
 

 

2009 Annual Report of the EURATOM-MEdC Association         148

 
 
 

 
 
 

T. Craciunescu, I. Tiseanu, V. Zoita 
 

National Institute of Laser, Plasma and Radiation Physics, Magurele 
 
1. Overview 
 
At the JET Tokamak a major goal is the production and measurement of high levels of neutron 
emission from d-d and d-t fusion reactions. A variety of neutron diagnostics are used 
independently at JET to measure both fast and thermal ion behavior. The available neutron 
diagnostics include a neutron profile monitor consisting of a vertical and horizontal camera. The 
JET neutron cameras, a unique instrument among similar diagnostics available at large fusion 
research facilities, consist of two concrete shields of which each includes a fan-shaped array of 
collimators. These collimators define a total of 19 lines of sight, grouped in two cameras 
(horizontal and vertical).  The plasma coverage allows neutron the tomographic reconstruction 
of neutron emissivity spatial profiles in two dimensions. The reconstructions are useful for the 
study the thermal and beam-induced sources of neutron emission and to analyze the evolution of 
fast ion populations. However, due to the existence of only two fairly coarse views of the 
plasma, the tomographic problem is a highly limited data set one. This restricts the set of 
tomographic methods which can be used for the reconstruction.  

A reconstruction method based on the maximum likelihood (ML) principle was developed for 
solving the reconstruction problem during the year 2008 [1]. In 2009 the main research topics 
were focuse on:  

- Improvement,  adaptation for JET tomographic geometry and implementation of several 
reconstruction methods - maximum entropy (ME), a Tikhonov regularization (TR) 
approach, and a Monte Carlo back-projection algorithm (MCBP).  

- Assessment of the quality of the tomographic methods for reconstruction of neutron and 
gamma emissivity. Development of a comparative study.  

- Diagnostics support in JET experimental campaigns based on tomographic validated 
methods. 

The methods have been tested on numerically simulated phantoms with shapes characteristic for 
this kind of tomography. The retrieval of sophisticated structures in the emissive distribution 
has been addressed in order to have a complete image of the quality and reliability of the 
methods. A both qualitative and quantitative evaluation is reported. Extensive work was 
dedicated to the assessment of all the developed methods on pertinent experimental data sets. 

The package of methods was used during the JET experimental campaigns. Diagnostics support, 
consisting in the reconstruction of the gamma emissivity distribution, was provided for fast ion 
studies. This demonstrated the usefulness of the package for inter-shot analysis.   

In conclusion we appreciate that the objectives of the project were reached. A package of 
tomographic methods was developed, adapted and implemented for JET neutron and gamma 
tomography. The validation of the methods was performed both on neutronic and gamma-ray 
data. The methods were used to provide support in JET experimental campaigns. It allowed the 

 
PROFILE RECONSTRUCTION TECHNIQUES FOR THE JET NEUTRON AND GAMMA-
RAY CAMERAS 
 



 

 

2009 Annual Report of the EURATOM-MEdC Association         149

retrieval of useful information needed during the experiments. 
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2. Detailed results 
 
2.1 Methods 

 

In 2-D tomography systems, measurements are taken along lines of sight and can essentially be 
represented by line integrals; i.e. the measurement p is given by straight line integrals of the 
emissivity ( )yxf , , where x  and y  are Cartesian coordinates of the plane. The emissivity 
function can be appropriately discretized on a 2-D grid. For this purpose, the reconstruction area 
is divided into pixels that are sufficiently small for emissivity variations within a pixel to be 
negligible. The weight matrix W  describes the geometrical layout of the detectors and its 
element ikw  indicates the contribution of the ith pixel to the kth detector. 

The basic set of tomographic equations is: 

d

N

i
iikk Nkfwp

p

,...,2,1   ,
1

=⋅= ∑
=

    (1) 

where pN and dN are the numbers of pixels and detectors, respectively. As the tomographic 

problem is highly undetermined, the reconstruction algorithm can lead to a solution which 
satisfy Eq. 1 but has no physical relevance and may bring about wrong interpretations. A priori 
information about the expected emission profile can be introduced in order to compensate for 
the lack of experimental information. Smoothness can be imposed on the solution of the 
tomographic problem as regularization. In order to prevent over-smoothing which may lead to 
the blurring of certain features in the reconstruction, it is necessary to find the smoothest 
function for which the misfit is equal to the estimated noise. We used a smoothing operator 
defined in Ref. 1which is implemented as one-dimensional median filtering, using a sliding 
window which moves on the magnetic contour lines. This smoothing operator does not need to 
be integrated in the objective function of the tomographic problem. It works directly on the 
reconstructed image, at different stages of the reconstruction process. This technique was an 
appropriate choice for this work, which deals with a variety of methods with different 
algorithmic formulations. Additional smoothing can be obtained by resampling the experimental 
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projection. Projection resampling implies the introducing of virtual lines of sight which ensures 
an improved coverage of the reconstruction domain.  

 

2.1.1 Maximum likelihood 

Bayesian statistics represents an appropriate framework for introducing the ML method. 
Bayesian inference provides a numerical measure of the probability of some event with 
consistent consideration for prior information. Bayes’ theorem supplies the rule for determining 
the posterior probability: 
 

( ) ( ) ( )
( )zpP

zfP
zfpPzpfP ,, =      (2) 

 
where f is a particular solution in view of experimental data p and additional parameters z (e.g. 
error bars). ( )zfpP ,  quantifies the probability of measuring data p if a reconstruction f and 

parameters z  are given. It represents the likelihood function, which contains the new 
information provided by the experiment. According to Bayes’ theorem, the likelihood has to be 
blended with the prior probability ( )zfP  based on the information z prior to any experiment - of 

getting the posterior probability distribution. ( )zpP  is not related to the maximal value of 

( )zpfP ,  and so will be treated as a constant for the present purpose. The most trustworthy 

reconstruction is that which maximizes the probability distribution ( )zpfP ,  (see Eq. (2)). If 

there is no a priori source information available, ( )zfP  can be assumed as constant, implying 

that all possible source distribution are equally likely, therefore maximizing the Bayesian results 
in the same way as maximum likelihood. In tomography problems, the likelihood probability 
density function follows the error statistics of the experimental data. If it is assumed that each 
projection ray p obeys Poisson statistics, with all of them statistically uncorrelated, the 
likelihood function ( )zfpP ,  has the form: 
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An efficient iterative solution of this nonlinear optimization problem was given in Refs. 2-3. 
The iterative ML algorithm works directly on the reconstructed image which is successively 
updated. This allows image manipulation, at each iteration, for introducing a priori knowledge. 
Therefore smoothing is applied, as described, at each iteration. 
 
2.2.2 Maximum entropy  

The maximum entropy (ME) has become a common regularization method and a widely 
adopted way to overcome the indeterminacy of ill-posed problems. ME can be derived starting 
also from the Bayes formula (2), by a different choice of the prior probability ( )zfP  and also of 

the likelihood function ( )zfpP , . The total lack of information about the emissive source 

assumed in the case of ML method is replaced by the simplest expert knowledge: the emissivity 
distribution have to be positive. Thus, within the Bayesian approach, this expert knowledge 
enters the analysis as prior distribution and contributes to the shape of the posterior distribution. 
On the basis of information theory, Skilling [4] have shown that the most uninformative and 
most unbiased prior is the entropic prior: 
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positive constant. The default model m  is that reconstruction where the entropy and the prior 
have their maximum, and to which f would default in the absence of any data. Possible prior 
information about the structure of the solution can be encoded in the default model. However, 
the usual approach is to consider complete prior ignorance, which means a flat distribution for 
m  ( constmi = ). The entropic prior is a positive and additive distribution function. 

The probability of obtaining a certain signal ( )fp , with f given, is defined by the error 
statistics appropriate to the respective experimental problem. Most of the data ( ){ }fp calculated 
with the forward transform (Eq. 1) from the manifold of conceivable sets { }f  are very different 

from the data p actually observed. The ‘misfit’ is characterized by the parameter 
2χ . For 

uncorrelated noise η  of the detector signals and Gaussian distribution with variance iσ , the 

likelihood function - the product of the likelihoods of each observation p  – becomes 
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with the largest posterior probability (Eq. (2)) corresponds to the maximum of 

( ) 2

2
1, χαα −⋅=Ψ Sf ;α  can be interpreted as a regularization parameter which controls the 

balance between prior information (default model), represented by the entropy term, and data 

constraints, represented by the misfit parameter 
2χ .  

The maximization of Ψ with respect to α  can be obtained introducing Lagrangean 
multipliers, which strongly reduce the computational effort. We used the procedure described in 
Ref. 5. The space of the variables is enlarged to { } { }dkpi NkPNif ,...,2,1|,...,2,1| == U  but the 

number of unknowns is reduced from Np to Nd. The equation: 
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subject to the constraints ( )kkk fpP = , is maximized. This leads to an unconstrained maximization 
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with respect to f , P  and λ . Maximizing with respect to f gives the Euler-Lagrange equation: 
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which constitutes an dN dimensional basis for possible reconstruction of f . The required 

Lagrange parameters, kλ , could be found after maximizing 
~
Ψ  with respect to λ  and P , which 

amounts to solving the nonlinear equation for λ : 
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The Jacobian '' / kkkJ λ∂Ψ∂=  of the expression is ∑+=
k

iikkillkkk fIIJ ''
2

' δασ  and is strictly positive. 

So Eq. (13) has a unique solution and can be efficiently solved by the Newton–Raphson 
method.  
Therefore the retrieval of the unknown image f implies the maximization of expression (8) with 
respect with the Lagrange multipliers λ. After finding the parameters λ  the image can be 
obtained using Eq. (7). As the maximization does not manipulate directly the unknown image 
f , smoothing can be applied straightforward only at the end of the iterative process. This has a 

limited effect and does not improve enough the quality of the reconstruction, especially for 
distributions with complicated shapes. ME algorithm may produce noisy reconstruction results 
compared with other kinds of reconstruction algorithms due to the absence of correlation among 
adjacent pixels.  Kim et al. [5] replaced the flat model m with the directly inverted model, 
obtained by inverting the weight matrix using the singular value decomposition (SVD) 
technique. The SVD-based initial guess of the reconstruction allows the adjacent pixels to link 
smoothly. This technique succeeds in enhancing the reliability of the algorithm and improves 
the quality of the reconstruction for a geometry with 16 projections and 192 bins in each 
projection. However for the JET geometry (2 projections with a total of 19 projection bins), 
which determines the highly indeterminacy of the tomographic problem, the directly inverted 
model is far from the desired solution. This may lead to a local solution during the 

maximization of ( )Pf ,,
~

αΨ   (Eq. 6). Therefore we used a multiple run procedure. We start with a 
flat model constm = . The smoothing procedure was applied after each full run of the ME 
algorithm  (solving Eq. 8). Then the reconstructed image was used, in a new run, as a default 
model, replacing the flat one. This procedure improves the robustness of the algorithm and the 
quality of the reconstruction. 
 
2.2.4 Tikhonov regularization 

The Tikhonov regularization is one of the most well-known form of regularization techniques 
for ill-posed problems. Assuming a matricial form of Eq. 1: pfW =⋅ , the Tikhonov 
regularization technique is seeking for a solution f , defined as the minimizer of the following 

weighted combination of the residual norm  
2pfW −⋅  and the 2-norm ( ) 2fL , where the matrix 

L is typically either the identity matrix I or a discrete approximation of the derivative operator 
(usually the first or second order derivative operator): 

( ) ( ) MINfLpfWf =⋅+−⋅=Ψ 22 λ    (9) 
λ  is a regularization parameter. It controls the weight given to minimization of the side 
constraint relative to minimization of the residual norm; λ  also controls the sensitivity of the 
regularized solution f ¸ to perturbations in W  and p , and the perturbation bound is proportional 
to 1−λ .  

Several choices of the operator L  were reported. Second order linear regularization 
2∇=L , where 2∇  is the Laplacian operator in two dimensions, is reviewed in Ref. 7. The 

gradient is minimized if first order linear regularization is chosen [see Ref. 7] 2'2')( yx fffL +=  

(where 
'

xf  and 
'

yf  are the partial derivatives with respect to x and y. ( ) ( )∑=
i i

i

f
ffL

2'  in case of 

Fisher information reconstruction algorithm [see Ref. 8], which can be viewed  as belonging 
also to the class of Tikhonov regularization methods.  The minimization of ( )fL  introduces 



 

 

2009 Annual Report of the EURATOM-MEdC Association         153

different intrinsic smoothing principle in the algorithm, depending on the particular choice of L . 
( ) 2fL  control the smoothness of the regularized solution, depending on the particular choice of 

L . Second order regularization selects the solution with least curvature. First order 
regularization minimizes the roughness of the reconstruction. Minimum Fisher information is 
essentially a smoothening principle just like linear regularization. The low value regions of f  
are more strongly smoothed, whereas smoothing is less pronounced where f  is high and 
therefore more reliable. In our approach we used IL = , where I is the identity matrix. Therefore 
the norm of the solution is minimized together with the residual norm (Eq. 9).  The smoothing 
effect is the one typically associated with a square integrable kernel. However, this intrinsic 
smoothing, not connected with the magnetic information, is insufficient to avoid global 
distortions in the reconstruction, generated by the limited experimental information. Therefore 
we used additional smoothing - median filtering smoothing on flux surfaces and projection 
resampling - as described previously. 
For solving (9) we used the method based on filter factors and the singular value decomposition 
(SVD). The method can be briefly described as follows. The general solution regf of the 

regularization problem can be written in the form [9]: 

       , where ∑∑ ===
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and iη  are filter factors for the particular regularization method. The filter factors must have the 

important property that as is  decreases, the corresponding iη  tends to zero in such a way that 

the contributions ( ) ii
T
i fspu / to the solution from the smaller is  are effectively filtered out [10]. 

Otherwise the solution is dominated by the terms in the sum corresponding to the smallest is . 
As a consequence, the solution has many sign changes and thus appears completely random. 
The difference between the various regularization methods lies essentially in the way that these 

filter factors iη  are defined. It can be shown  that for Tikhonov regularization with IL =  filter 
factors are: 

( )22 λ
η

+
=

i

i
i s

s and the filtering effectively sets in for λ<is .  The algorithm is 

complete if a method for choosing the regularization parameter λ  is defined. The regularization 
parameter was chosen such that the residual norm for the regularized solution satisfies: 
 

η=−⋅ pfW      (11) 

 
where η  is a good estimation of the noise accompanying the experimental data. An 
underestimate of η  is likely to produce an under-regularized solution with a very large norm 

while, on the other hand, an overestimate produces an over-regularized solution with too large 
regularization error.  
 
2.2.4 Monte Carlo back-projection technique 

This algorithm starts from an empty image 0=if . Then, mathematically "grains" of fixed 

intensities do are randomly allocated. The l -th grain is accepted in pixel i and therefore if  is 

increased with the quantity do if, for all corresponding projections kp , the following inequality 

is valid: ( ) 0≥−− ikik wdofp . The restored object is built up by such successive successful 
allocations. In order to generate the position where we try to allocate the grain, for the two 
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available projections, { }
horiz

kkp 10..1=
and { }

vert
kkp 19..11=

 two random numbers, horizk  and vertk  , respectively, 

are generated.  These two numbers select two projection rays and their intersection defines the 
point where we attempt to allocate the grain. A uniform generation of horizk  and vertk  has no 
connection with the experimental available data. So it is more efficient to generate the two 
random numbers using { }

horiz
kkp 10..1=

and { }
vert

kkp 19..11=
 as probability distribution functions. horizk  and vertk  

will be distributed preferentially where the cumulative sum ∑=
k

kpcumsum has a higher slope 

and kp reaches a local maximum. The generation of grain position by a procedure sensitive to 
the experimental data increases the speed of the reconstruction process. The magnitude of the 
quantity do is important for proper results. Building the image f with big grains will not allow 
the calculated projections ∑=

i
iki

calc
k wfp to be more than a coarse approximation of the 

experimental projections calc
kp  because of residuals. Obviously, the use of small grains will 

increase the computation time. 
 
3. Results and discussion 

The efficiency of each method has been tested using phantoms with shapes characteristic of JET 
neutron/gamma tomography and representative results are presented in Fig. 1. Each row 
corresponds to a phantom and its reconstruction - from left to right: the phantom and the ML, 
ME, TR, and MCBP reconstructions. The virtual magnetic contour lines used for reconstruction 
are superimposed on each image.  
The peak and hollow phantom are the most frequent distribution shapes encountered in 
experiments. However for a full characterization of the methods, more complicated shapes must 
be taken into account. Neutron emissivity profiles in case of DT experiments provide several 
challenging shapes for tomographic reconstruction. Three such shapes were used here: 
“banana”, symmetrically reversed “banana” and peak plus “banana”. The “banana” phantom 
corresponds to an experiment where the DT-neutron emission was measured in the ohmic 
deuterium discharge during the off-axis injection of the T neutral beam. The symmetrically 
reversed “banana” phantom is, from the tomographic point of view, a more difficult case. The 
diverging lines of sight corresponding to the horizontal camera are more widely spread in the 
"banana" region on the high field side and this results in a reduced information density leading 
to shadow effects: there are more possibilities in this region to distribute each detector signal 
among different cells than in the region close to the detectors and this may result in reduced 
spatial resolution. The peak plus “banana” phantom corresponds also to a DT experiment, where 
the profile was recorded just after a T-puff, and tritons partly penetrated to the plasma core from 
the periphery.  

Several figures of merit were used in order to complete the qualitative evaluation of the 
quality of the reconstruction with a quantitative one. A global evaluation of the reconstruction is 

given by the correlation coefficient which gives a comparison  between the phantom 
phf  and 

the reconstruction 
recf . This factor has the value 1 for an ideal reconstruction.  

The ratio emissR  between the total volume of the distribution given by the tomographic 
reconstruction method and the total volume of the phantom may assess the correctness of the 
total emissivity reconstruction, also by means of a single number.   
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Figure 1 – The test phantoms and their 
reconstruction. Each row corresponds to a 
phantom - from top to bottom: peak, hollow, 
“banana”, symmetrically reversed 
“banana” and peak plus "banana”. The first 
column corresponds to the phantom image, 
the other columns correspond to 
reconstructions obtained using the different 
methods used in this paper – from left to 
right: ML, ME, TR, MCBP.  
 

Finally, also a global evaluation is given by the 

comparison between the initial projections 
)(inip  

and the calculated ones
)(calcp ; projections

)(inip  were 

calculated using Eq. 1, where f is the phantom; 

projections 
)(calcp  were calculated using the same 

equation, but in this case f  represents the 
reconstruction. This comparison must be taken into 
account cautiously.  
For a good reconstruction a good agreement must 

exists between 
)(inip  and 

)(calcp . However, since a 
limited set of projections is available, a good 
agreement does not guarantee necessarily a good 
reconstruction. 
The assessment of the spatial resolution can be 
obtained by means of line profiles. The horizontal 
and vertical line profiles describe the image 
intensity variation along the horizontal and vertical 
axes of a coordinate system with the origin in the 
centre of the image. The main image features, for 
all the phantoms, intersect these two axes.  
Information about the quality of the shape and size 
reconstruction is given by line integrals, calculated 
along the magnetic contour lines, starting from the 
centre of the reconstruction and covering the whole 
image. 

The values obtained for the correlation 
coefficient corr  and the ratio emissR  describing the 

reconstruction of the total emissivity are given in 
Table 1 and 2, respectively. The other figures of 
merit, which allow a graphical representation, are 
illustrated in Fig. 2-3. 
 

 Table 1 - The correlation coefficient corr .  

Reconstruction method Phantom 

ML ME TR MCBP 

peak 0.993 0.990 0.989 0.996 

hollow 0.961 0.949 0.951 0.870 

“banana” 0.935 0.931 0.908 0.857 

symmetrically reversed 
“banana” 

0.875 0.861 0.836 0.832 

peak plus “banana” 0.874 0.667 0.837 0.844 
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Table 2 - The ratio of reconstructed volumes emissR . 

Reconstruction method Phantom 

ML ME TR MCBP 

peak 1.07 1.27 0.98 1.01 

hollow 1.23 1.28 1.05 2.05 

“banana” 1.30 1.56 1.64 1.85 

symmetrically reversed 
“banana” 

1.45 1.59 1.76 1.93 

peak plus “banana” 0.86 0.75 1.44 1.86 

 

Figure 3 – Figures of merit; each row corresponds 
to a phantom – from top to bottom: peak, hollow, 
“banana”, symmetrically reversed “banana”, 
peak plus “banana”; each column corresponds to 
a specific figure of merit – from left to right: 
horizontal line profile, vertical line profile, 
integrals along magnetic contour lines. 

Figure 4 – Projections calculated using the phantom 
and the reconstruction, respectively: peak (top-left), 
hollow (top-right), “banana” (bottom-left), 
symmetrically reversed “banana” (bottom-middle), 
peak plus “banana” (bottom-right). 

 
For the peak phantom, the most common distribution encountered in experiments, good 
reconstructions are obtained using all the methods. The ML method gives the best value for the 
root mean square difference between projections calculated using the phantom and the 
reconstruction. The TR method offers optimal results for the line profiles. The correlation 
coefficient and the ratio of reconstructed volumes finest results are provided by the MCBP. In 
fact, all the methods give accurate results, with similar values for all factors of merit. Similar 
remarks are valid also for the case of the hollow phantom with the exception of the MCBP 
method, which gives a reconstruction with lower spatial resolution. Finest results are obtained 
using the ML method except the ratio of reconstructed volumes for which the TR method gives 
the result closest to 1. It must be noticed that the ML method provides, for this distribution and 
also for the next ones, the most regular and symmetric shapes.  
The methods give significantly different results when the symmetry of the distribution, with 
respect to the two axes, is reduced or eliminated. The line profiles (both horizontal and vertical), 
but especially the contour line integral values proves that the best results, in case of “banana” 
and symmetrically reversed “banana” are obtained using the ML method. As far as the other 
methods are concerned, it is difficult to choose between the TR and ME methods. The images 
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show more similarity between the shapes reconstructed by the ME method and the phantoms. 
This is confirmed also by the values of the correlation coefficient. The images retrieved using 
the TR method are slightly distorted and affected by a central artefact. However, the TR method 
gives better values for the line profiles (both horizontal and vertical), and also for the contour 
line integral. But starting with the “banana” phantom, the TR method does not provide the best 

values for emissR  anymore. The MCBP method is able to reproduce the “banana” shapes but with 
the same low spatial resolution. The peak plus “banana” distribution is, from the tomographic 
point of view, the most complex and challenging structure. The only reasonable reconstruction 
is given by the ML method. The TR method looses spatial resolution and almost equals the 
MCBP method. Both methods prove unable to completely resolve the two features in the image. 
The ME method discriminates the two components in the image, but introduces shadow 
artefacts in retrieving the “banana” component which is also shifted and reproduced 
incompletely. The hierarchy of the methods is confirmed by the quality factors.   
The reconstruction time is an important parameter especially if the method is intended to be 
used in inter-shot analysis. The TR method is the fastest one (0.8 min), due to its formulation 
which involves pure matrix manipulation. Most of the computer time needed for this method is 
spent on smoothing. However, smoothing can not be avoided in order to obtain as correct as 
possible reconstruction. The computing time for the ML (3.5 min) is still practicable for inter-
shot analysis. The computing time is reported for a MATLAB implementation.  
The results of the comparative study concerning the assessment of the quality of the 
tomographic methods for reconstruction of neutron and gamma emissivity was published [11]. 
The package of methods was used during the JET experimental campaigns. Diagnostics support, 
consisting in the reconstruction of the gamma emissivity distribution, was provided for fast ion 
studies. Typical reconstructions obtained JET experimental campaigns are presented in Fig. 5. 
The results obtained during experiments contributed to two publications [12-13].  

 

Figure 5 – Typical reconstructions of the gamma emissivity distributions 
 
4. Conclusion 

In conclusion we can say that the comparative evaluation of the tomographic methods is able to 
establish a clear hierarchy of the tested methods. The evaluation has been performed with 
phantoms. These numerically simulated emissive distributions are characteristic for JET neutron 
and gamma tomography. They cover most of the range of possible distributions for this kind of 
tomography. Simple but frequent shapes are considered together with the retrieval of 
sophisticated structure in the emissive distribution which proved to be essential for a complete 
image of the quality and reliability of the methods. The evaluation reveals that the ML method 
is the only one able to encompass the reconstruction, with a good quality, of all structures of the 
emissive distribution. The ML method provides the finest results in terms of shapes 
reconstruction and resolution and produces artefact free images. For the simple shapes (peak 
and “banana”), the total emissive volume is better retrieved by the TR method. This can be 
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explained by means of the effects of the smoothing, which determines a blurring effect, 
superimposed on the image. The effect is stronger in case of the ML method where the amount 
of smoothing is increased: the smoothing operator is applied at each iteration, while for the TR 
method smoothing is applied only once, after the reconstruction. However, for more 
complicated shapes, the larger amount of smoothing becomes an advantage because it drives the 
reconstruction closer to the shapes to be recovered. For simple, but frequent experimental type 
of distributions (peak, hollow), all the methods provide good results. For this cases, if very fast 
reconstructions are needed (e.g. for a large amount of data processing), the TR method is an 
appropriate choice. The package of methods was used in order to provide support in JET 
experimental campaigns. It allowed the retrieval of useful information needed during the 
experiment.  
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