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1. Overview 
 
Two milestones have been proposed for the present year to be studied and solved: 
11. Investigation of the RWM stability considering neoclassical viscous torque influence 

and following the penetration and amplification of non-resonant error field driven 
modes 

12. Determination of the plasma toroidal angular equation of motion 
 

 Within the frame of the first objective, a model for the influence of the error field 
penetration on the stability of the resistive wall modes (RWM) that contains non-resonant error 
field effects has been developed.  The aim of this objective was to demonstrate in an explicit 
manner the destabilizing influence of the magnetic error fields on the RWM and its 
corresponding neighboring modes (i.e. error field penetration) at marginal stability for a large 
aspect-ratio, low beta, weakly shaped tokamak plasma. The pattern of the error field penetration 
lies on the joint effect of the corresponding electromagnetic torque and the viscous torques (due 
to neoclassical toroidal viscosity-NTV) at the edge and within the bulk of plasma at the level of 
the so called resonant rational surfaces (the wave vector of the magnetic perturbation error is 
perpendicular to the equilibrium magnetic field at rational surfaces). Whereas the single mode 
theory explains the appearance of localized magnetic torques and, consequently, the localized 
braking of the plasma rotation via NTV, the observed global braking of the plasma rotation 
requires a multimode analytic model to be developed. The mode coupling effect appear to have 
a major role in explaining the non-resonant (coupled) error fields penetration, the global braking 
of plasma rotation and consequently, the RWMs destabilization near marginal stability. 
 The second objective goal we have fulfilled was to clearly illustrate the deceleration and 
finally the toroidal braking of the tokamak plasma toroidal rotation due to non-resonant 
magnetic error field strength. As a continuation of the first objective, we have obtained a plasma 
coupled analytic toroidal angular equation of motion at the level of each rational surface inside 
the plasma with respect to the coupling coefficients between neighboring modes.  
In the first objective's theoretical model, starting from the MHD instabilities dispersion relation, 
the solid increase of the harmonic perturbed flux amplitudes of the modes as the marginal 
stability is approached has been demonstrated. The error field presence is responsible for the 
above phenomenon. However the growth rate description type of the instabilities behavior 
(dispersion relation) is unable to describe the intrinsic influence of the magnetic error field on 
the plasma neoclassical toroidal viscosity (NTV). The error field augments the NTV 
destabilizing influence on MHD instabilities. In other words, the electromagnetic torques that 
develop at the levels of inner plasma inertial layers (at rational surfaces), due to the error field 
coupling phenomena, increase the destabilizing effect of the NTV torques at the non-ideal MHD 
layers we have mentioned. Consequently, the non-resonant (i.e. coupled) error field increases 
the NTV influence that brakes the toroidal plasma rotation locally, at the level of every plasma 
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inner rational surface. To describe the above processes and explicitly illustrate the global 
braking of the toroidal plasma rotation a dynamic theoretical model has been built. 
 
2. Detailed results 
 
2.1. Investigation of the RWM stability considering neoclassical viscous torque influence 
and following the penetration and amplification of non-resonant error field driven modes 
 

A multimode analytic cylindrical model has been developed starting from plasma equations that 
includes neoclassical, sound wave and dissipative particle collisions charge exchange effects. 
The combined effect of dissipative stabilization and neoclassical viscous torque destabilization 
is due to the toroidal component of the perturbed parallel neoclassical viscosity (NTV), 

( )||Πz ⋅∇⋅− , in a ( )zr ,,θ  cylindrical  coordinates system. The parallel stress tensor is 

( ) ( )3/:3/3 0|| InnvInnΠ
tt

−∇−−= η ,  where 0η  is the parallel ion viscosity, BBn =  and 

B  and v  are the equilibrium magnetic field and the perturbed plasma velocity, respectively. 
Keeping into account the expression of the safety factor θBRrBrq z 0/)( ≅ , for a low inverse 

aspect ratio 0/ Rr=ε , the normalized poloidal component of the equilibrium magnetic field is 

)()]cos1(/[/ 0 εϑθεεθ ++= qBB z . As a result, the total normalized equilibrium magnetic 

field is 
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where ),,0(0 zBBz θ= . The θ -dependence of B provides a small deviation from the 

cylindrical geometry allowing the inclusion of neoclassical effects into the calculus.  
The linearized MHD equations we use are 
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p,b  and j  are the perturbations of the magnetic field, pressure and current density, 

respectively. ρ  and sc  are the plasma mass density and the speed of sound in plasma. υ  

parameterizes the energetic exchanges in plasma as a result of the collisions of the particles. 
Suppose that all the perturbations have an ( ) ( )[ ]znmitt Ω−Ω+= θγγ 0expexp  dependence, 

where 0γ  is the instability growth rate, z,θΩ  the poloidal and toroidal rotation speeds at the 

level of ( )nm,  rational surface. We use the following parametrization of the plasma velocity: 

nnv ||v+×Φ∇= γ      (3) 

where Φ  is the poloidal perturbed magnetic flux and ||v  the parallel component of the plasma 

velocity. A Fourier-type description of all the perturbations is used ( 0/ Rz=φ ) 

( )[ ]∑ −=
nm

mn nmixx
,

exp φθ     (4) 

The feedback “component” of the system of equations has been subtracted from [1] to complete 
the global system of linearized equations, whereas the plasma part of the problem has been 
replaced by a new model, considering neoclassical effects. The feedback system for stabilizing 
the RWMs consists of a passive and an active shell. The assumption of a thin resistive shell 
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approximation is taken into account. The passive shell consists of two different incomplete and 
nonoverlapping resistive shells (aluminum and stainless steel) disposed in an alternative manner 
and angular toroidally uniform. The active system consists of a number of rectangular, radial 
thin coils and detectors centered at the same local coordinates, the magnetic flux measured by 
the detector being amplified and fed back into the coils.  
A complete linearized system that governs the RWM stability has been obtained: 
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mn
jkiP  and mn

jkiQ  contain all the information about plasma influence, whereas mn
jkiF  and mn

jkiG  

describe the feedback part of the problem.  jk
aΨ  is the normalized perturbed flux function at the 

plasma boundary ( ar = ) and drd jk
a

jk
a /'

Ψ≡Ψ . The poloidal number m  spans the ],[ 21 mm  

interval and the toroidal number n  the ],[ 21 nn  interval taken into account. From here, applying 
the zero determinant condition and using the Leibniz description of the determinants, the 
following polynomial equation in RWM growth rate has been obtained, in the absence of 
magnetic error fields: 
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( ) ( )[ ] ( ) ( )
( ) ( )[ ] ( ) ( )121

11

−−Θ−Θ+−Θ+−Θ

+−Θ−Θ+−Θ+−Θ=Γ

LssLLlGlLF

ssLLlQlLP

s
l
ss

l
s

s
l
ss

l
s

l
s

s

s

s

s

s

s

s

s

s

s

αα

ααα   (7) 

Θ  is Heaviside unit step function and ( )( )11 1212 +−+−= nnmmL . A new index ordering 

has been adopted so that the ( )βα ++ nm ,  mode becomes the ( )[ ]1112 +++− αβmm -th 
mode in the new ordering. The relations between the old and the new index are given by 

( )( )11 1211 +−−++−= mmnkmjls  and ( )( )11 1211 +−−++−= mmnnmms  [1].  

The RWM stability is not affected by the small amplitude error fields influence as long as the 
RWM is far from marginal stability. The following reasoning has been adopted: the main 
unstable harmonic (RWM) equation has been obtained taking into account an unlimited number 
of poloidal neighboring modes. We follow the development of perturbed MHD equations (2) 
around the ε  factor, considered small in the low aspect ratio approximation. The coupling is 
provided by the neoclassical dependence of the equilibrium magnetic field (1). In comparison 
with the main unstable harmonic, the adjacent modes are of )(εϑ  order less unstable and the 
instability decreases as the modes are more distant from the central harmonic. This is the 
physical reason for treating, on the other hand, the adjacent modes (less unstable) as single 
modes in separate equations. Nevertheless, the feedback system that surrounds the plasma 
couples the perturbed modes both poloidally and toroidally. 
Within the frame of the first part of the phenomena, the role of the NTV is double: destabilizes 
the RWM by neighboring mode coupling, but also stabilizes the modes by dissipation due to 
neoclassical flow damping. The profound global destabilizing effect of the NTV by braking 
plasma rotation as the RWM attains its marginal stability will be showed in the next report. 
Figure 1a presents the dependence of the )1,3(  RWM growth rate with the edge plasma rotation 
under the effect of sideband poloidal mode coupling for the HBT-EP tokamak case. Figure 1b 
presents the same dependence for sideband toroidal mode coupling. The plasma parameters are 
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found in [2], whereas the feedback parameters are those from [1]. The calculated relations (6) 
and (7) have been used. 

   
 (a)             (b) 

Figure 1. Growth rates of the (3, 1) unstable mode as a function of edge plasma normalized toroidal 
rotation in the absence of any sideband mode and in the presence of (a) one and two poloidal sideband 

modes and (b) two and four toroidal sideband modes. 
 

The destabilizing effect of mode coupling and the stabilizing effect of plasma rotation are 
obvious.  
By introducing static non-resonant error fields flux functions jk

errΨ  in the absence of plasma, 

that correspond to ),( kj  mode unstable at the level of its corresponding resonant rational 
surface, the following relation that includes field errors contribution at marginal stability has 
been obtained:  
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jk
aΨ  and jk

errΨ  are the renormalized perturbed plasma flux and the magnetic error flux at the 

boundary of the plasma respectively.  [ ] 2)/(1ˆ 2
10

j
w

jk ark −−−= , drdz jk
a

jk Ψ= ln  and 

[ ] 4)/()/( 2j
w

j
wwa ararr −−= , where wr  is the radius of the surrounding resistive wall.  

( )0Im γ  is the imaginary part of 0γ , i.e. the real frequency of the mode and, according to the 

experimental results, is around one order of magnitude lower than the level of plasma rotation. 
At marginal stability, the approximation ( ) ( ) ( )1201020 expexp tttt −≅− γγγ  holds, 2,1t  being 

integration times for perturbed equations. In conclusion, for marginal stability approximation, 
time integrated perturbed equations are independent of integration time, for static error fields 

jk
errΨ . 

By calculating the plasma level of rotation that corresponds to RWM marginal stability and its 
real frequency from RWM dispersion relation (6), the system of equations (5) becomes a non-
homogeneous overdetermined system in order to obtain the jkz  unknowns. The system has a 
unique solution if zero characteristic determinants condition is applied. With ( )0Im γ  and jkz  
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obtained, using equation (8), the non-resonant error fields influence on RWM and its sideband 
modes can be pointed out. 
It is known that mode locking together with global plasma rotation braking are the result of 
error fields influence predominantly localized near the outboard midplane of the plasma 
column. This localization facilitates the powerful coupling of poloidal perturbation modes. In 
the following, we shall assume sufficient plasma rotation levels as to overcome non-ideal 
behavior of the plasma in the vicinity of internal rational surfaces (driven magnetic islands). 
The non-resonant, global perturbed flux amplification is showed in Figures 2a and 2b. The 
central harmonic )1,3(  is accompanied by neighboring poloidal modes having 5,..,2=m  

(Fig.2a). No toroidal coupling is considered. As 0γ  goes to zero (marginal stability), the 

perturbed flux calculated at plasma boundary mn
aΨ ,  associated to each mode taken into 

account grows asymptotically. For each corresponding error field magnetic flux jk
errΨ , it can be 

seen that the sideband modes whose poloidal numbers are more positive that the central 
resonant mode number grow slower. On the contrary, the modes with more negative poloidal 
mode number grow faster. However, the RWM (central harmonic) is the most unstable mode 
under the action of a non-resonant error field. Figure 2b shows the same above dependence for 
the case of several different number of toroidal sideband modes that accompany the RWM. 
Unlike the pure poloidal coupling case, the more positive toroidal sideband modes grow faster 
comparing with the more negative toroidal modes.  

 
 (a)            (b) 

Figure 2. Central harmonic (3,1), (a) poloidal sideband perturbed flux amplitudes (m=2,..,5, no toroidal 
coupling) and (b) toroidal sideband perturbed flux amplitudes (m=2,3, n=1,..,5) as functions of 

0γ  at 

marginal stability, under the influence of a non-resonant error field. 
 

The poloidal coupling effect of neighboring modes on the central harmonic is shown in Figures 
3a and 3b. To estimate the poloidal mode coupling influence on the central perturbed harmonic 
mode under the influence of the error fields, a different number of poloidal sideband modes has 

been considered. Figure 3a shows the central 31
aΨ  dependence on its corresponding growth 

rate decreasing for different poloidal sideband modes taken into account. It can be pointed out 
that, in the absence of mode coupling, the resonant harmonic grows faster under the action of 
error field at marginal stability. Single mode theory is unable to determine the optimal error 
field spectrum to avoid mode locking. On the other hand, significant mode coupling with 



 

 

2009 Annual Report of the EURATOM-MEdC Association         76

sideband modes that have more positive poloidal numbers is more effective than mode coupling 
with sideband modes having more negative poloidal mode numbers, in the absence of toroidal 
mode coupling. 

 
  (a)             (b) 

Figure 3. Central harmonic (3,1) perturbed flux amplitude as a function of 
0γ  at marginal stability, 

under the action of a non-resonant error field in the absence and in the presence of one more negative, 
two and four more positive neighboring poloidal sideband modes without (a) and with (b) toroidal mode 
coupling )3,1( 21 == nn , respectively. 
 

 
  (a)             (b) 

Figure 4. (a) Central harmonic (3,1) perturbed flux amplitude as a function of 
0γ  at marginal stability, 

under the action of a non-resonant error field in the absence and in the presence of two, four and six 
neighboring toroidal sideband modes, respectively (with poloidal coupling, 4,3 21 == mm ); (b) Central 
harmonic (3,1) perturbed flux amplitude as a function of 

0γ  at marginal stability for different values of 

NTV ( 4,3 21 == mm , 7,1 21 == nn ). 

 
If the toroidal mode coupling is also considered, the same above dependence changes 
significantly, as one can see in Figure 3b. Additional (toroidal) coupling involve higher 
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effectiveness for coupling with more negative modes rather than coupling with the more 
positive ones. Concerning this aspect, it can be pointed out that the strength of the mode 
coupling is an important factor in choosing the appropriate effective error field spectrum.  
The toroidal coupling effect of neighboring modes on the central harmonic is shown in Figures 
4a. The central harmonic (3,1) behavior at marginal stability is optimized, in the sense of less 
instability, by the coupling with the more positive toroidal neighboring modes, in the presence 
of  an existing poloidal coupling. 
However, an important aspect can be stated from the above cases: the central harmonic 
amplitude is lowered by any type and strength of mode coupling. 
Figure 4b shows the expected NTV influence on modes destabilization and locking at marginal 
stability in the presence of non-resonant error fields: higher ion viscosity 0η  means higher 

amplitude for the central harmonic perturbed flux, due to the increase of the viscous torque and 
the corresponding joint effect with the perturbed electromagnetic torque.  The same dependence 
is valid for every sideband mode, not only for the central harmonic, meaning the global braking 
influence of NTV at the level of every resonant rational surface. 
 
Several conclusions can be tracked from the above dependencies. First, the optimal error field 
spectrum is dominated by the central resonant harmonic (Figure 2) and the sideband modes 
couple with the central harmonic mode in a manner that lowers the perturbed flux amplitude of 
the latter (Figures 3 and 4a). The sideband harmonics, as marginal stability is approached, 
couple back with the central harmonic to reduce its amplitude. Second, under significant mode 
coupling conditions, the optimal error field spectrum, in the sense of less instability, involves 
the prevalence of sideband neighboring modes that have more negative mode number 
comparing to the main harmonic (Figures 3b and 4a), under overall strong coupling conditions. 
Conversely, for the poloidal coupling case, in the absence of toroidal coupling (weak overall 
coupling), the more negative neighboring coupled modes are more ineffective than the 
corresponding more positive modes, in the sense of less instability (Figure 3a). With redefined 
notions of strong and weak coupling, one retrieves the conclusions found in the only paper, 
recently published [3], that investigate analytically, in a different manner, the non-resonant 
(multimode) error field influence on the RWM stability (only the poloidal case is investigated). 
The present model is able to extend the investigation to the toroidal case. Due to the calculus 
that includes both poloidal and toroidal mode coupling, the optimal error field spectrum can be 
determined. Finally, although NTV has a stabilizing dissipative effect as long as RWM in far 
from marginal stability (where small error fields have practically no effect on RWM 
stabilization), its global destabilizing aspect under error fields action as marginal stability is 
approached has been proved (Figure 4b). 
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2.2. Determination of the plasma toroidal angular equation of motion 
 
From the equations that describe the MHD instabilities behavior in vacuum [1], after a laborious 
calculus we have obtained the following dynamic system of differential equations: 
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The above equations show the interaction of the plasma MHD instabilities with the plasma 
external structures consisting of a feedback system (a passive and an active shell). Within the 
assumption of a thin shell approximation, the passive shell consists of two different incomplete 
and non-overlapping resistive shells (aluminum and stainless steel) disposed in an alternative 
manner and resistive toroidally uniform. The active system consists of a number of rectangular, 
radial thin coils and detectors centered at the same local coordinates, the magnetic flux 
measured by the detector being amplified and fed back into the coils. jkΨ  is the perturbed 
magnetic flux that corresponds to the (j,k) mode perturbation. The parameters jk

mniW  , jk
psu , jk

ttu , 
jk

tiu  , jk
siu , jk

mniA  and jk
mnE  give all the information about the position, disposal, resistive 

inhomogeneity and amplification amplitude concerning the feedback system that surrounds the 
plasma column.  0zΩ  is the plasma toroidal rotation in the MHD regions of the plasma and 

jk
errorΨ  describes the magnetic error field spectrum.  

From the plasma equations that describe the MHD instabilities behavior we have derived the 
following dynamic system of differential equations: 
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mn
jkis  and mn

jkit  are parameters that describe the intrinsic behavior of the plasma, including the 
viscous stress tensor influence.  
To solve the complete system consisting of the above two systems of equations in jkΨ  and 

rjk ∂Ψ∂  the jump of the radial derivative of the magnetic flux perturbation over the inertial 
layer is needed. Chang et al. [2] derived an analytic formula valid in cylindrical geometry. 
Adapted for the equilibrium magnetic field structure used here,  
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The calculated parameters sσ  and mm 'α  are 
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sr  is the minor radius that corresponds to the rational surface where the inertial layer develops, 

0/ Rrs=ε  and 0R  is the major radius of the plasma. mm 'α , i.e. the mode coupling parameter, is 
the main parameter responsible for error field penetration and NTV torque augmentation. 
Using all the relations above, we are able to obtain the following Laplace transformed complete 
system of equations: 
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where ( )),( trL jk

s
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s Ψ=Ψ , jk
mnip , jk

mniq  are plasma explicit parameters and jk
mnif  , jk

mnig  
feedback system explicit parameters. Hereinafter we use the Leibniz description of the 
determinants we have developed in [1] for the above system of equations 
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H is the Heaviside unit step function and ( )( )11 1212 +−+−= nnmmL , where 21 mmm ≤≤  

and 21 nnn ≤≤ . Within the new index ordering the mode ),( βα ++ nm becomes the 
]1)1[( 12 +++− αβmm -th mode.  

Their mutual relations are )1)((1 1211 +−−++−= mmnkmjlh  and 
)1)((1 1211 +−−++−= mmnnmmh .  

Conversely, we have  
 )]1/()1)[(1(1 12121 +−−+−−−+= mmlmmmlj hh , 
 )]1/()1)[(1(1 12121 +−−+−−−+= mmhmmmhm ,  

 )]1/()1)[(1(1 12121 +−−+−−−+= mmlmmmlj hh  

 )]1/()1[( 121 +−−+= mmlnk h  and )]1/()1[( 121 +−−+= mmhnn  
where [ ] denotes the integer part of a number. ( )Lll 21 ,...,sgn  is the sign of the permutations.  
The solutions of the Laplace transformed system of equations give the following Laplace 
transformed magnetic flux perturbations 
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for Ll 2,1=  (the index s refers to the rational surface that the inertial layer corresponds). l
sΔ  

has the same expression as sΔ  with h

h

l
hiΓ  replaced by the "error field term": 
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(17) 
Using partial fraction decomposition and the inverse Laplace transform we are finally able to 
obtain the general expression of the (m,n) magnetic flux perturbation at rational surface sr  
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where jτ  are the non-zero roots of the equation  0=Δ s  and 0L  is the corresponding 

polynomial degree. Recall that )1)((1 1211 +−−++−= mmnkmjl . The marginal stability 
has been chosen the initial condition, i.e. 0/)0,( ≅∂Ψ∂ i

s
mni tr  for any 0≥i .  However, due 

to the low values of the error field, the solution did not essentially change if the following initial 
conditions are chosen: 0/)0,( ≅∂Ψ∂ i

s
mni tr for any 1≥i  and )()0,( s

mn
errors

mn rr Ψ≅Ψ . 
 Following the Braginskii [3] description of the viscous stress tensor into parallel ( 0η ), 
perpendicular ( 1η and 2η ) and gyroviscous ( 3η and 4η ) components, the tensor elements are: 
 ijijijijijij WWWWW 4433221100 ηηηηη ++−−−=Π  
where 
 ( )( ) klkllkijjiij WnnnnW 3/3/)2/3(0 δδ −−=  

 ( )( ) ( )[ ] kllkjiijljjlkiikij WnnnnnnnnW 2/1 −+−−= δδδ  

 ( ) ( )[ ] klkiljjlljkiikij WnnnnnnnnW −+−= δδ2  

 ( ) ( )[ ] klmimkljjljmlkiikij WnnnnnW εδεδ −+−= )2/1(3  

 ( ) klmimkljjmlkiij WnnnnnW εε +=4  

 v⋅∇−∂∂+∂∂= klkllkkl xvxvW δ)3/2(// . 

B/Bn =  where B is the equilibrium magnetic field and v is the fluid velocity. After the space 
integration of the inertial plasma layer toroidal equation of motion, within the cylindrical 
approximation and negligible poloidal rotation (compared to the the toroidal rotation), the only 
significant viscous coefficient that matters is the perpendicular coefficient 2η . 
The toroidal angular equation of motion of the inertial layer is: 

 ( )∑ ΨΔΨ+Ω−=
∂
Ω∂

nm

mn
s

mn
s

ss
z

ss

z n
cRrcrt ,

*

0
2

0
22

2 Im
2

1
μ

η
ρ        (19) 

 
ρ is the layer mass density, Im is the imaginary part and * denotes the complex conjugate of a 
number. sss rc /δ=  where sδ  is the layer width. sδ  has been chosen as a fixed parameter, 
although magnetic islands width theory exhibits an explicit perturbed magnetic flux dependence 
on the former. The mentioned dependence is not relevant for our purpose and is beyond the 
scope of the present work. The first term on the left-hand side of the equation corresponds to the 
NTV torque that acts on the inertial layer whereas the second term defines the error field 
electromagnetic torque that finally increases the destabilizing influence of the NTV. 
Finally, after a straightforward calculus we have obtained the following analytic solution of the 
above equation 
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(20) 
where ( )[ ]s

mn
sj

mn
j j

ΔΔ−= → /lim ττβ ττ . A few observations can be made. First, the presence 

of the magnetic error fields changes the NTV dependence of the toroidal plasma rotation. 
Second, all the spectrum of the non-resonant error field contribute to the toroidal deceleration of 
a certain plasma inertial layer but only due to the mode coupling process. Consequently, it 
seems that the dynamic theoretical model of the single mode theory is unable to explain the 
error field penetration and NTV non-resonant magnetic braking effects phenomena, starting 
from marginal stability. 
To prove the above final relation correctness, for the well known Wesson profiles of plasma 
current and safety factor with 01.10 =q , 95.2=aq  (the safety factors on the magnetic axis 
and plasma boundary, respectively), 11 =m , 32 =m , the dependencies below have been 
drawn. The figures clearly show the plasma deceleration and rotation braking under error field 
penetration and NTV destabilizing influence. 

 
Figure 1: (3,1) inertial layer toroidal rotation rate (t is the  

normalized time, ) 
 
Figure 1 presents the (3,1) inertial layer toroidal rotation rate (the plasma boundary layer that 
theoretically explains the appearance and behavior of the external kink modes) under error field 
action (round symbols) and in the absence of the error field mode coupling (square symbols). 
The abrupt toroidal rotation braking caused by the highly increased NTV influence under error 
field penetration process compared to the normal decreasing behavior of the rotation rate under 
weak feedback stabilizing conditions can be clearly observed. 
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Figure 2: (2,1) inertial layer toroidal rotation rate (t is the  

normalized time, ) 
 
Figure 2 shows the above dependency for the inner plasma (2,1) inertial layer. The same abrupt 
deceleration of the plasma layer under the error field influence and NTV amplification effect is 
showed. 
To conclude, a full analytic dynamic description of the error field penetration and neoclassical 
toroidal viscosity non-resonant magnetic braking effects has been built. The analytic solutions 
for the components of the perturbed magnetic flux function have been found. The plasma 
toroidal angular equation of motion has been solved, an explicit analytic time-dependent 
solution being provided. We have showed that the error field penetration process is responsible 
for the increased destabilizing influence of the neoclassical toroidal viscosity on external and 
internal magnetohydrodynamic perturbations, caused by the global deceleration of the toroidal 
rotation of the plasma. The full spectrum of the non-resonant error field contributes to the 
damping of the rotation of every rational surface corresponding inertial layer due to the mode 
coupling phenomenon. The clear and explicit analytic obtained solution makes it possible to 
find the optimal less destabilizing error field spectrum as well as the optimal choice for the 
feedback parameters in order to provide stability. 
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