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Applications 2

1. the field theoretical model of the current profiles in tokamak is
compatible with the Liouville equation. Comparison with the
model of Taylor gives interesting suggestions for the physical

interpretation of the F'T parameters.

2. for the Euler fluid we obtain in F'T a possible confirmation of the
existence of a current of vorticity leading to concentration into

filaments.

3. for the 2D plasma in strong magnetic field we obtain patterns of

vortical flows that confirm previous calculations.

4. for the LH transtion, we obtain, after a renormalisation of the
Larmor radius into an effective Larmor radius, profiles of electric
fields at the edge (in H mode) that are compatible with the
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experiments

5. for the density pinch we are able to build a physical picture that
is consistent with the idea that the pinch of density is due to a

pinch of vorticity.

6. for the 2D atmosphere we obtain quantitative results that

compares (very) well with the observations of tropical cyclone.

7. for the Abelian dominance model the first results show the

existence of ring-type vortices.

Two kinds of comparisons: (1)solve the nonlinear equations and
compare with experiments; (2)compare the physics behind the
classical (e.g. statistical) model and the FT one.
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Current J Abelian
Fuler Non-Abelian
Superfluid Abelian
CHM Non-Abelian
CHM Abelian

Ay +exp () =0
Ay + sinhy =0

Atp = exp (¢) — 1

statistical

statistical

n.a. (Minardi?)

A1 = £ sinh ¢ (coshiy — 1) | one and many

Ay = e¥ (ew — 1)

topological

no Ps
no Ps

finite ps
finite ps
finite ps
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The Liouville equation

Possible model for (1)filament of current on a magnetic surface; (2)for the

snake of density.

Sol.of Liouville as vortex chain, with (xy) real Sol of Lisuville as vortex chain, with (xy) real

L] 2 4 L] -] B 4 2 [
ylpoloidal) yipoloidal)

Figure 1: Solution of Kelvin-Stuart type.
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Sol of Liouville as vortex chain, with (xy) real Sol.of Liouville as vortex chain, with (xy) real
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Figure 2: Solution of Kelvin-Stuart type.
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Applications 7

Classical interpretation of natural current profile in tokamak

Current self-organization in tokamak. The equation is
Vx (I xB)=0 or Bo2l + (B, - V1) J=0
with B, =—-V¢ xn and J=J, =V

Taylor (1993): the current density consists of filaments, acted upon
by B as a velocity field and with z as time. The position of a
filament is r; (2) = [z; (2),y; (2)] and the equations of motion are (all

filaments are assumed equal jo)

Jo dz N Bo 8yz
. dy; 1 OH
Jo = 5

dz By 0x;
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where

H = ) jiU(rirg)

k<i
ViU(r,r/) = 5(1'—1'/)

In an infinite region, the Green function U (r, r/> of the Laplace

operator is

U (r,r,> = ln’r— r

The current distribution and the magnetic flux function
(streamfunction)
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The statistical description of the system
The energy H is conserved and a microcanonical ensemble, where the

joint probability distribution of the positions of N filaments is

p({ri}) ~ o6 (F — H{r;})

is appropriate. The entropy

S = —k:/dr n (r)In[n (r)]
is a measure of the number of microscopic configurations

corresponding to a macroscopic configuration n (r).

Statistical equilibrium is obtained by maximizing S (the entropy)
under the constraint of energy conservation and fixed total number of
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filaments
E (fixed) = jO/dr n(r)y (r)
N (fixed) = /dr n (r)

Y (r) :jo/dr/ U (r,r,> n (r/)
The equilibrium current distribution obtained by extremizing
S—GBE —~yN
1S
J(r) = Jjo(n(r))
= Kexp[—fjot (r)]
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Circular symmetry: tokamak of radius a

¢(r):§m(1+aﬁ>

a’

where ,

a
= Jo\—
a = Jy oy

Introducing the total current I,
I = Njo

it is found a relation between the peaking factor of the current density, o ,

and the inverse temperature 3 of the current filaments

8T
1+ «

BNj; =

Uniform current (which means that the whole plasma volume is chaotic) is
obtained for a magnetic temperature T,,, = 1/ of

a=0or T, — o0
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and it is identified a critical magnetic temperature T,, where the totality

of the current is concentrated into a singular central filament,
N jo
1

Values of the magnetic temperatures between 0 and T},, are not accessible.

o — oo or Ty, — Th =

Hollow current profiles correspond to negative magnetic temperatures.
They are only accessible through the infinite value of the magnetic
temperature, T, — oo, which in terms of profiles means that the current

passes first through a state of uniform distribution.
To compare with Field Theory we take the two equations

2¢2

A + (—) exp (1) = 0

¢kl

The equation is always the same, whatever is the sign in front of the

Chern-Simons term.
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In Taylor’s theory, we have

Vi = Joexp (—Ay)

with
ST
A =
J0a2
8T 1 .2
= —N
1+ « T, Jo
or
ﬁ B Jéa? B 2¢2
A 8ma  clk|

Then we can translate the results obtained by Taylor:

1. when the peaking factor a goes to 0, (i.e. the magnetic temperature
T,, — 00) the current profile is fully relaxed to a uniform distribution;
This corresponds of vanishing k in the field theory: no Chern-Simons

is present.

2. when the peaking factor a goes to oo, (i.e. the magnetic temperature
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reaches the critical value, T,, — T);,) the current is strongly
concentrated on the axis. This corresponds to infinite value for x in
the field theory, |k| — oco: the Chern-Simons term is largely
dominating everything else in the Lagrangian.

3. Negative magnetic temperature
Tm <0
are obtained in the Taylor’s model when
a <0

or, the current profile is hollow. In field theory this corresponds to a
change of sign of k. But the equation remains the same. The field
theory starts with a certain sign of k, then the Chern-Simons term is
suppressed (taking |x| — 0) (leading to uniform solution for ¥ — —o0
everywhere, while A may remain finite). After that the CS term is
re-established but with an effect which is opposite to the previous

regime.
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Everything should be seen as an evolution on the manifold of SELF-DUAL
states, or solutions of the Liouville equation. The parameter that moves

the states on this manifold is k.

The following quantities have dimension of inverse distance squared

Jo 2¢? 1
Aooclsl p?
where p is a distance. This distance will be the natural unit of space-like
quantities in the problem. We note that the space unit p is proportional
with k. We can say that the passage of the system from a concentrated
current profile to a hollow current profile includes a state of strong
localisation, where the natural space unit is extremely small, which means
that different parts of the system are separated and non-interacting

(physically this means chaos and uniform current everywhere).
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We must start from the definition of the kinetic energy of a physical

fluid

Ephys

1
/ d27“§povg

1

2
1

30 [ B VO] - S0 [ Eroa

1 d 1
§Po/dl| (wﬁ) - §Po/d2"“¢w

o0 / PrVoE = Spo / Pr V- ($V) — YAy
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For the second term

A = w
v = A7lw
= /d2r’ln(|r—r’|)w(r’)
then
hys 2 1 2
EP"YE = /dr§pov9

— —%pO/d%ww = —%pO/dZTw (r)/d%’ln(|r—r’|)w(r’)

1
EPhys — —ipO/d%/er’w (r)In(|r —7'|) w (r")
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Point-like vortices (Montgomery and Joyce, 1974)

The equations :

dXZ' Kz‘,\ Xi — Xj
D DE =

where
Xi = (aji: yz)

The same equations represent the motion of particle guiding centre, if

the constants are B
_ €j
K= —4m e

The system can be put in the Hamiltonian form defining the variables
2 :
(95, pi) = [ KG|™ (24, yisignK;)

1
H = —% ;KZKJ 1I1|Xz'j|
t<.J
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and the equations

dg;  OH
dt  Op;

dp; oOH
a 0q;

reproduce the equations of motion.
The total Coulomb interaction energy is a constant of motion:

E=) pij=-2) eilej In [x51

1< 1<j
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The F'T current

JO = [T, U]
it RIS )T
Jo= = ([wh D) - (D) w))
We obtain

e L, 0 W
= §_Z(a—a)(p1+pz)—@%(p1—pz

JY = 1_2( +a)(p1+pz)—i2(p1—pz) H

2 | oy
J° = (p—p2)H

Can-we see a vorticity pinch here 7
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The current at self-duality

. 1[oy  9(2x) 1.0
J __§[ay_ o ](p1+ ) = 5ig- (p1 = p2)

1 {0y 0(2x) 1.0
y _ 1 _ = _
7= 2 [8:13 oy ] (1 p2) 226y (1 = p2)

We have
1. . 1.
T+ = 5i(pr+p2) 04 [ — (2ix)] — 50+ (p1 — p2)

1

To= i+ p2) 0 [+ (2iX)] — 20 (o1 — p2)

For circular symmetry,

J+ = (p1+p2)0+x
J- = (p1+p2)0-x
Jo = w
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This is probably described by the equation

A + %sinh (¢) [cosh (v) — 1] =0 (2)

(see however the Second Part for a certain ambiguity in the
application of the Bogomolnyi procedure, originating from the
absence of a topological constraint on the residual energy term. This
is due to the triviality of the first homotopy group of the manifold of
the su (2) algebra).
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Numerical solution for L = 307 : monopolar vortex

The solution streamiunction yix.y) ‘Contours of streamfunction wix.y) and velocity vector fisld {vx.v‘J

Figure 3: The streamfunction (¢/B) and the velocity, vg(z, y)

Physical parameters: p, = 0.003 (m), LP"Y* =a =1 (m)

. . L L 1 ~
After normalization L = % = 5003 = 330

The unit of velocity is ¢, = 9.79 x 10°\/T. (eV) (m/s)
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Numerical solution for L = 307: dipolar vortex

Contours of streamfunction y{x.y) and velocity vector field (v,_.v,_,)

The solution streamfunction wixy)
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-0.04 -]
400

Figure 4: The streamfunction (¢/B) and the velocity, vg(z, y)
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Max: 0.00126 s~

0
toroidal vorticity (surface plot), poloidal velocity stream function (contours)
e | ' -0.02
-0.04
0.3F E
‘__t:!
‘F:.II “G.DS
-0.08
01p "
oF - -0.1
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"ty Min: -0.115 s

Figure 5. Surface plot of the (dimensional) toroidal vorticity w, combined with contours
of the poloidal velocity stream function v with M = 8.64 x 10 °. The grey—scale bar
indicates the dimensional value of the toroidal vorticity in s '. Stress—free boundary
conditions are assumed.

Figure 5: The streamlines obtained from a direct numerical simulation

by Kempe and Montgomery.
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Numerical solution for L = 307: quadrupolar vortex

The solution straamfunction w(x.y) Contours of streamfunction y{x.y) and velocity vector field (v,_.v,_,)

Figure 6: The streamfunction (¢/B) and the velocity, vg(z,y)

The multipolar solutions are accessible from a subset of initial conditions.
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Self-organisation of the drift turbulence (Wakatani-Hasegawa)

(a) . TIME=S,0 (b) TIME=S.0

FIG. 1. (a) The density contour and (b) the potential con-
tour from the three-di ional p imulation of elec-
trostatic plasma turbulence in a cylindrical plasma with mag-
netic curvature and shear. In (b) the solid (dashed) lines are
for the positive (negative) potential contours. Note the devel-

of closed p ial cont near the ¢==0 surface.

The solution sireamfunction w(x.¥)
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FIG. 3 Prafiles of olr) for m=0,0=0 mode a1 twe

differest taime steps (dashed asd dash-dotied lises) as com-

pared with the predicied profile (solid lise) bused on the sif-

oeganization comjecture. The predicted curve is fitied mt
rla=0%,

Profile of ¢/B (p:"q,s)
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The LH transition

The schuicn streamfuncticn wix.y) The mag y tange: The magnitude of the velocty vecior tangert to the streamines
05 2 Z TR T T Z

Figure 7: Density series30, set_1.02. p =1 and L = 30. Here ampuh =
1.02. The streamfunction ¥ (x,y) (f53), the azimuthal velocity vg(x, y)
(f54) and wvydiag (55).
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@
o The radial profile of v? = Er/B[or (units (‘)f cs) E {a}
5 f— - F - -
0.015- —
e
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h x $ ; I : I I
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-0.005 - % T | T T T |
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-0.01

=300 200 100 0 100 200 300 Normalized Pololdal Flux

(coord.along the diameter of a meridional section)/pzff

Figure 8: Profile of the radial electric field obtained as a stationary
state from Eq.(1) and an experimental obs. DIII-D (Burrell, 1997).
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150 L ¢ ] A (i
200 [IYRUATUTINTRTA IR (U | | | 1 H | ; .
4 3 =2 1 0 A FIG. 4. Gradients of (a) electron temperature measured
ds {em) with ECE radiometer (circles} and electric probes {squares)

and ion lemperature (plusses for =740 ms, triangles for
1 =760 ms}. and (b} electron density measured with Thomson
scatlering (circles) and electric prohes {squares} and bright-
vess of CvI emission {triangles). as a function of the distance
from the separatrix for L-mode (r =710 ms, open symbols) and
H-mode (r =740 ms, closed symbols) plasmas.

FIG. 3. Radial profiles of (a) poloidal (circles) and taraidal
(squares} rotation veiocities and (h) radial etectric field, as a
function of the distarce from the separatrix, for L-mode
(+=710 ms, open symbols) and H-mode (1 =740 ms, closed
symbols) ptasmas. 4. is negative inside and positive outside of
the separatrix,

Figure 9: Experiments on JET: the poloidal rotation velocity has the

same order of magnitude as the diamagnetic velocity
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The solution stresmfuncion wix.y)

Figure 10:

LH

structure, L = 411.

The magnitude of the velacity veclor tangent to the streamines

streamfunction and vy.
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The radial electric field at the edge (H mode)

The value is dependent on the effective Larmor radius, pgf !,

e e h
vafu  p Jps L =a/pf |vebottom )vgbéﬁm (m/s) |Eq|(EV/m)

0.2  1.118 273 1x1073 979 2.45
0.4 1.29 236 1x1073 979 2.45
0.85  2.58 95 2.2 x 1073 2152 5.38
0.95  4.47 63 0.02 19580 48.95
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The concentration of vorticity

=54 FHOPFIGGER 4 WAN HELST

Tornado vortex. Concentration of vorticity in fluids.

What makes the vorticity which is initially spread in the volume to
get concentrated into such narrow, almost string-like, vortices? The

answer may be that lower energy states are accessed in this way.
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There can be in F'T two processes leading to density pinch:

e the adiabatic evolution of the solutions of the quasi-self-dual states
due to the additional energy (which is not topological); we still have to

prove that the evolution is toward concentrated filaments.

e the combined effect of the density and vorticity profiles, mediated by

the effective Larmor radius.

The role of the effective Larmor radius p¢//

In Stationary vortices drift waves Nycander it is derived the

2= (124 )0

ung 7(x)

equation

Te(x)
To

where 7 (z) = and the normalizations are usual: ps , {); and
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e/ T, for space, time, potential. Taking constant temperature

ung  T(x) . phys ( ) ng drphys/p
csps 1 1
— 1 =
_ 1
U
where vy = —%£= L gych that when L, < 0 we have vy > 0

Q; L,

Our model consists of point-like vortices (in their FT avatar).

There is a new factor: the density n(r,t).
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A positive feedback loop for density pinch
Comparing the Taylor model with the F'T model, we find

167e? 1
Jé¢a?ce Ty, /TE, — 1

k| =

from which we see that a very peaked current profile in the form of a

concentrated filament, 1.e.
Ty, — T
corresponds in field theory to very high values of k.

In the statistical model we cannot find an intrinsic reason for 7,,, to
approach (from above) the critical value T)S,. In FT we ask when

there can be reasons for k to increase adiabatically its value.

In FT, where k = cs = ps§2:; we can assume that x behaves as p;.

An increase of k can result from an increase in p;.
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The spatial variation of the density (i.e. L, # oo) is the cause for the
diamagnetic flow with the velocity v4;q = pscs/Lyn. The distance of
interaction between two elementary vortices is modified, replacing ps
with pe/7/,

1 1 (1 vdm)
( pgff) 2 u
e cradient of density increases, L,, is smaller, vgy;, increases;
e the factor (1 — vy, /u) decreases, p¢/7/ increases;

e the parameter x increases (since proportional with pef )

e the increase of k is equivalent to T}, \,T},, we find that there is
an enhanced clusterization of the elements of vorticity, with a

possible evolution toward a single filament in the center.
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An intrinsic saturation of density pinch
When the effective Larmor radius is too big, the interaction between the
elements of vorticity is no more of short range but can be considered of
long range. Or, this is the case of the Euler fluid, where the range of
interaction is Coulombian (i.e. In). For the Euler fluid there is no
compressibility of the background density, the density and the vorticity are
decoupled and the density cannot follow the vorticity. The compressibility
of the ion polarization drift is proportional with the inverse of the square

of the effective Larmor radius and this diminishes accordingly.
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The tropical cyclone

The tangential component of the velocity, v,, center is (0,0)

25 0.35—
20 ; 03—
15 0.25—
7104 il 02—
To
>
54 >® 015
0 : 0.1+
Oig T - 0.05
’ T __— 05 : o5
— : - - 0— .
. 5 0 -0.05 °
o 05 -04 _p3  _ _
05 05 02 01 0 017 o

| 03" 04 o5 05
¥ X - y
X

Figure 11: The tangential component of the velocity, vy(z, y)
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The tropical cyclone , comparisons

Figure 12: The solution and the image from a satelite.

The solution reproduces the eye radius, the radial

extension and the vorticity magnitude.
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Scaling relationships between main parameters of the tropical cyclone

eye-wall radius, maximum tangential wind, maximum radial extension
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Profile of the azimuthal wind velocity vy (1)
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Comparison between the Holland’s empirical model for

vy (continuous line) and our result (dotted line).
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