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Field theory vs. the rest of fluid/plasma theory
Results of a comparison

1. the field theoretical model of the current profiles in tokamak is
compatible with the Liouville equation. Comparison with the
model of Taylor gives interesting suggestions for the physical
interpretation of the FT parameters.

2. for the Euler fluid we obtain in FT a possible confirmation of the
existence of a current of vorticity leading to concentration into
filaments.

3. for the 2D plasma in strong magnetic field we obtain patterns of
vortical flows that confirm previous calculations.

4. for the LH transtion, we obtain, after a renormalisation of the
Larmor radius into an effective Larmor radius, profiles of electric
fields at the edge (in H mode) that are compatible with the
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experiments

5. for the density pinch we are able to build a physical picture that
is consistent with the idea that the pinch of density is due to a
pinch of vorticity.

6. for the 2D atmosphere we obtain quantitative results that
compares (very) well with the observations of tropical cyclone.

7. for the Abelian dominance model the first results show the
existence of ring-type vortices.

Two kinds of comparisons: (1)solve the nonlinear equations and
compare with experiments; (2)compare the physics behind the
classical (e.g. statistical) model and the FT one.
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What have-we done until now

Current J Abelian Δψ + exp (ψ) = 0 statistical no ρs

Euler Non-Abelian Δψ + sinhψ = 0 statistical no ρs

Superfluid Abelian Δψ = exp (ψ) − 1 n.a. (Minardi?) finite ρs

CHM Non-Abelian Δψ = ± sinhψ (coshψ − 1) one and many finite ρs

CHM Abelian Δψ = eψ
(
eψ − 1

)
topological finite ρs
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The Liouville equation

Possible model for (1)filament of current on a magnetic surface; (2)for the

snake of density.

Figure 1: Solution of Kelvin-Stuart type.
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Figure 2: Solution of Kelvin-Stuart type.
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Classical interpretation of natural current profile in tokamak
Current self-organization in tokamak. The equation is

∇× (J× B) = 0 or B0
∂J
∂z + (B⊥ · ∇⊥) J=0

with B⊥ = −∇ψ × n̂ and J ≡ Jz = ∇2
⊥ψ

Taylor (1993): the current density consists of filaments, acted upon
by B⊥ as a velocity field and with z as time. The position of a
filament is ri (z) ≡ [xi (z) , yi (z)] and the equations of motion are (all
filaments are assumed equal j0)

j0
dxi

dz
=

1
B0

∂H

∂yi

j0
dyi

dz
= − 1

B0

∂H

∂xi
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where

H =
∑
k<i

j20U (ri, rk)

∇2
⊥U

(
r, r

′)
= δ

(
r − r

′)
In an infinite region, the Green function U

(
r, r

′
)

of the Laplace
operator is

U
(
r, r

′)
= ln

∣∣∣r − r
′
∣∣∣

The current distribution and the magnetic flux function ψ
(streamfunction)

J =
∑

i

j0δ (r − ri) (1)

ψ = j0
∑

i

U (r, ri)
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The statistical description of the system
The energy H is conserved and a microcanonical ensemble, where the
joint probability distribution of the positions of N filaments is

ρ ({ri}) ∼ δ (E −H {ri})
is appropriate. The entropy

S = −k
∫
dr n (r) ln [n (r)]

is a measure of the number of microscopic configurations
corresponding to a macroscopic configuration n (r).

Statistical equilibrium is obtained by maximizing S (the entropy)
under the constraint of energy conservation and fixed total number of
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filaments

E (fixed) = j0

∫
dr n (r)ψ (r)

N (fixed) =
∫
dr n (r)

ψ (r) = j0

∫
dr

′
U
(
r, r

′)
n
(
r
′)

The equilibrium current distribution obtained by extremizing

S − βE − γN

is

J (r) = j0 〈n (r)〉
= K exp [−βj0ψ (r)]
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Circular symmetry: tokamak of radius a

ψ (r) =
2

λ
ln

(
1 + α

r2

a2

)
where

α = J0λ
a2

8π
Introducing the total current I,

I = Nj0

it is found a relation between the peaking factor of the current density, α ,

and the inverse temperature β of the current filaments

βNj20 =
8πα

1 + α

Uniform current (which means that the whole plasma volume is chaotic) is

obtained for a magnetic temperature Tm ≡ 1/β of

α = 0 or Tm → ∞
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and it is identified a critical magnetic temperature T cm where the totality

of the current is concentrated into a singular central filament,

α→ ∞ or Tm → T cm ≡ Nj20
8π

Values of the magnetic temperatures between 0 and T cm are not accessible.

Hollow current profiles correspond to negative magnetic temperatures.

They are only accessible through the infinite value of the magnetic

temperature, Tm → ∞, which in terms of profiles means that the current

passes first through a state of uniform distribution.

To compare with Field Theory we take the two equations

Δψ +

(
2e2

c |κ|
)

exp (ψ) = 0

The equation is always the same, whatever is the sign in front of the

Chern-Simons term.
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In Taylor’s theory, we have

∇2
⊥ψ = J0 exp (−λψ)

with

λ =
8πα

J0a2

8πα

1 + α
=

1

Tm
Nj20

or
J0

λ
=
J2

0a
2

8πα
=

2e2

c |κ|
Then we can translate the results obtained by Taylor:

1. when the peaking factor α goes to 0, (i.e. the magnetic temperature

Tm → ∞) the current profile is fully relaxed to a uniform distribution;

This corresponds of vanishing κ in the field theory: no Chern-Simons

is present.

2. when the peaking factor α goes to ∞, (i.e. the magnetic temperature
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reaches the critical value, Tm → T cm) the current is strongly

concentrated on the axis. This corresponds to infinite value for κ in

the field theory, |κ| → ∞: the Chern-Simons term is largely

dominating everything else in the Lagrangian.

3. Negative magnetic temperature

Tm < 0

are obtained in the Taylor’s model when

α < 0

or, the current profile is hollow. In field theory this corresponds to a

change of sign of κ. But the equation remains the same. The field

theory starts with a certain sign of κ, then the Chern-Simons term is

suppressed (taking |κ| → 0) (leading to uniform solution for ψ → −∞
everywhere, while Δψ may remain finite). After that the CS term is

re-established but with an effect which is opposite to the previous

regime.
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Everything should be seen as an evolution on the manifold of SELF-DUAL

states, or solutions of the Liouville equation. The parameter that moves

the states on this manifold is κ.

The following quantities have dimension of inverse distance squared

J0

λ
=

2e2

c |κ| =
1

ρ2

where ρ is a distance. This distance will be the natural unit of space-like

quantities in the problem. We note that the space unit ρ is proportional

with κ. We can say that the passage of the system from a concentrated

current profile to a hollow current profile includes a state of strong

localisation, where the natural space unit is extremely small, which means

that different parts of the system are separated and non-interacting

(physically this means chaos and uniform current everywhere).
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A basis for the discrete model for the Euler

fluid
We must start from the definition of the kinetic energy of a physical
fluid

Ephys =
∫
d2r

1
2
ρ0v

2
θ

=
1
2
ρ0

∫
d2r |∇ψ|2 =

1
2
ρ0

∫
d2r [∇· (ψ∇ψ) − ψΔψ]

=
1
2
ρ0

∫
dl‖ [n̂r · (ψ∇ψ)] − 1

2
ρ0

∫
d2rψΔψ

=
1
2
ρ0

∫
dl‖

(
ψ
dψ

dn̂r

)
− 1

2
ρ0

∫
d2rψω
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For the second term

Δψ = ω

ψ = Δ−1ω

=
∫
d2r′ ln (|r − r′|)ω (r′)

then

Ephys =
∫
d2r

1
2
ρ0v

2
θ

= −1
2
ρ0

∫
d2rψω = −1

2
ρ0

∫
d2rω (r)

∫
d2r′ ln (|r − r′|)ω (r′)

Ephys = −1
2
ρ0

∫
d2r

∫
d2r′ω (r) ln (|r − r′|)ω (r′)
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Point-like vortices (Montgomery and Joyce, 1974)

The equations :
dxi

dt
=
∑
j �=i

Ki

2π
êz × xi − xj

|xi − xj |2

where
xi = (xi, yi)

The same equations represent the motion of particle guiding centre, if
the constants are

Kj = −4π
ej

l

B
B2

The system can be put in the Hamiltonian form defining the variables

(qi, pi) = |Ki|2 (xi, yisignKi)

H = − 1
2π

∑
i<j

KiKj ln |xij |
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and the equations

dqi
dt

=
∂H

∂pi

dpi

dt
= −∂H

∂qi

reproduce the equations of motion.

The total Coulomb interaction energy is a constant of motion:

E =
∑
i<j

ϕij = −2
∑
i<j

eiej

l
ln |xij|
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The current of vorticity in the Euler fluid

The FT current

J0 =
[
Ψ†,Ψ

]
J i = − i

2

([
Ψ†, DiΨ

]− [(DiΨ)† ,Ψ
])

We obtain

Jx =
1
2

[
2i(a− a∗) (ρ1 + ρ2) − i

∂

∂x
(ρ1 − ρ2)

]
H

Jy =
1
2

[
2(a+ a∗) (ρ1 + ρ2) − i

∂

∂y
(ρ1 − ρ2)

]
H

J0 = (ρ1 − ρ2)H

Can-we see a vorticity pinch here ?
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The current at self-duality

Jx = −1

2

[
∂ψ

∂y
− ∂ (2χ)

∂x

]
(ρ1 + ρ2) − 1

2
i
∂

∂x
(ρ1 − ρ2)

Jy =
1

2

[
∂ψ

∂x
+
∂ (2χ)

∂y

]
(ρ1 + ρ2) − 1

2
i
∂

∂y
(ρ1 − ρ2)

We have

J+ =
1

2
i (ρ1 + ρ2) ∂+ [ψ − (2iχ)] − 1

2
i∂+ (ρ1 − ρ2)

J− = −1

2
i (ρ1 + ρ2) ∂− [ψ + (2iχ)] − 1

2
i∂− (ρ1 − ρ2)

For circular symmetry,

J+ = (ρ1 + ρ2) ∂+χ

J− = (ρ1 + ρ2) ∂−χ

J0 = ω
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The 2D plasma in strong magnetic field

This is probably described by the equation

Δψ +
1
2

sinh (ψ) [cosh (ψ) − 1] = 0 (2)

(see however the Second Part for a certain ambiguity in the
application of the Bogomolnyi procedure, originating from the
absence of a topological constraint on the residual energy term. This
is due to the triviality of the first homotopy group of the manifold of
the su (2) algebra).
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Numerical solution for L = 307 : monopolar vortex

Figure 3: The streamfunction (ϕ/B) and the velocity, vθ(x, y)

Physical parameters: ρs = 0.003 (m), Lphys = a = 1 (m)

After normalization L = a
ρs

= 1
0.003 � 330

The unit of velocity is cs = 9.79 × 103
√
Te (eV ) (m/s)
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Numerical solution for L = 307: dipolar vortex

Figure 4: The streamfunction (ϕ/B) and the velocity, vθ(x, y)
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Figure 5: The streamlines obtained from a direct numerical simulation
by Kempe and Montgomery.
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Numerical solution for L = 307: quadrupolar vortex

Figure 6: The streamfunction (ϕ/B) and the velocity, vθ(x, y)

The multipolar solutions are accessible from a subset of initial conditions.
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Self-organisation of the drift turbulence (Wakatani-Hasegawa)
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The LH transition

Figure 7: Density series30, set 1.02. p = 1 and L = 30. Here ampuh =
1.02. The streamfunction ψ(x, y) (f53), the azimuthal velocity vθ(x, y)
(f54) and vθdiag (f55).
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Figure 8: Profile of the radial electric field obtained as a stationary
state from Eq.(1) and an experimental obs. DIII-D (Burrell, 1997).
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Figure 9: Experiments on JET: the poloidal rotation velocity has the
same order of magnitude as the diamagnetic velocity
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Figure 10: LH structure, L = 411. streamfunction and vθ.
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The radial electric field at the edge (H mode)

The value is dependent on the effective Larmor radius, ρeff
s .

vd/u ρeff
s /ρs L = a/ρeff

s |vθbottom|
∣∣∣vphys

θbottom

∣∣∣ (m/s) |Er| (kV/m)

0.2 1.118 273 1 × 10−3 979 2.45

0.4 1.29 236 1 × 10−3 979 2.45

0.85 2.58 95 2.2 × 10−3 2152 5.38

0.95 4.47 63 0.02 19580 48.95
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The concentration of vorticity

Tornado vortex. Concentration of vorticity in fluids.

What makes the vorticity which is initially spread in the volume to
get concentrated into such narrow, almost string-like, vortices? The

answer may be that lower energy states are accessed in this way.
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The pinch of density
There can be in FT two processes leading to density pinch:

• the adiabatic evolution of the solutions of the quasi-self-dual states

due to the additional energy (which is not topological); we still have to

prove that the evolution is toward concentrated filaments.

• the combined effect of the density and vorticity profiles, mediated by

the effective Larmor radius.

The role of the effective Larmor radius ρeff
s

In Stationary vortices drift waves Nycander it is derived the
equation

Δφ =
(

1
u

n′0
n0

+
1

τ (x)

)
φ

where τ (x) ≡ Te(x)
T0

and the normalizations are usual: ρs , Ωi and
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e/Te for space, time, potential. Taking constant temperature

1
u

n′0
n0

+
1

τ (x)
=

1

uphys
(

Ωi

ρs

) 1
n0

dn0

drphys/ρs
+ 1

= 1 +
csρs

Ωi

1
Ln

1
u

= 1 − vd

u

where vd ≡ − csρs

Ωi

1
Ln

such that when Ln < 0 we have vd > 0

Our model consists of point-like vortices (in their FT avatar).

There is a new factor: the density n(r, t).
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A positive feedback loop for density pinch
Comparing the Taylor model with the FT model, we find

|κ| =
16πe2

J2
0a

2c

1
Tm/T c

m − 1

from which we see that a very peaked current profile in the form of a
concentrated filament, i.e.

Tm → T c
m

corresponds in field theory to very high values of κ.

In the statistical model we cannot find an intrinsic reason for Tm to
approach (from above) the critical value T c

m. In FT we ask when
there can be reasons for κ to increase adiabatically its value.

In FT, where κ ≡ cs = ρsΩci we can assume that κ behaves as ρs.
An increase of κ can result from an increase in ρs.

F. Spineanu – Marseille 2008 –



Applications 37

The spatial variation of the density (i.e. Ln 	= ∞) is the cause for the
diamagnetic flow with the velocity vdia = ρscs/Ln. The distance of
interaction between two elementary vortices is modified, replacing ρs

with ρeff
s ,

1(
ρeff

s

)2 =
1
ρ2

s

(
1 − vdia

u

)
• gradient of density increases, Ln is smaller, vdia increases;

• the factor (1 − vdia/u) decreases, ρeff
s increases;

• the parameter κ increases (since proportional with ρeff
s );

• the increase of κ is equivalent to Tm ↘ T c
m, we find that there is

an enhanced clusterization of the elements of vorticity, with a
possible evolution toward a single filament in the center.
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An intrinsic saturation of density pinch
When the effective Larmor radius is too big, the interaction between the

elements of vorticity is no more of short range but can be considered of

long range. Or, this is the case of the Euler fluid, where the range of

interaction is Coulombian (i.e. ln). For the Euler fluid there is no

compressibility of the background density, the density and the vorticity are

decoupled and the density cannot follow the vorticity. The compressibility

of the ion polarization drift is proportional with the inverse of the square

of the effective Larmor radius and this diminishes accordingly.
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The tropical cyclone
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Figure 11: The tangential component of the velocity, vθ(x, y)

This is an atmospheric vortex.
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The tropical cyclone , comparisons
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Figure 12: The solution and the image from a satelite.

The solution reproduces the eye radius, the radial

extension and the vorticity magnitude.
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Scaling relationships between main parameters of the tropical cyclone

eye-wall radius, maximum tangential wind, maximum radial extension
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Profile of the azimuthal wind velocity vθ (r)
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Comparison between the Holland’s empirical model for

vθ (continuous line) and our result (dotted line).
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