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(Quasi-coherent structures are observed in

e fluids (in oceans and in laboratory experiments)
e plasma (confined in strong magnetic field)
e planetary atmosphere (2D quasi-geostrophic)
e non-neutral plasma (crystals of vortices)
There are common features suggesting to develop models based on

the self-organization of the vorticity field. The fluids evolve at

relaxation precisely to a subset of stationary states.

It is found that besides conservation there is also action
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Coherent structures in fluids and plasmas (reality)

Geoff Mackley

Rings of vorticity Nice tornado vortex. Vortex ring emitted
(Leonard 1998) by the volcano Etna.
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Coherent structures in fluids and plasmas (numerical)

t=196 t=374

Euler fluid: D.

Current at t = 1540.0 WVorticity ot t = 1540.0

MHD : R. Kinney et

Montgomery et al. Navier-Stokes fluid: al. Phys. Plasmas 2
Phys. Fluids A4 H. Brands et al. Phys. (1995) 3623.
(1992) 3. Rev. E 60.
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Compare the two approaches

Conservation egs. Lagrangian
% ivv) = o0 (ot 6", 0p6") — 5= [dvdtc
ot
o 6] oL S L 0
mn | — v -V ]|v = —Vp—-—V.m F v o -
<6t+ ) " " ot 5 (Fow) ¥
3 o . .
5”<5+"'V>T = “Viamp(Vev)mwmi Vvt Q Valid for : a single system.

Valid for : coffee, ocean, sun. Just give the initial state.

Lagrangians are preferable. But, how to find a Lagrangian ? See Phys.Rev.
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We will try to write Lagrangians not directly for fluids and plasmas but

for equivalent discrete models.

An equivalent discrete model for the Euler equation

N

CZ’I";;C Y 8
dt

wnG (v —1y) ,1,j=1,2, k=1 N (1)

a0
ark? n=1,n#k
the Green function of the Laplacian

G (r,r') %—%lnorzr/‘) (2)
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An equivalent discrete model for the CHM equation

The equations of motion for the vortex wy at (xg,yx) under the
effect of the others are

2w da?k 8W
— 27 - — -
g dt Gyk
5 dyp. ow
g dt 8$k
where
N N
W = WZ Zwiw]Ko (m|r; —rj|)
i=1 j=1
]

Physical model — point-like vortices — field theory.
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This is a Lagrangian density

L = —ge"PTr (8,,,A,,Ap — %AMA,,AP>
~Tr [ (D*9)" (Do)
v (')

e Free field dynamics, separate kinetic terms for matter and gauge fields
e Lixplicitely invariant to space-time symmetries
e Covariant derivatives (minimal coupling)

e nonlinear self-interaction
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The potential A" (x,y,t) is a differential one-form called connection;

The field F'*” is the differential two-form, called curvature

We need the concept of fiber bundle to introduce these definitions.
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Differential manifolds

A differential manifold is a topological space, locally Euclidean,
paracompact and connex.

The basic property of the manifold M is that it is locally Euclidean,
which means that locally a manifold can be thought of as being a space
like R"™. We say that locally M is diffeomorphic to the space R". It is
defined a chart, which is the pair (U, ¢) consisting of a neighborhood
U, € M of x and of a smooth function mapping this neighborhood on
R", ¢ : U, — R". Two charts that overlap define transition functions,
(2 © qbl_l form the open subset ¢1 (U1 NUsz) € R™ onto the open subset
2 (U NU2) € R™. When these transition functions are differentiable

the two charts are compatible.

The ensemble of charts is an atlas.
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Tangent and cotangent spaces to a manifold

Few notions

e Point of a manifold, neighborhood, functions defined on the

neighborhood and taking values in R"™, the modul of real functions.

e Tangent vector in a point x € M (mapping from the modul of real
functions to R"™, or derivative of a real function along that vector),

tangent space, vector field, tangent fiber space.

e linear mapping acting on tangent vectors. Differential forms, the

cotangent space.

A vector is understood abstractly as the tangent vector to a curve at a

point, the point and the curve being in the manifold.

The basis in the tangent space to a manifold is

0

OxH
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Let T, (M) be the tangent space in the point p at the manifold M. An

arbitrary vector

VerT,(M)

can be written in the form 5
_ye Y
V=V oy

The basis of covectors (differential one-forms) in T, (M), the space

cotangent to M, is formed by
{d="}

such that we have in the inner product defined on the spaces T, (M) and

T, (M) the product
0
dz", — ) =6}
< v ’8x”> g
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Higher-order differential forms
The wedge product.

Combining the dx*’s antisymmetrically via the wedge product gives a

convenient set of bases for the spaces of totally antisymmetric cotensor

fields

dz" Ndx" = dz" @ dz¥ — dz¥ @ dz"
de" Adz” ANdx® = da* ® dzx” @ dz” + permutations

called n - forms in n*" rank.
A p-form is a totally antisymmetric covariant tensor of rank p.

The space of all p-forms at the point x is

AP (x)
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This is a vector space. Its dimension is

n!
p! (n —p)!
_

dim A? =

It is equal with the number of combinations of n numbers taken in groups

of p, without repetition.

The basis in the vector space AP (x) of p-forms is

{dz"* Ndx"?> N\--- Ndx"P} with p1 < pe < -+ < up

The operator of exterior derivation.

The exterior derivative generally takes n- forms to n 4+ 1 forms is defined by

a 1%

and generates a minus sign when moved through forms of odd degree.
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Example

oo

is the exterior derivative of a zero-form, 7.e. a function, « is the differential

of that function, expressed in the basis of independent differentials
(dx,dy, ...).

Example

d (o, dx™) Z 00 —dx” A dz"

The convention is that the new dxr goes in front. More detailed, let

us take a one-form « in a two-dimensional space

a=P(z,y)dr+ Q (z,y)dy
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and calculate

_ (op, . oP 0Q  0Q
da = (6xdx+ 8ydy>/\dx+<8a:dx+ 6)ydy)/\aly
e 0Q)
= aydy/\daz—l—a dx N dy
0QQ 0P
(ﬁx_8y>dx/\dy

The exterior product of a differential one-form with itself is zero

dx Ndx =0

Applying the exterior differentiation two times gives zero

dd =0
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The Hodge dual of a differential form

It is defined in d -dimensions, to take p -forms to (d — p) -forms according

to

1
«dx"t A ... NdxM'? = m GZ;;ﬁ?ud dz"rtt AL dxt

For d = 4 for example.

More generally, when the space has a metric tensor defined by

9

the Hodge dual is calculated with the formula

1 el
* (d™ AL ANdetP) = m\/ggm 1o Hp PEUL v vpupit v

xdx"PTt A .- Adx"

There is a property of the Hodge dual

xxwy = (—=1)P"7P)
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Using the Hodge dual one can define an inner product on the space of

real forms

@nBy) = [annss,

1 n
= iy voopsy B P Sgdat A - A da
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Maxwell equations and differential forms
The gauge field

A= AZ)\G“
is a matrix-valued 1 form
A=A,dz"

called connection 1-form.The field strength tensor is the curvature

two-form

F:%@mﬂwmf:dA+AAA

(we can say that it is a flux through a two-dimensional surface).

The Bianchi identity is derived by taking the exterior derivative of the

curvature

dF = d’A +dAA — AdA = FA — AF

which can be written by defining the covariant derivative of the field

strength
DF =dF + [A,F] =0
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For gauge transformations
g(x): Mz — G

we have

A — A=g'A+dyg

F — F =dA+AnNA =g "Fyg
For an infinitesimal gauge transformation

g~ 1-+v where v = v*\”

we have the corresponding infinitesimal transformations

A — A4dv+[Av]=A+ Dv
F — F—[vF]
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The vector-tensor form of the Maxwell equations

JP = 9. F*"
0 = 87Fa5+85Fm+8aF57

(0
(% = (C?%,V)

0.,0% = d ’Alambertian operator
J? = (cp,J)
A/J — (¢7 A)
F*P =9%A% — 97 A°
(0 —BE, -B, —E. )
E. 0 —B. By
E, B.
\ &. -B, B, 0 |

where

-]
|
Sy

8
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Using differential forms
dF = 0 (the Bianchi identity)
dx F = xj

Here j is a differential one-form and xj is a differential three-form,
satisfying
dxj5 =20

where natural units have been assumed, with g = 1.

The definitions

F = FBEydzxNdt+ Eydy Ndt+ E.dz A\dt
+B.dy Ndz 4+ Bydz N dx + B.dx N dy

G = —BgdxNdt— BydyN\dt— B,dz \dt
+Eydy Ndz + Eydz Ndx + E.dx N\ dy
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23

The sources S = judyANdzANdt

+7ydz ANdx N\ dt
+7.dx N\ dy N dt

—pdx Ndy N\ dz
We can say that
S = Ja(xdx) + jy (xdy) + jz (xdz) — p (xdl)
The equations are
dFF =0
dG = —S

We also have

iTr (ﬁWFW) —E-B
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Fiber bundles

The official definition (Novikov)
Let (E, 7, M) be a triplet where E and M are differential manifolds,

w: F — M is a differentiable surjection and

1. for any p € M the set E, = 7 ' (p), called fiber above p, is a

vectorial space of dimension m.

2. it exists a covering by open sets {U,} of the base M and the diffeo-
morphisms Gy, : 7 (Us) — Us X R™ and

—1 m
is an isomorphism of vectorial spaces.

Then the triplet (F, 7, M) is called vectorial fiber space with base M,
projection 7w and total space E. The space R™ is the fiber of (E, 7, M).
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The covariant derivative
Consider (Madore) a complex field that describes some physical quantity

defined over a manifold. The phase of 9 can be modified by multiplying
with g = exp (i) which is an element of the group U (1)

= g

However this can be done independently in every point on the basis
manifold, with different values of a (x). Since now the phase shift
introduced by these transformations would contribute to the derivation at
", the Lagrangian expressed in terms of usual derivatives will not be left
invariant by these transformations. The Lagragian remains invariant if it is
expressed in terms of covariant derivatives, since these commutes with the

transformation g:

D, (o) =0 (D)
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where

D, = 0,+1eA,

D, = 8; -+ ieA,M

7

The invariance is obtained because the potential A, transforms as
/ 1

which is the usual gauge transformation for the electromagnetic potential.

The covariant derivative operators, as opposed to usual derivations, do not
commute

D, D,] =ieF,,
where
Fuw = 8,A, — 0,A,
This formulas are valid only if the group (here U (1)) is Abelian.

More generally, the transformations made in every point may be

non-Abelian. Then the covariant derivatives are defined as (we suppress
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from the definition the factor ie)

DMb — @cw - [Aua w]

(where we admit that also v is in the representation of the non-Abelian

group). The transformation

= gy

when ¢ is from a non-Abelian group like SU (2),

A, =g A9 +g "Oug

and the field tensor becomes

[DLMDV] —
F. =

with the transformation

/

FL.
Oy Ay — Oy A, + [A, A

Fo, = g_lewg
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When the field is zero
F,, =0

the potential takes the form of a pure gauge

A = 9_18u9

We recognize the elements of a fiber space: the basis manifold M is the
Minkowski space R? x R, the fiber is the group manifold, for example

SU (2), the group of automorphisms of the fiber is again SU (2) (principal
fibration). The total space of the fiber space is locally a Cartesian product
M x G. Then one can define a connection one-form

w=g 'Augdz" + g 'dg
for which the curvature two-forms is

QQ = dot+wAw

1 _
59 "Fo gdxt A dz”
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Groups and algebras
The structures:

e group (Lie, continuous). It is in the same time a group and a manifold
® ring
e module

e algebra: the generators are the independent vectors in the tangent

plane at the manifold of the group, in the idenity element

The dimension of a simple Lie algebra is the total number of linearly

independent generators.

The rank of the algebra, r, is the maximum number of stmultaneously
diagonalisable generators of a simple Lie algebra (or the number of
generators that commute between them). For example, SU (2) has rank 1.

And SU (N) has rank N — 1. The rank is the dimension of the Cartan
subalgebra, denoted usually H.
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In the Cartan-Weyl analysis the generators are written in a basis where
they can be devided into two sets:

e the Cartan subalgebra, which is the mazimal Abelian subalgebra of
G (a maximal set of commuting generators). It contains

diagonalisable generators H;, 1 = 1,...,r
I:Hi,Hj] =0 , i,j = 1, eeen ' (3)

This type of generators is similar to the z component of the angular

momentum, Js3.

e the remaining generators of the algebra G are defined such as they

satisfy the eigenvalue problems
[Hq;,E,u] :()éiEM , 1= 1,...,7“ (4)

These generators are divided into two classes, exactly as the ladder

generators.

In the case of SU (2) the Cartan subalgebra has a unique element: is
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actually the projection of the intrinsic angular momentum along the
reference axis. Elements of the Cartan subalgebra generate U (1)

symmetries, as rotations around these axis.

The rest of the generators of the Lie algebra, which are not in the Cartan
subalgebra, are generators like the ladder operators, rising and lowering

the angular momentum projection along a particular axis

JE = % (J1 %+ iJ2)

The commutations are

[Js,JT] = JT
[Js, T ] = —J°
[J3,J3] = 0
I Il = Js
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A topological field theory: the sigma model

In 2D we have a field ¢ which is a vector of absolute magnitude 1,
attached to any point of the plane. For any z* € R? we have

¢ € R’ (vector with three components)
-1 = 0

The Lagrangian density is

L= (0u0) (0"9)

the product is scalar for the components of ¢. The model (which is the
planar Heisenberg ferromagnet) consists in attaching to every point of the
plane (z,y) a vector of length 1 which points to an arbitrary direction

represented locally by a sphere with angle coordinates (6, ¢).
The compactification of the background space-time manifold.

The base space and the space of internal symmetry are now both spheres.
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The field ¢ associates to any point of the compactified plane (the basis
sphere) a direction in the space of internal symmetry, i.e. a point on a

sphere. Then ¢ represents a mapping from a sphere to a sphere
s? 2 52

The family of such mappings is divided in classes of equivalence, since a

sphere can cover a sphere only an integer number of times,
n € 7

We have the structure of fiber space
SU (2) ~ S? % U (1)

The curvature of this fiber bundle is

1
€1 = — o€ (¢ x 8" ®) - "¢ dx' A da”
T
The integral of c;, the first Chern class, on the sphere gives an integer,

which is —n.
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The action functional is written as
[, @ = o x 070) ("0 — 76 x 8,0) > 0
R2
it follows that the action satisfies the bound condition

S > 4mn

The extremum of the action is obtained directly, without the necessity of
writting the Euler-Lagrange variational equations, but simply reading off

from the bound condition
Ou — €up X 079 =0

The field ¢ is self-dual.

Two solutions with winding numbers n and n cannot be deformed one
into the other, or, equivalently, there are infinite potential barriers

separating classes of solutions.
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