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Overview
There is a fundamental dynamics of the ideal plasma/neutral fluid leading

to evolution toward regular structures and coherent flows. It exists in the

background of the instabilities and turbulence.

First part : why is acceptable to say that the vorticity

self-organises

• The coherent structures arising at relaxation can be seen as the result

of organisation of the vorticity field. The model of point-like vortices

interacting via a potential allows the representation of the vorticity as

a self-organising fluid, which acts as a drive for passive fields like

density.

• The property of the vorticity field to self-evolve to organised states is

supported by fundamental properties of the discrete point-like vortices

model:
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– the ensemble of point-like vortices interacting in plane via a

short-range or long-range potential is a statistical system with

negative temperature

1
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=

a2

4πne2

[
exp

(
− E

Ne2

)
− 1

]

– the continuum limit of the system of point-like vortices can be

described as the equations of continuity and momentum

conservation for an ideal compressible fluid; this fluid has

negative pressure.

– the ideal fluid with negative pressure can be derived from a very

fundamental physical model: a line evolving in plane, under the

condition that the area of the world-surface is minimum

– the model of point-like vortices directly leads to the sinh-Poisson

equation describing the stationary states of organised vorticity;

– the same sinh-Poisson equation is the Gauss-Codazzi equation for

the world-surface from which derives the model of ideal fluid with
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negative pressure

• Conclusion of the first part: the vorticity self-organises; in the Euler

fluid (point-like vortices with long-range, logarithmic interaction) the

density of the fluid is constant, the fluid is incompressible. In the

Hasegawa-Mima plasma (point-like vortices with short-range K0

interaction) the density follows the vorticity

Second part : density reaction is via the effective Larmor

radius

• The vorticity builds up a central cluster surrounded by a ring of

vorticity of opposite sign. The density must follow the vorticity

(Ertel’s theorem). This is only possible due to the polarisation drift,

compressible, which implies (but does not explicitely uses) the third

dimension.

• The pinch of vorticity is at the origin of the pinch of density; the

density develops gradients and in consequence, diamagnetic flow
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• The combination of diamagnetic flow vd and of rotation speed u

induces a change in a basic parameter: ρs is replaced by an effective

Larmor radius
1(

ρeff
s

)2 =
1

ρ2
s

(
1 − vd

u

)

• When the density dragged by the vorticity develops higher gradients,

the effective Larmor radius becomes very large ρeff → ∞. The model

of point-like vortices with short-range interaction (Hasegawa-Mima)

evolves to the point-like vortices with long-range interaction (Euler

fluid). The density decouples from the vorticity;

• (Actually the dynamics is slowed down)

Third part : the structure of the space of stationary solutions

The equation is:

Δψ +
1

2p2
sinhψ (coshψ − p) = 0
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There are two exact solutions :

• smooth symmetric monopolar vortex

• singular vortex

We find a string of quasi-solution in-between. Under a weak physical factor

the system may slide from the smooth vortex to the singular one,

entraining the density.

A simple functional measure shows that there is a line of minimum error in

the parameter space, along which these quasi-solutions are found.

A special class of solutions is determined, consisting of strongly sheared vθ

in the edge region. These states are connected via a string of

quasi-solutions with states of regular (of the type Hasegawa-Wakatani)

potential profiles. There are differences in both energy and total vorticity

between the two classes of solutions. This shows that a transition to a

better confinement should also require a minimum amount of vorticity

input.
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First part : What is behind the
evolution of vorticity to coherent
structures

Euler equation. D. Montgomery et

al., Phys. Fluids A4 (1992) 3.
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There are two fundamental models :

• the line evolving under Nambu-Goto action leads to a fluid with

negative pressure and strange polytropic (Chaplygin gas).

• a fluid/plasma with vorticity is equivalent with a system of point-

like vortices interacting in plane via a potential

– long-range (Coulombian, logarithmic) : Euler fluid. No density

(ρ = const) The stationary states sinh-Poisson equation. Exactly

integrable.

– short-range (screened, K0) : Charney-Hasegawa-Mima

plasma/atmosphere. The third direction is implicitely present.

The density is not constant.

How are they connected: both reduce to the sinh-Poisson equation, along

two ways: at self-duality and as condition of emdedding in R3 according

to Gauss-Codazzi eqs.
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Line moving in space

More generally: a d-dimensional object evolves in a d+1 dimensional space. Internal coordinates:

(
φ0, φ1, ..., φd

)
(where φ0 is the time). External coordinates: xμ ≡

(
x0, x1, ..., xd, xd+1

)

(where x0 is the time).

A line describes a World Surface. The action is the area

Id = −
∫
dφ0dφ1...dφd

√
G , Gαβ ≡ (−1)d det{ ∂x

μ

∂φα

∂xμ

∂φβ
}

∂

∂t
ρ+

∂

∂xi
(ρvi) = 0

∂vi

∂t
+ vj

∂vi

∂xj
= −1

ρ

∂p

∂xi

for an ideal fluid with the pressure p = −2λ/ρ
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Dynamics in plane. Good for the density pinch in Tokamak
A line moving in plane in cylindrical geometry: absolute coordinates(
x0, x1, x2

)
: x0 ≡ time, x1 ≡ azimuthal length x2 ≡ radial length; internal

coordinates
(
φ0, φ1

)
, φ0 ≡ time, φ1 ≡ length along the line.

g =

(
dx1

dφ1

)2

=
1

ρ2
,
dx1

dτ
= ∇θ = v

The velocity is directed toward the current centre. The solution is a

constant current j = ρv = 2λ

The existence of the world-surface generated by the line is possible if the

Gauss-Codazzi eq. is verified. This leads to

Δψ + sinhψ = 0

The same equation is derived from the system of point-like vortices

interacting via long-range (logarithm) potential. This connection explains

why the latter has a negative pressure and the former negative temperature.
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The fact that the density follows the vorticity is due to the existence of an

intrinsic finite length in 2D plasma: the Larmor radius

The Charney-Hasegawa-Mima equation
The equation (CHM) derived for the two-dimensional plasma drift
waves and for Rossby waves in meteorology is:

(
1 −∇2

⊥
) ∂φ
∂t

− κ
∂φ

∂y
− [(−∇⊥φ× n̂) · ∇⊥]∇2

⊥φ = 0 (1)

This is the equation governing the stationary states of the CHM eq.

Δψ + sinhψ (coshψ − 1) = 0
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Second part. How the vorticity evolves
to a coherent structure

The conservation laws are less useful here. We need dynamical equations

• the aggregation-coagulation statistical process (Phase I, at the

beginning of the discharge when a random distribution of vortices is

generated. The merging takes place at a rate t−3/4 and the result is a

central vortex and possibly a ring of opposite vorticity).

• the equations of motion of the field theoretical model (Phase II)

• the equations of the ideal fluid with negative pressure

• the Manton’s method : dynamics on the parameter manifold, close to

self-duality
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L = −κεμνρtr

(
∂μAνAρ +

2

3
AμAνAρ

)
(2)

−tr
[
(Dμφ)† (Dμφ)

]
−V

(
φ, φ†

)
Sixth order potential

V
(
φ, φ†

)
=

1

4κ2
tr

[([[
φ, φ†

]
, φ

]
− v2φ

)† ([[
φ, φ†

]
, φ

]
− v2φ

)]
. (3)

The Euler Lagrange equations are

DμD
μφ =

∂V

∂φ† (4)

−κενμρFμρ = iJν (5)
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Numerical solution for L = 307 : mono- and multipolar vortex
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Third part. The space of solutions and
the possibility of transitions.

The numerical study of the equation reveals the existance of three type

of states

• smooth vortex, stable

• strongly localised (narrow) vortex, a physical approximation of the

singular vortex

• a class of intermediate quasi-solutions, organized along a line of

minimum departure from the action extremum.

The smooth vortices are accessible from a wide range of initial conditions.

The narrow vortices are only accessible from a subset of initial functions.

There are differences: for narrow vortices the maximal vorticity is much

higher compared to the smooth vortex. There is a difference in both

energy and vorticity between them.
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Comparison with the self-organisation of the vorticity obtained in a

statistical approach (HW)

Figure 1: A theory of self-organization of drift turbulence (Hasegawa-
Wakatani) leads to this radial profile for the potential. Actually their
model does not explicitely need excitation of drift waves.
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Transition from smooth to narrow requires an input of kinetic en-
ergy and localised vorticity
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Figure 2: The squares are smooth and the dots are narrow vortices. The

plot presents the difference in both kinetic energy and vorticity. At right is

a qs. for L = 401 with slow intermediate variation of vθ.
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Scatterplot (Energy, Vorticity) of final results for pinch and for
sheared velocity vθ
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Small dots: all data; green squares: evolution; red circle: narrow; black square: solution
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Small dots: all data; green squares: evolution; red circle: narrow; black square: solution

Figure 3: Black squares: smooth solutions; green: intermediate quasi-

solutions; red: singular solutions. In addition, for barriers: yellow: stable

qs. with ring; blue: intermediate forms evolving to stable ring qs.
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The role of the effective Larmor radius

vd/u ρeff
s /ρs L = a/ρeff

s |vθbottom|
∣∣∣vphys

θbottom

∣∣∣ (m/s) |Er| (kV/m)

0.2 1.118 273 1 × 10−3 979 2.45

0.4 1.29 236 1 × 10−3 979 2.45

0.85 2.58 95 2.2 × 10−3 2152 5.38

0.95 4.47 63 0.02 19580 48.95
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Conclusions As part of the phenomenology of structure generation in

fluids and plasma it appears convenient to take the vorticity as the active

factor of self-organization. This is supported by the model of point-

like vortices interacting in plane, model that has provided us with the

description of the coherent stationary states. Examining the solutions of

the coherent vortical type and their neighborhood in the function space

it is found that there are states with properties similar to the physical

states of 2D plasma. The pinch of density is the evolution of the system

along a string of quasi-solutions, between a smooth vortex and a singular

vortex. The increase of the effective Larmor radius due to the increase of

the density gradient slows down this process without suppressing it. The

transition between the L to H states appears as the transition between

the smooth vortex and a state with high vθ shear (a quasi-solution which

is close to the extremum of action), of which it is separated by a gap in

energy and vorticity.
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