WP10-MHD-03

Year	Work Description	Associate	Manpower	Manpower	Hardware,
			Baseline	Priority	Cons., Other
			Support (ppy)	Support (ppy)	Expenditure
					Priority
					Support
					(kEuros)

2010	WP10-MHD-03-03-xx-01/MEdC	MEdC	0.50	0.00	0.00
	Theoretical modelling of error fields penetration and				
	neoclassical toroidal viscosity non-resonant magnetic				
	braking effects in tokamak plasmas				
	Construct an 2-dimensional axisymmetric theoretical model				
	capable to illustrate the mechanism of toroidal momentum				
	dissipation and NTV global braking due to the non-resonant				
	error fields destabilizing effect. The following steps to				
	achieve are proposed: (i) Determination of a general				
	multimode RWM dispersion relation for 2-D axisymmetric				
	geometry in the presence of neoclassical viscosity and non-				
	resonant error fields, (ii) Derivation of the evolution				
	equations for the plasma angular motion at the level of the				
	plasma boundary and inner non-ideal MHD layers (that				
	develop at the corresponding inner rational surfaces) to				
	prove global plasma deceleration and NTV braking of the				
	plasma rotation, (iii) Electromagnetic and NTV torques				
	calculation for shapes of the flux surfaces structure that				
	include toroidicity, ellipticity, triangularity. The influence of				
	the above parameters in finding the optimal less				
	destabilizing error field spectrum will be calculated				

WP10-MHD-03

WP10-MHD-03-03-xx-02/MEdC	MEdC	0.70	0.00	0.00
Rotational stabilization of the RWM by coupling to a				
dissipative rational surface. Evaluation of flow stabilization				
effects on ITER equilibrium states.				
Develop a new analytical model with a resonant layer inside				
of the plasma for Rotational stabilization of the RWM by				
coupling to a dissipative rational surface. This resonant layer				
can be a tearing or an internal kink mode, making use of the				
layer theory by Porcelli. Perform evaluation of flow				
stabilization effects on ITER equilibrium states and extension				
of the generic linear static equilibrium solutions applied to				
realistic ASDEX Upgrade equilibria and to an ITER equilibria				
with sheared flow parallel to the magnetic field with Alfvén				
Mach numbers on the order of 0.01. The potential				
stabilizing effect of the flow will be investigated by applying				
a sufficient condition for linear stability of equilibria with				
parallel flow.				