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Overview 
 

Two main subjects have been investigated : 

- The organization of the vorticity field into cuasi-coherent structures at the edge of the 

tokamak plasma 

- The filamentation process in the case of strong Edge Localised Modes 

The aim of the first part of the work is to determine the conditions of obtaining a regime of 

parameters that  allows to achive high confinement in tokamak plasma. Our approach is based 

on the idea that vorticity represents a self-ordered field. We study concrete problems of high 

interest for reactor plasmas: the peaking of density and respectively the fast drop of radial 

electric field at the edge of the plasma. These studies deal with several aspects of plasma 

evolution: generation of quasi-coherent structure by condensation at large scales, the energetic 

ground of the self-organization of the vorticity, threshold conditions separating distinct regimes 

of evolution of vorticity, density entrainment and relative functional extrema for stable vorticity 

profiles. Basically we use an original approach [1], which we have developed in the recent years 

and which has already produced effective results. This approach consists of formulating the 

vorticity field evolution as a field theoretical problem, based on a Lagrangian density. 

Numerical studies have been done with a high precision integration routine, since the equation 

is strongly nonlinear. This work is a contribution to the clarification of the role of coherent 

structures in reaching the H mode.  

Dynamics of the vorticity under variational constraints and natural rotation profiles 

A first  objective for 2009 was to investigate the effect of density-vorticity common dynamics 

(Ertel’s theorem) on the formation of a local maximum of density at the plasma edge in the H-

mode. The aim is to understand the dynamics of H-modes and the generation of Edge Localized 

Modes (ELM’s). The sheared rotation induces the suppresion of turbulent losses to a level that 

is very convenient for confinement of energy in the reactor. Understanding the formation of this 

layer of rotating plasma is therefore essential. 

 

 
STABLE ORGANIZED MOTION, COHERENT STRUCTURES AND TURBULENCE IN 
TOKAMAK PLASMAS 
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The High confinement regime depends on the formation of a layer of plasma that has a high, 

sheared poloidal rotation. This coresponds to a ring of vorticity.  We have previously identified 

such states resulting from the numerical solution of a differential equation [1]  

 

( ) )1(01coshsinh
2
1 =−+Δ ψψψ  

 

where ψ  is the electrostatic potential divided by the toroidal magnetic field. We have derived 

this equation from a field theoretical model of two-dimensional plasma and have obtained 

several convincing confirmation of its validity [2],[3].   

 

The role of the effective Larmor radius, which combines the diamagnetic and the rotation 

velocities, was investigated using computer solutions of the differential equation describing 

stationary states. The Ertel’s theorem was used to find to what extent the particle density is 

driven by the vorticity to develop a local maximum in the rotation layer. This corresponds to 

experimental results on the tokamak DIII-D and in general with the experimental observation 

that the layer of rotating plasma coincide with a pedestal where the gradient of the density is 

very high.  

The dynamics of the vorticity and density fields was studied and the natural vorticity profiles 

were determined using Eq. (1). It appears as an effective Larmor radius that combines the 

diamagnetic velocity and the poloidal rotation velocity. 

The field-theoretical formalism we have developed for plasma immersed in strong magnetic 

field (like in tokamak) has revealed an unexpected aspect: the reduced (Abelian) symmetry of 

the theory leads to a differential equation that is different of (1) and has the form 

 

( ) ( )( )1expexp −=Δ ψψψ  
 

where ψ is the streamfunction. Solving this equation we have found solutions of ring-type for 

the vorticity, therefore close to the H-mode distribution. It is necessary to investigate the space 

scales that are typical for such rings. The first estimations show that the sonic Larmor radius is a 

possible scale, and this means that the Kelvin-Helmholtz event evolving to a  rolling spiral can 

stabilize itself at the solution of the ring-type, since this one is topological, which means 

protected by a threshold (a lower bound for energy). The subject is important for the 

understanding of the saturation of the rotation both for H-mode and for the Internal Transport 

Barrier: the generation of vortices by nucleation in a sheared rotation layer.  

Filamentation events in the high confinement regimes 

All instabilities of drift-wave type are suppressed since thier growth rate is lower than the shear 

of the velocity. It is however supposed that in the layer there is a „peeling-balloonning” mode 
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that leads to the formation of the periodic structures which are similar to the Edge Localized 

Modes, observed experimentally. We propose a different concept, in which the current-density 

and the gradient of pressure are not necessarly the main factors. The breaking-up of this layer 

was investigated using the model of “drop-on-ceil” instability, with the purpose of comparing 

with the blobs of density that have been observed in several tokamak devices. 

We have investigated the stability of the layer of sheared rotation. It is shown that beyond a 

certain limit of shear, the layer becomes unstable to generation of vortices inside it. The 

nucleation of vortices is simply the redistribution of the vorticity in the volume, in a way which 

is more convenient energetically.  

However, more interesting from the point of view of the comparison with the experiments is the 

evolution of the nucleated vortices towards filaments. The filamentation covers the three most 

important aspects: vorticity, particle density, current density. 

 

The tearing of the density distribution in a layer of current 

 

The current sheets are unstable to the tearing instability and they can be torn apart into strip of 

current. The geometry adopted by Trubnikov is adequate for studying the tearing of the density 

distribution in the layer. The width is initially  0L   and it evolves to a profile  L   which is 

variable along the direction  x   of the layer. The coordinate  y   is perpendicular on the layer in 

the equilibrium position. NOTE. This means that  y   is radial and  x   is poloidal. 

The magnetic field has a shear  ( ) ( )L
y

x ByBB tanh0−==  . The current density is 

( )ezizz vvenj −= . Then 

viz − vez 
cB0

2enLt, x
 const

nL
 

Introduce a normalized density of plasma  ( ) ( )
00

,, Ln
xtnLxt =ρ   and we have the usual density 

conservation 

∂
∂t  ∂

∂x v  0
 

Under the assumption  ezthe vv �,   we have the equation of motion 

( ) ( )
x
Avv

cm
eBj

cnmx
vv

t
v

eziz
i

yz
i ∂

∂−=−=
∂
∂+

∂
∂ 1

 

We consider that the system is invariant along the  z   direction which means that the 

generalized momenta of the electrons and of ions are conserved 

′=−=+ const ,const A
c
evmA

c
evm ezeizi  

The equation of motion becomes 
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∂v
∂t  v ∂v∂x  e

mic viz − vez ∂A∂x  c0
2 1
3
∂
∂x

 

The constant is  ( ) ( )22
2
0 00

0
Ln

cB
mm

cm

ie

ec π+=  . We note the condition  Avc �0  . The two equations 

∂
∂t  ∂

∂x v  0

∂v
∂t  v ∂v∂x  c0

2 1
3
∂
∂x

 
are solved using a hodograph transformation. The picture below shows the filamentation of a 

layer of density as results from the solution derived by Trubnikov. 

 

 

 
 

Tearing of the current density layer 

 

It is a study of the nonlinear stage of the tearing instability which is made according to the 

method developed by Bulanov Sasorov. The initial state: a plane plasma sheet lying in the  

0=y   plane with a sheared poloidal (on  x  ) magnetic field. The current flows in the sheet 

along the  z   direction. It is assumed that the most important variation of all the quantities in the 

equilibrium, unperturbed state, takes place in the  y   direction, i.e. transversal to the sheet. 

For slow motion like in the tearing mode, the plasma is assumed neutral and  vvv ixex ==  the 

velocity along the layer, poloidal. The  z   current is dominated by the electrons,  ezv  , and this 

is connected with the initial state by the conservation equation 

vez − e
mec A  vez

0

 
This is actually the conservation of the generalized electron momentum along the symmetry 

direction,  z  . The equations are 
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∂v
∂t  v ∂v∂x  − e

mic Vz
0  e

mec A ∂A
∂x

∂n
∂t  ∂

∂x nv  0

∂2A
∂x2  ∂

2A
∂y2  4eL

c yn Vz
0  e

mec A
 

Where ( ) ( ) ( )000
izezz vvV −≡ . We need boundary conditions for the  z   component of the magnetic 

potential,  A  . These consists of assuming that at large distances in the transversal direction to 

the layer, on  y  , the poloidally oriented magnetic field becomes constant (this is like the Harris 

profile) ( )0
00

2
zLVen

c
B π= . Then ( ) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛+=
±∞→ y

OyByxA
y

1, 0 . Integrating the last (for  A  ) 

equation over the transversal direction, close to the layer,  0≈y  , we obtain 

∂A
∂y y0

 eL
e n Vz

0  e
mec A|y0

 
 

The following new variables are introduced 

D ≡ e
Vz
0 memi

A − B0|y |

N  n
n0

W  v
Vz
0

 

and a redefinition of the variables  xl
x →  ,  yl

y →  ,  
( )

tl
tVz →

0

 . Here  l   is the 

inhomogeneity scale in the initial perturbation. 

The equations become 

∂W
∂t  W ∂W∂x  − 1

2
∂
∂x 1  D2

∂N
∂t  ∂NW

∂x  0

∂2D
∂x2  ∂

2D
∂y2  0 for y  0

 
with the boundary conditions 

D|y→  O 1
y

 ∂D∂y  N 1  D|y0 − 1
 

The solution is determined as a series in powers of the small parameter  ε   

ft, x, y,  f 0t, x, y  f 1t, x, y  2f 2t,x, y . . .
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In the zeroth order it is derived the relationship between the potential  ( )0D   and the density  
( )0N   in the sheet 

D0x, y  0  −1  1
N0x

 
Using this zeroth order relationship we return to the equations: of motion (for  W  ) and of 

density conservation (for  N  ), 

( ) ( )

( )
( )[ ] 0

11

0
0

00

=
∂
∂+

∂
∂

∂
∂−=

∂
∂+

∂
∂

WN
xt

N
NxNx

WW
t

W

 
 

These are drop-on-ceil instability of a system similar to a Chaplygin gas with negative 

polytropic. A change of variables from the Eulerian variables  t, x   to the Lagrangian 

variables  t,  , 

( )
( )xtt

Wtx
,

,,
ξξ

ξξ
=∂

Θ∂=Θ+=  

The plasma density is 

N  1
1  ∂Θ/∂

 
It is assumed that at the initial time  0=t  , 

( ) ( ) 1,0,0,0 ====Θ ξξ tNt  

The change of variables from Eulerian to Lagrangian variables leads to 

∂W
∂t  W ∂W∂x Euler

 ∂W∂t Lagrange
 ∂

2Θ
∂t2

 
and 

1
N
∂
∂x

1
N Euler

 ∂
∂ 1  ∂Θ∂ Lagrange

 ∂
2Θ
∂2

 
This transforms the equation of motion in Eulerian variables into the equation 

∂2Θ
∂t2  ∂

2Θ
∂x2  0

 
The complex variable is introduced  its += ξ   and it is seen that the variables  

11, −=
∂
Θ∂=

∂
Θ∂

N
W

t ξ
 

are harmonic conjugate, which means that also  W   and N
1   are harmonic conjugate. 

The solution to the differential equation for the function  Θ   in the complex plane is 
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Θ, t  Re 
0

it
wsds

 

where the function  ( )sw   is analytic and is governed by the condition at the boundary on the 

real axis. 

w  it |t0  −
n 

1  n 
 i v 

 
Using the connection between  Θ   and  N   and  W  , and the solution for the harmonic 

function  Θ  , one finds 

( ) ( )[ ] ( ) ( )[ ]swtW
sw

tN Im,,
Re1

1, =
+

= ξξ  

The solution describes the evolution for  0>t   up to the moment when 

1  Rews  0 or


 

The meaning is: when  ( )[ ] 1Re −=sw   one has the case that the plasma density becomes 

infinite since the trajectory intersects itself. The other singular situation is  ( )[ ] ∞=swRe   

which means that the density vanishes, and the plasma sheet is torn. It is mentioned by Bulanov 

and Sasorov that the situation of one or the other of singularity arises in finite time  t  . 

The solution shows: (1) the sheet is torn apart after a finite time interval and (2) the density 

vanishes over a finite interval on  x  . 
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