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involved in the field theoretical formulation

of fluid and plasma models

Florin Spineanu

Association EURATOM-MEdC Romania

F. Spineanu – Marseille 2008 –



Math. structures 2

Main idea : there exist preferred states of the system.
The system makes transitions between these states.

Quasi-coherent structures are observed in
• fluids (in oceans and in laboratory experiments)

• plasma (confined in strong magnetic field)

• planetary atmosphere (2D quasi-geostrophic)

• non-neutral plasma (crystals of vortices)

There are common features suggesting to develop models based on
the self-organization of the vorticity field. The fluids evolve at
relaxation precisely to a subset of stationary states.

It is found that besides conservation there is also action
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Coherent structures in fluids and plasmas (reality)

Rings of vorticity

(Leonard 1998)

Nice tornado vortex. Vortex ring emitted

by the volcano Etna.
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Coherent structures in fluids and plasmas (numerical)

Euler fluid: D.

Montgomery et al.

Phys. Fluids A4

(1992) 3.

Navier-Stokes fluid:

H. Brands et al. Phys.

Rev. E 60.

MHD : R. Kinney et

al. Phys. Plasmas 2

(1995) 3623.
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Compare the two approaches

Conservation eqs.
∂n

∂t
+ ∇· (nv) = 0

mn

(
∂

∂t
+ v · ∇

)
v = −∇p − ∇ · π + F

3

2
n

(
∂

∂t
+ v · ∇

)
T = −∇ · q − p (∇ · v) − π : ∇v + Q

Valid for : coffee, ocean, sun.

Lagrangian

L
(

xμ, φν , ∂ρφν
)

→ S =
∫

dxdtL

∂

∂xμ

δL
δ
(

∂φν

∂xμ

) −
δL

δφν
= 0

Valid for : a single system.
Just give the initial state.

Lagrangians are preferable. But, how to find a Lagrangian ? See Phys.Rev.
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Equivalence with discrete models
We will try to write Lagrangians not directly for fluids and plasmas but

for equivalent discrete models.

An equivalent discrete model for the Euler equation

dri
k

dt
= εij ∂

∂rj
k

N∑
n=1,n �=k

ωnG (rk − rn) , i, j = 1, 2 , k = 1, N (1)

the Green function of the Laplacian

G
(
r, r′

) ≈ − 1

2π
ln

( |r − r′|
L

)
(2)
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An equivalent discrete model for the CHM equation

The equations of motion for the vortex ωk at (xk, yk) under the
effect of the others are

−2πωk
dxk

dt
=

∂W

∂yk

−2πωk
dyk

dt
= −∂W

∂xk

where

W = π

N∑
i=1

N∑
j=1

i �=j

ωiωjK0 (m |ri − rj |)

Physical model → point-like vortices → field theory.
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This is a Lagrangian density

L = −κεμνρTr

(
∂μAνAρ − 2

3
AμAνAρ

)
−Tr

[
(Dμφ)† (Dμφ)

]
−V

(
φ†, φ

)

• Free field dynamics, separate kinetic terms for matter and gauge fields

• Explicitely invariant to space-time symmetries

• Covariant derivatives (minimal coupling)

• nonlinear self-interaction
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The potential Aμ (x, y, t) is a differential one-form called connection;

The field Fμν is the differential two-form, called curvature

We need the concept of fiber bundle to introduce these definitions.
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Differential manifolds
A differential manifold is a topological space, locally Euclidean,

paracompact and connex.

The basic property of the manifold M is that it is locally Euclidean,

which means that locally a manifold can be thought of as being a space

like Rn. We say that locally M is diffeomorphic to the space Rn. It is

defined a chart, which is the pair (Ux, φ) consisting of a neighborhood

Ux ∈ M of x and of a smooth function mapping this neighborhood on

Rn, φ : Ux → Rn. Two charts that overlap define transition functions,

φ2 ◦ φ−1
1 form the open subset φ1 (U1 ∩ U2) ∈ Rn onto the open subset

φ2 (U1 ∩ U2) ∈ Rn. When these transition functions are differentiable

the two charts are compatible.

The ensemble of charts is an atlas.
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Tangent and cotangent spaces to a manifold
Few notions

• Point of a manifold, neighborhood, functions defined on the

neighborhood and taking values in Rn, the modul of real functions.

• Tangent vector in a point x ∈M (mapping from the modul of real

functions to Rn, or derivative of a real function along that vector),

tangent space, vector field, tangent fiber space.

• linear mapping acting on tangent vectors. Differential forms, the

cotangent space.

A vector is understood abstractly as the tangent vector to a curve at a

point, the point and the curve being in the manifold.

The basis in the tangent space to a manifold is

∂

∂xμ
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Let Tp (M) be the tangent space in the point p at the manifold M . An

arbitrary vector

V ∈ Tp (M)

can be written in the form

V = V μ ∂

∂xμ

The basis of covectors (differential one-forms) in T ∗
p (M), the space

cotangent to M , is formed by

{dxμ}
such that we have in the inner product defined on the spaces Tp (M) and

T ∗
p (M) the product 〈

dxμ,
∂

∂xν

〉
= δμ

ν
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Higher-order differential forms
The wedge product.

Combining the dxμ’s antisymmetrically via the wedge product gives a

convenient set of bases for the spaces of totally antisymmetric cotensor

fields

dxμ ∧ dxν = dxμ ⊗ dxν − dxν ⊗ dxμ

dxμ ∧ dxν ∧ dxλ = dxμ ⊗ dxν ⊗ dxλ ± permutations

...

called n - forms in nth rank.

A p-form is a totally antisymmetric covariant tensor of rank p.

The space of all p-forms at the point x is

Λp (x)
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This is a vector space. Its dimension is

dim Λp =
n!

p! (n− p)!

= �p
n

It is equal with the number of combinations of n numbers taken in groups

of p, without repetition.

The basis in the vector space Λp (x) of p-forms is

{dxμ1 ∧ dxμ2 ∧ · · · ∧ dxμp} with μ1 < μ2 < · · · < μp

The operator of exterior derivation.

The exterior derivative generally takes n- forms to n+ 1 forms is defined by

∂

∂xμ
dxμ∧

and generates a minus sign when moved through forms of odd degree.
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Example

dα =
∂α

∂xμ
dxμ

is the exterior derivative of a zero-form, i.e. a function, α is the differential

of that function, expressed in the basis of independent differentials

(dx, dy, ...).

Example

d (αμdx
μ) =

∑
ν

∂αμ

∂xν
dxν ∧ dxμ

The convention is that the new dx goes in front. More detailed, let

us take a one-form α in a two-dimensional space

α = P (x, y) dx+Q (x, y) dy
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and calculate

dα =

(
∂P

∂x
dx+

∂P

∂y
dy

)
∧ dx+

(
∂Q

∂x
dx+

∂Q

∂y
dy

)
∧ dy

=
∂P

∂y
dy ∧ dx+

∂Q

∂x
dx ∧ dy

=

(
∂Q

∂x
− ∂P

∂y

)
dx ∧ dy

The exterior product of a differential one-form with itself is zero

dx ∧ dx = 0

Applying the exterior differentiation two times gives zero

dd = 0
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The Hodge dual of a differential form
It is defined in d -dimensions, to take p -forms to (d− p) -forms according

to

∗dxμ1 ∧ . . . ∧ dxμp =
1

(d− p)!
ε
μ1...μp
μp+1...μd dx

μp+1 ∧ . . . dxμd

For d = 4 for example.

More generally, when the space has a metric tensor defined by

g

the Hodge dual is calculated with the formula

∗ (dxμ1 ∧ . . . ∧ dxμp) =
1

(n− p)!

√
ggμ1ν1···μpνpεν1···νpνp+1···νn

×dxνp+1 ∧ · · · ∧ dxνn

There is a property of the Hodge dual

∗ ∗ ωp = (−1)p(n−p) ωp
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Using the Hodge dual one can define an inner product on the space of

real forms

(αp, βp) =

∫
αp ∧ ∗βp

=
1

p!

∫
αμ1···μpβ

μ1···μp
√
gdx1 ∧ · · · ∧ dxn
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Maxwell equations and differential forms
The gauge field

A = Aa
μλ

a

is a matrix-valued 1 form

A = Aμdx
μ

called connection 1-form.The field strength tensor is the curvature

two-form

F =
1

2
Fμνdx

μ ∧ dxν = dA+ A ∧A
(we can say that it is a flux through a two-dimensional surface).

The Bianchi identity is derived by taking the exterior derivative of the

curvature

dF = d2A+ dAA−AdA = FA− AF

which can be written by defining the covariant derivative of the field

strength

DF ≡ dF + [A,F ] = 0
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For gauge transformations

g (x) : M2n → G

we have

A → A′ = g−1 (A+ d) g

F → F ′ = dA′ +A′ ∧A′ = g−1Fg

For an infinitesimal gauge transformation

g ≈ 1 + v where v = vaλa

we have the corresponding infinitesimal transformations

A → A+ dv + [A, v] = A+Dv

F → F − [v, F ]
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The vector-tensor form of the Maxwell equations

Jβ = ∂αF
αβ

0 = ∂γFαβ + ∂βFγα + ∂αFβγ

where

∂μ ≡
(
∂

c∂t
,∇
)

∂α∂
α = d ’Alambertian operator

Jβ = (cρ, j)

Aμ = (φ,A)

Fαβ = ∂αAβ − ∂βAα

Fαβ =

⎛⎜⎜⎜⎜⎜⎝
0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0

⎞⎟⎟⎟⎟⎟⎠
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Using differential forms

dF = 0 (the Bianchi identity)

d ∗ F = ∗j

Here j is a differential one-form and ∗j is a differential three-form,

satisfying

d ∗ j = 0

where natural units have been assumed, with ε0 = 1.

The definitions

F = Exdx ∧ dt+ Eydy ∧ dt+ Ezdz ∧ dt
+Bxdy ∧ dz + Bydz ∧ dx+ Bzdx ∧ dy

G = −Bxdx ∧ dt−Bydy ∧ dt−Bzdz ∧ dt
+Exdy ∧ dz + Eydz ∧ dx+ Ezdx ∧ dy
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The sources S = jxdy ∧ dz ∧ dt
+jydz ∧ dx ∧ dt
+jzdx ∧ dy ∧ dt
−ρdx ∧ dy ∧ dz

We can say that

S = jx (∗dx) + jy (∗dy) + jz (∗dz) − ρ (∗dt)
= ∗j

The equations are

dF = 0

dG = −S

We also have
1

4
Tr
(
F̃μνF

μν
)

= E · B
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Fiber bundles
The official definition (Novikov)

Let (E, π,M) be a triplet where E and M are differential manifolds,

π : E →M is a differentiable surjection and

1. for any p ∈ M the set Ep = π−1 (p), called fiber above p, is a

vectorial space of dimension m.

2. it exists a covering by open sets {Uα} of the base M and the diffeo-

morphisms Gα : π−1 (Uα) → Uα × Rm and

Gα,p = Gα|Ep : π−1 (p) = Ep → {p} × Rm

is an isomorphism of vectorial spaces.

Then the triplet (E, π,M) is called vectorial fiber space with base M ,

projection π and total space E. The space Rm is the fiber of (E,π,M).
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The covariant derivative
Consider (Madore) a complex field that describes some physical quantity

defined over a manifold. The phase of ψ can be modified by multiplying

with g ≡ exp (iα) which is an element of the group U (1)

ψ = gψ
′

However this can be done independently in every point on the basis

manifold, with different values of α (x). Since now the phase shift

introduced by these transformations would contribute to the derivation at

xμ, the Lagrangian expressed in terms of usual derivatives will not be left

invariant by these transformations. The Lagragian remains invariant if it is

expressed in terms of covariant derivatives, since these commutes with the

transformation g:

Dμ

(
gψ

′)
= g

(
D

′
μψ

′)
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where

Dμ = ∂μ + ieAμ

D
′
μ = ∂

′
μ + ieA

′
μ

The invariance is obtained because the potential Aμ transforms as

A
′
μ = Aμ +

1

e
∂μα

which is the usual gauge transformation for the electromagnetic potential.

The covariant derivative operators, as opposed to usual derivations, do not

commute

[Dμ,Dν ] = ieFμν

where

Fμν = ∂μAν − ∂νAμ

This formulas are valid only if the group (here U (1)) is Abelian.

More generally, the transformations made in every point may be

non-Abelian. Then the covariant derivatives are defined as (we suppress
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from the definition the factor ie)

Dμψ = ∂μψ + [Aμ, ψ]

(where we admit that also ψ is in the representation of the non-Abelian

group). The transformation

ψ = gψ
′

when g is from a non-Abelian group like SU (2),

A
′
μ = g−1Aμg + g−1∂μg

and the field tensor becomes

[Dμ, Dν ] = Fμν

Fμν = ∂μAν − ∂νAμ + [Aμ, Aν ]

with the transformation

F
′
μν = g−1Fμνg
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When the field is zero

Fμν ≡ 0

the potential takes the form of a pure gauge

Aμ = g−1∂μg

We recognize the elements of a fiber space: the basis manifold M is the

Minkowski space R2 × R, the fiber is the group manifold, for example

SU (2), the group of automorphisms of the fiber is again SU (2) (principal

fibration). The total space of the fiber space is locally a Cartesian product

M ×G. Then one can define a connection one-form

ω = g−1Aμgdx
μ + g−1dg

for which the curvature two-forms is

Ω = dω + ω ∧ ω
=

1

2
g−1Fμνgdx

μ ∧ dxν
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Groups and algebras
The structures:

• group (Lie, continuous). It is in the same time a group and a manifold

• ring

• module

• algebra: the generators are the independent vectors in the tangent

plane at the manifold of the group, in the idenity element

The dimension of a simple Lie algebra is the total number of linearly

independent generators.

The rank of the algebra, r, is the maximum number of simultaneously

diagonalisable generators of a simple Lie algebra (or the number of

generators that commute between them). For example, SU (2) has rank 1.

And SU (N) has rank N − 1. The rank is the dimension of the Cartan

subalgebra, denoted usually H.
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In the Cartan-Weyl analysis the generators are written in a basis where

they can be devided into two sets:

• the Cartan subalgebra, which is the maximal Abelian subalgebra of

G (a maximal set of commuting generators). It contains r

diagonalisable generators Hi, i = 1, ..., r

[Hi, Hj ] = 0 , i, j = 1, ..., r (3)

This type of generators is similar to the z component of the angular

momentum, J3.

• the remaining generators of the algebra G are defined such as they

satisfy the eigenvalue problems

[Hi, Eμ] = αiEμ , i = 1, ..., r (4)

These generators are divided into two classes, exactly as the ladder

generators.

In the case of SU (2) the Cartan subalgebra has a unique element: is
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actually the projection of the intrinsic angular momentum along the

reference axis. Elements of the Cartan subalgebra generate U (1)

symmetries, as rotations around these axis.

The rest of the generators of the Lie algebra, which are not in the Cartan

subalgebra, are generators like the ladder operators, rising and lowering

the angular momentum projection along a particular axis

J± =
1√
2

(J1 ± iJ2)

The commutations are [
J3, J

+] = J+[
J3, J

−] = −J−

[J3, J3] = 0[
J+, J−] = J3
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A topological field theory: the sigma model
In 2D we have a field φ which is a vector of absolute magnitude 1,

attached to any point of the plane. For any xμ ∈ R2 we have

φ ∈ R3 (vector with three components)

φ2 − 1 = 0

The Lagrangian density is

L =
1

2
(∂μφ) · (∂μφ)

the product is scalar for the components of φ. The model (which is the

planar Heisenberg ferromagnet) consists in attaching to every point of the

plane (x, y) a vector of length 1 which points to an arbitrary direction

represented locally by a sphere with angle coordinates (θ, ϕ).

The compactification of the background space-time manifold.

The base space and the space of internal symmetry are now both spheres.
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The field φ associates to any point of the compactified plane (the basis

sphere) a direction in the space of internal symmetry, i.e. a point on a

sphere. Then φ represents a mapping from a sphere to a sphere

S2 φ→ S2

The family of such mappings is divided in classes of equivalence, since a

sphere can cover a sphere only an integer number of times,

n ∈ Z

We have the structure of fiber space

SU (2) ∼ S2 × U (1)

The curvature of this fiber bundle is

c1 = − 1

8π
εμν (φ× ∂νφ) · ∂μφ dx1 ∧ dx2

The integral of c1, the first Chern class, on the sphere gives an integer,

which is −n.
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The action functional is written as∫
R2

(∂μφ− εμρφ× ∂ρφ) (∂μφ− εμρφ× ∂ρφ) d2x ≥ 0

it follows that the action satisfies the bound condition

S ≥ 4πn

The extremum of the action is obtained directly, without the necessity of

writting the Euler-Lagrange variational equations, but simply reading off

from the bound condition

∂μφ− εμρφ× ∂ρφ = 0

The field φ is self-dual.

Two solutions with winding numbers n and n
′

cannot be deformed one

into the other, or, equivalently, there are infinite potential barriers

separating classes of solutions.
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