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1 Overview  

During the period January-December 2009, the theoretical and modelling research activity of 
the “Mathematical Modelling for Fusion Plasmas Group” of the National Institute for Lasers, 
Plasma and Radiation Physics (NILPRP), Magurele - Bucharest, Romania has been focalized 
on: 

Resistive wall modes stabilization, activity performed in collaboration with the Max-Planck - 
Institut für Plasmaphysik (IPP), Tokamakphysics Department, Garching, Germany, with the 
following specific objectives:  

• Optimisation in the calculation of the wall response (for a real 3D geometry, with 
holes) to external kink mode perturbations; 

• Investigation of different edge dissipation mechanisms with our  semi-analytical 
RWM model and code 

The objective of this research made in common with IPP Garching, Tokamakphysics 
Department, under the frame of ITM and TG-MHD task forces, is to advance the physics 
understanding of RWMs stability, including the dependence on plasma rotation, wall/plasma 
distance, and active feedback control, with the ultimate goal of achieving sustained operation at 
beta values close to the ideal-wall beta limit through passive and active stabilization of the 
RWMs.  
 

2 Results 

2.1 Optimisation in the calculation of the wall response (for a real 3D geometry, with holes) 
to external kink mode perturbations 

a) Fixed plasma with respect to the wall case 
We have continued our approach of calculating the wall response to an external kink mode 
perturbation with the help of a scalar potential (current stream function) [1- 5]. We have shown 
that such approach, necessitating the calculation of the unknown function over the wall volume 
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only, is more convenient than other approaches using a vector potential, to be determined in the 
whole space. Such point of view has been presented and accepted at the ITM General Meeting 
in Frascati, August 2008. 
 
A new curvilinear coordinate system (u,v,w), more suitable to describe a tokamak wall, has been 
defined, where two covariant basis vectors (ru, rv) are tangential to the wall surface and the third 
vector rw is normal to the wall surface, the following partial differential equation, describing the 
time evolution of the induced surface currents (i.e. the wall response to the external kink mode) 
has been written 
 

( ) ( ) 1 1 1h
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where d is the thickness of the wall and V is the scalar potential of the surface currents, defined 
such as 

; 0.si V n i= ∇ × ∇ • =
r rr

 

with I surface current density and ns the external normal to the wall. σ is the electric 
conductivity of the wall. The metric tensor has four components only, guu, gvv, guv and gww=d2. D 
is the 2D Jacobian at the wall surface: D=guu·gvv-(guv)2. 
The magnetic field contains two components: Bpl – the exciting component due to the external 
kink modes of the plasma- and Beddy – the field created by the eddy currents them self. Both 
have been taken into account in our calculations. 
 
Another considered model, describing the wall response to an external kink mode, is based on 
the formulation with the help of the magnetic vector potential A=Apl+Aeddy and leads to the 
following integro-differential equation, with the magnetic vector potential A and the scalar 
potential of the surface currents V as unknowns 
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Ue is the electric scalar potential to be determined from a Laplace type equation with Neumann 
boundary conditions. S is the wall surface. This model is now under our investigation. 
 
We have elaborated a new methodology to solve the PDE.  In Table 1, the running time 
obtained with the new method appeared to be with at lest one order of magnitude faster than a 
classical solving approach.  
 
To our knowledge, it is the first time that such a method, applied to the numerical solving of 
PDE, having the domain of application a curvilinear complex geometry, has been reported. 

  

Solving method  No. of grid points Running time [s] 

classical 101 x 101 103 

new 101 x 101     3 

classical 151 x 151 690 
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new 151 x 151   14 

Table 1. Comparison of running times between the classical solving method and the new 
method developed by us. 101x101 means: 101 grid intervals on “u” direction, 101 grid 
intervals on “v” direction. 

 
To check the accuracy of our method, we have used Stokes theorem by performing some line 
integrals and verifying the corresponding surface integrals. At sufficiently high number of grid 
points, an excellent agreement between both integrals has been found – overlapping up to the 6th 
significant digit. Besides this checking, we have imagined some simple cases permitting an 
analytical solution. The results of this accuracy test are given in Table 2. 
 
 

METHOD No. of grid 
points/order of 
approx. O(hn) 

Contour Integral 
around the wall 

Contour integral 
around a hole 

Scalar potential of 
the surface 
current V 

Analytical  -64.93939402267 -1753.363638612   -88.57368818753 

51x51 / 1 -64.93939402252 -1727.830192664 -88.10910495617 

51x51 / 2 -64.93939402246  -1753.163995570   -88.58057153492 

51x51 / 3 -64.93939402296  -1753.297066133   -88.56891335580 

101x101 / 1 -64.93938644007  -1740.487312817   -88.34391781803 

101x101 / 2 -64.93938664805   -1753.312709730    -88.57543866452 

101x101 / 3 -64.93939488308   -1753.346663857   -88.57247069322 

151x151 / 1 -64.93642505521  -1744.751658112   -88.42056389921 

 
 
 
Numerical 

151x151 / 3 -64.93912067249   -1753.340452717    -88.57441239957 

 151x151 / 3 -64.93940394442   -1753.355924635 -88.57313333700 

Table 2. Accuracy test with respect to an analytical case. 101x101 / 3 means: 101 grid 
intervals on “u” direction, 101 grid intervals on “ v” direction,  / 3 = O(h3) 

 
b) Rotating plasma case 
 
With the assumption that the plasma cross-section perpendicular to the moving direction is 
constant, by using the Minkowski formulation for the Maxwell equations and Ohm’s law, the 
following diffusion like equation has been obtained 
 

2( ) 1 [( ) ] ( )( ) .
eddy pl
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where Bpl is the perturbed magnetic field created by the external kink mode of the plasma, and 
 

, ,pl

v d dm n
r dt dtθ ζ θ ζ

θ ζ
= Ω − Ω Ω = Ω =

r

 

 
rpl is some plasma minor radius, and θ and ζ are the poloidal and toroidal angles, respectively. 
 
Next steps: 
• to finalize the rotating plasma case; 
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• to include in our model the interaction of the plasma and wall with the feedback and error  

coils, by using our concept of surface current [6, 7].  
  

 
 
 
 
 

1.2.3 Investigation of different edge dissipation mechanisms with our  semi-analytical 
RWM model and code 

We have considered the following edge dissipation mechanisms: (1) due to the anomalous 
plasma viscosity (2) due to charge-exchange with cold neutrals, (3) due to neoclassical flow-
damping, (4) due to sound-wave damping. 
 
For this task, we have continued to consider the seminal Fitzpatrick plasma model [8], with the 
standard large-aspect ratio, low β, circular cross-section tokamak plasma [9, 10, 11], we have 
drawn the linearized ideal MHD equations, by considering the following perturbed quantities: 
magnetic field, current density, plasma velocity, plasma pressure, plasma parallel stress tensor, 
polarization current and the neoclassical current [12, 13]. The perturbed quantities have to be in 
the frame of the standard assumptions in single-mode neoclassical theory. For the sake of 
simplicity, the plasma equilibrium has been considered as force-free (i.e., zero pressure gradient 
and zero diamagnetic current) 

2

0 0 0
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the magnetic field is expressed in second order approximation of the aspect ratio and as safety 
profile the well known Wesson profile [14] has been used. Even if really, the ideal external kink 
modes are driven by plasma pressure gradients, in this model, for sake of simplicity, these 
modes have been considered driven by current gradients. 
 
The following set of linearized ideal MHD equations have been used 
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 is the perturbed plasma parallel stress tensor, 
' in φγ γ= + Ω is the mode growth rate in 

the plasma frame, with n the toroidal wave number and φΩ the toroidal angular plasma 

velocity, ( )sc r the plasma sound speed, ( )rυ a plasma flow damping rate). 

The stability parameter considered in the following will be 
 
where nwβ  is the no-wall beta limit, pwβ  is the perfect wall beta 

limit, while cβ  is the current beta (if κ=1, then the RWM is 

stabilized, if κ=0 the RWM is not stabilized).   
  In Fig. 1, the RWMs stability boundaries in function of the toroidal plasma rotation for 
different plasma flow damping rates (due to charge exchange with neutrals) are given, while in 
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β β
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Fig. 2 the RWMs stability boundaries in function of the toroidal plasma rotation for different 
plasma neoclassical flow damping parameters are presented.  

The dissipation due to the sound wave damping (at the edge) is negligible as 
stabilization effect. 

The RWMs stability boundaries in function of the toroidal plasma rotation for different 
plasma edge perpendicular viscosities are reported in Fig. 3. 

 

Fig. 1 Stability parameter κ as function  
of the toroidal plasma rotation ΩΦ, for  
different plasma flow damping rates υ   
due to charge exchange with neutrals:   
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velocity, is the neutral density, is 
the charge exchange cross-section.
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Fig. 2 Stability parameter κ as function of the  
toroidal plasma rotation ΩΦ, for different 
neoclassical flow damping parameters 
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with ρ the plasma density (mass) and η0 the 
parallel ion viscosity. 
 

 
 
 
 
 
 
 
 
Fig. 3 Stability parameter κ as function of the 
toroidal plasma rotation ΩΦ, for different plasma 
edge perpendicular viscosities  
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 Conclusions:  

• by using a model with phenomenological damping parameters, there is no evident what 
kind of dissipation mechanism really is taking place. A numerical simulation will be 
necessary; 
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• after running scenarios for different dissipation mechanisms and with a very large scale 
of plasma parameters, we have to accept that the results obtained with our model, 
based on Fitzpatrick’s model do not correspond to experimentally realistic timescales 
and plasma rotation values (O(1%) ΩA) even if it offers some useful information on the 
plasma rotation influence on mode growth rate. Presently, this seems to be a general 
opinion. With this in view, we intend to start the developing of a new more realistic 
analytical model with a resonant resistive-visco-inertial layer inside of the plasma.
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