of collisions is obtained as
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where V is the amplitude of the ExB stochastic velocity and 
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 is the collisional diffusion coefficient. The first term is the ratchet pinch influenced by collisions and the second one is the direct contribution of collisions due to the space dependence of the diffusivity χ induced by the magnetic field through the Larmor radius.  The dimensionless function g(K,χ₀) characterizes the nonlinear interaction between collisions and the stochastic E×B drift. The dependence of the absolute value of this function on K for several values of χ₀ is represented in Fig. 1 in loglog scale, compared to the collisionless case (the dotted line). A very strong influence of collisions is seen to appear from very small collisional diffusivity. For very small values of the collisional diffusivity VR-coll is much modified for K>1 (in the nonlinear regime of the turbulence), but very weakly influenced for K<1 (in the quasilinear regime). This regime is represented in Fig. 1 by the two solid lines, which correspond to very small collisional diffusivity (χ₀=0.01, and 0.05). These curves are superposed for K<1 and show significative increase of the pinch velocity at large K.    

Thus, a strong effect appears in the nonlinear regime for small collisional diffusivity that has negligible effect if the turbulence is quasilinear. It consists in the increase of the ratchet pinch at large K when χ₀ increases up to values of approximately 0.1.

    
At larger values of χ₀ the dependence is reversed and g(K,χ₀) becomes a decreasing function of χ₀ (see the dashed lines in Fig. 1). But at these values of χ₀ the average velocity is collision dominated. The second term in the above equation cancels the first term leading to VR-coll=0 for χ₀≅0.1 and at larger χ₀ the first term becomes a correction of the second.
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Figure 1: The absolute value of the nonlinear term g(K,χ₀) in the ratchet pinch in the presence of collisions as function of Kubo number for the values of the collisional diffusivity that label the curves. The dotted line is the ratchet pinch in the absence of collisions, the solid lines correspond to the weak collisional domain and the dashed lines to collision dominated regime

The poloidal velocity determines the decrease of the pinch velocity. The decrease appears only at large Kubo numbers if Vp<1 and in both regimes of K if Vp>1. The dependence on the Kubo number at large K is practically unchanged: it remains approximately as K-¹. In the presence of poloidal rotation and collisions, the pinch velocity becomes a complicated function of the three parameters χ0, Vp and K. In the weekly collisional nonlinear regime characterized by existence of trapped trajectories, the collisions produce the increase of the pinch velocity. They also can produce a second inversion of the sense of the average velocity at large values of K. The increase of the pinch velocity by collisions roughly compensates the decay due to Vp reaching at large K typical values that are of the order of those obtained in the unperturbed E×B drift.


    Thus, collisions and poloidal rotation can compensate their effects leading to ratchet velocities that are approximately the same as when both these perturbations are absent. There is however an important difference between the perturbed and unperturbed case. The ratio VR-coll-Vp/D  is much larger than its value in the unperturbed case, VR/D due to the strong decrease of the radial diffusion coefficient produced by the poloidal rotation. This ratio is the measure of the effect of the direct transport. The latter is dominant for large values of this parameters and leads to peaked probability profiles. The values of this parameter for the unperturbed E×B transport are small, of the order 1/2R for both quasilinear and nonlinear conditions. Much larger values are obtained in the nonlinear case for K>1 in the presence of a weak poloidal rotation. Collisions can also contribute to the increase of the ratio of direct to diffusive transport but the main contribution comes from the poloidal rotation, which strongly increase this ratio by decreasing the radial diffusion coefficient. The weak collisionality regime χ0<0.1 roughly corresponds to the range of the normalized collision frequency that appear in the measurements of the density peaking factor in H mode plasmas presented in [9]. The values of the poloidal velocity corresponding to the nonlinear regime are  ≲1000m/sec.


The effect of the pinch velocity Vn on the average density profile appears in the dimensionless parameter p=aVn/D (where a is the minor radius) rather than in the absolute values. This parameter, the peaking factor, is an estimation of the average density gradient determined by the equilibration of the advective and diffusive transport when the boundary fluxes are negligible. One obtains in these conditions a/Ln≅p, where Ln is the characteristic length of the average density. 

The curvature pinch contributes to the peaking factor with a constant value pc=a/LB≅a/R. In the quasilinear regime K<1 the ratchet pinch contribution is also constant so that the quasilinear peaking factor is constant. Its value is one order of magnitude smaller than the experimental values obtained on several tokamak plasmas, which are in the range [1.2,2].

The ratchet velocity and the diffusion coefficient are not proportional in the nonlinear turbulence with K>1. Consequently, the peaking factor is not constant but it depends on the characteristics of the turbulence through the Kubo number. However its values are very small (even smaller than the quasilinear one). An important property of the D and VR in the nonlinear turbulence is their strong dependence on weak perturbations produced by other components of the motion like poloidal rotation and collisions. We have shown that a weak poloidal rotation with a velocity smaller than the amplitude of the fluctuating E×B drift can lead to large values of the peaking factor. Particle collisions in the weakly collisional regime also influence the peaking factor through the contribution of the ratchet term. 

The conclusion of these studies is that impurity accumulation (density peaking) can appear due to the gradient of the magnetic field only in the presence of trajectory trapping and of a slow poloidal rotation, with velocity of the order of 103m/sec for JET plasmas. In these conditions, the presence of collisions determines a dependence of the peaking factor p that is similar to the JET H-mode database for the range of the effective collision frequency appearing there. The peaking factor p decays at weaker collisionality. These studies strengthen the idea that the impurity transport in tokamak turbulent plasmas is a nonlinear process with characteristics far from the Gaussian ones, with intermittent behavior and memory effects.
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