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Field Theory in fluids/plasmas

The theory is relevant for the classical debate on the relation between

(1) large-scale organized, quasi-coherent flows, and

(2) ”structures” (solitons, vortices, etc.)

Content

The 2D discrete systems and the field theory formalism
2D water

planetary atmosphere (2D quasi-geostrophic)

— tropical cyclone; relationships vy “", Rmaz, rymaz
plasma (coherent) flows; crystals of vortices in non-neutral plasmas

Related subjects: Concentration of vorticity; Contour Dynamics;

statistics of turbulence; etc.
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Quasi-coherent structures are observed in

e fluids (in oceans and in laboratory experiments)
e plasma (confined in strong magnetic field)
e planetary atmosphere (2D quasi-geostrophic)
e non-neutral plasma (crystals of vortices)
There are common features suggesting to develop models based on

the self-organization of the vorticity field. The fluids evolve at

relaxation precisely to a subset of stationary states.

It is found that besides conservation there is also action
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Coherent structures in fluids and plasmas (reality)

Geoff Mackley

Rings of vorticity Nice tornado vortex. Vortex ring emitted
(Leonard 1998) by the volcano Etna.
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Coherent structures in fluids and plasmas (numerical 1)
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1=l0e D. Montgomery,
~ W.H. Matthaeus, D.
Martinez, S.
Oughton, Phys.
Fluids A4 (1992) 3.

(c) (d)

t=196 t=374

Numerical simulations of the Euler equation.
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Coherent structures in fluids and plasmas (numerical 2)

—_- | \J H. Brands, S. R.
: Z Maasen, H.J.H.

Clercx
Phys. Rev. E 60.

(dy1=18 (e} =25 ) =100

Numerical simulations of the Navier-Stokes

equation.
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Coherent structures in fluids and plasmas (numerical 3)

Current at t = 5.0

R. Kinney, J.C.
McWilliams, T.
Tajima
Phys. Plasmas 2
(1995) 3623.

Current at t =-1540.0 . Vorticity ot t = 1540.0

Numerical simulations of the MHD equations.
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Compare the two approaches

Conservation egs. Lagrangian
8_"’+v.(nv) — 0 c(m“,¢V,ap¢V) — s:/d:cdta
ot
5 o oL oL 0
_ A V4 et —V —V -7 F 8 v o v -
mn<8t+v >v ? " out s (gem) ¢
3 o . .
;”(EJ“"'V)T = TVamp(Vev)mmi Vv Q Valid for : a single system.
: Just give the initial state.
Valid for : coffee, ocean, sun. &

Lagrangians are preferable. But, how to find a Lagrangian 7 See Phys.Rev.
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Ideal fluid in 2D space (Euler eq.)

dw OV

— = > = n) . 2 —
7 0 o —|—[( Vgpxn) VJ_]VJ_w 0
At late times of the relaxation process: the sinh-Poisson equation
Ay + ysinh (8¢) =0 (1)

The Charney-Hasegawa-Mima equation

The equation (CHM) derived for the two-dimensional plasma drift
waves and for Rossby waves in meteorology is:

(V3= 1) 90 4 k02 4 (V10 7) V.IVio=0 (2
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We will try to write Lagrangians not directly for fluids and plasmas but

for equivalent discrete models.

An equivalent discrete model for the Euler equation

dr’ 0 l
dt’*:e”— wnG (rp —1y) , 4,j=1,2, k=1 N (3)

J
ark n=1,n#k

the Green function of the Laplacian

G (r,r) z—%m('r?’/') (4)
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An equivalent discrete model for the CHM equation

The equations of motion for the
vortex wy at (xk,yr) under the ef-
fect of the others are

_om, 3 W
dt OYp.
o, e W
dt (93%

where

I The Rosette stone,
W — 7'('2 ZwleKO (m |r7, _ r_] |) (Bl"ltlSh Museum) the same

1=1 jzl message written in three alphabets

1]

Physical model — point-like vortices — field theory.
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The water Lagrangian
2D Euler fluid: Non-Abelian SU (2), Chern-Simons, 4" order

L = ="y (8MAVAP + %AMA,,AP) + (5)

0 (¥1008) - 110 (007 )+ 1 (00,9])

where
D,V =0,V + [Ay, Y]

The equations of motion are

iDoW — —%D2\If . % H\p \I!q qf} (6)
i
Flu,y = __5ul/p<]p (7)

2
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The Hamiltonian density is

oo o) 21 (o)

Using the notation D4+ = Dy 1D

Tr ((DﬂIf)T (DﬂIf)) — ((D_\D)T (D_\If)) n

7 (¥ [[v.9'] 9])

Then the energy density is

N = %Tr ((0-w)' (D-w)) >0

and the Bogomol’nyi inequality is saturated at self-duality

D_Vv =0

Oy A_ —O_Ay +[AL, A = [\p qﬁ}

(10)

(11)
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The static solutions of the self-duality equations

The algebraic ansatz:

E.,E | = H (12)
H,Ey] = +2F.
tr(ELF_) = 1
tr(H2) = 2
taking
V=1 by o (13)
and
A, = %(a—a*)H (14)
A, = %(a—l—a*)H

F. Spineanu — IFA June 2010 —



Field Theory in fluids/plasmas 15

The gauge field tensor

F_|__ = (—(9+a* — 0_a) H

and from the first self-duality equation

a¢1 8@01 *
Oz 0o

and their complex conjugate from (D_)' = 0.
Notation : pi = [¢1]", pa = |
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Aln (p1p2) =0
Alnps +2(p1 —p1 ) =0

We then have
At + ~ysinh (By) = 0.

The water we drink is self-dual
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The Lagrangian of 2D plasma in strong magnetic field:
Non-Abelian SU (2), Chern-Simons, 6! order

e gauge field, with “potential” A", (u=0,1,2 for (¢,x,y)) described
by the Chern-Simons Lagrangean;
e matter (“Higgs” or “scalar”) field ¢ described by the covariant kine-

matic Lagrangean (i.e. covariant derivatives, implementing the min-

imal coupling of the gauge and matter fields)

e matter-field self-interaction given by a potential V (gb, ng) with 6"

power of ¢;

e the matter and gauge fields belong to the adjoint representation of

the algebra SU (2)
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L = —re"Pir ((%A,,qut%AuA,,Ap) (20)
~tr [(D*)" (D,9)]
v (e')

Sixth order potential

v (0:6") = gt ([0 6] - 20) ([[6:6.0] - v79)

(21)
The Euler Lagrange equations are
oV
Fh — —
D.D"¢ = - 5 (22)
—ke"MPE,, =1iJ" (23)
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The energy can be written as a sum of squares. The self-duality eqgs.

D_¢ = 0 (24)
1
Fie = £ [~ ||0,¢'],0| ¢']
The algebraic ansatz : in the Chevalley basis
[Evw,E-] = H (25)
|H,E+] = =£2F4
tr (E+E_) = 1
tr (HQ) = 2

The fields
¢=¢1EL + poB
Ay =aH,A_ = —-a"H
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Equations for the components of the density of vorticity (here for '+)

1 1

_iAlnpl = — 2 (p1 — p2) [2 (p1+ p2) — 02} (26)
1 1 2

—§Aln,02 = ﬁ(Pl_PQ) [2(/)1 —|—p2)—v } (27)

Aln (p1p2) =0

introduce a single variable

(28)

(e ]

and obtain

—%Alnp: —

| =
RN
5| S
N~

(\V)
o\
e

|
|-
N~
1
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The energy at Self-Duality for two choices of the Bogomolnyi form for the

action functional

Integrand of Esn' (1/4)[cosh(y) - (cosh(\p))2 +1]
05 T

Integrand of ESD, (1/4) [(11/8)sinh(w)z(—2+cosh(\u)+(3/8)cosh(w)]
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At — sinh ¢ (coshy — 1) =0 L
A1 + — sinh v (coshyp — 1) =0
2
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This simplest form of the equation governing the stationary states of
the CHM eq.

A + %sinhw(costh —1)=0

The 'mass of the photon’ is

v? 1
m — — — —
K Ps

K = Cg
’02 = Qci
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Half-way Conclusions

The field theoretical formalism provides interesting results:

identifies preferred states as extrema of an action functional
derives explicit differential equations for these states

allows to investigate neighboring states and reveals the existence
of cuasi-degenerate directions and multiple minima of the action

in the function space
reveals the universal nature of the extrema, as self-dual states

practical applications

The F'T model still has to be examined:

It needs a clear mapping: ”formalism” - ”physics”

It needs better investigation of the equations of motion

It invites to study the natural extension of the theory.
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Integration of the differential equation

log(l2,
o _if

-10- 40O, 0O (RS
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2
log(E,;)

Figure 1: The structure of the space of initial conditions. The success-

ful (coherent vortex) solutions are shown as red dots.
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Comparison with experiment

“The right hand side of the Massive-Photon equation
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Figure 21 {ox, ) scatter plots of the decaying vorticity feld in Exp. 17, at (a) 1 min, (¥} § min, (¢} 10 min, and (d) 15 min after switching off the =
forcing. The far, ywhvalues of all points on a grid in physical space, with a mesh size of approximately (1 mm)®, are plotted, b |

"

Experimental Investigation of quasi-nve {in a stravified fluid with source-
sink forces

Frans de Rooij, P.F. Linden, S.P. Dalzicl, Journal of Fluid Mcchanics 383 (1999) 249.

Figure 2: The pair (¢,w) and the experiment (w is negative).
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Comparison with numerical simulations in the
asymptotic regime

Thee vorticity Afw(x.y)]

002
0.015
o0m
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-0.005 -
001 -
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00

Figure 3: Comparison between numerical calculation of the CHM sta-
tionary states (Khukharin 2002) and solution of the Equation (1).

Periodic structure of vortices.
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Applications
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Figure 4: The atmospheric vortex, the plasma vortex, the flows in
tokamak,the crystal of vortices in non-neutral plasma.
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The tropical cyclone

The tangential component of the velocity, vy, center is (0,0)

25

20

volxy)
\
|
|
f

thin ©

05

Figure 5: The tangential component of the velocity, vg(x,y)
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The tropical cyclone , comparisons

Figure 6: The solution and the image from a satelite.

The solution reproduces the eye radius, the radial

extension and the vorticity magnitude.
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Scaling relationships between main parameters of the tropical cyclone

eye-wall radius, maximum tangential wind, maximum radial extension
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Few remarkable hurricanes

Table 1: Comparison between calculated and respectively observed

magnitudes of the maximum tangential wind for four cases of tropical

cyclones

Name Input (obs) Calculated Observed
mie g | [ Resbyp [ | @
(km) o (km) (m/s) (m/s)

Andrew || 120 0.1 0.72 117.85 64.31 68

Katrina || 300 0.111 0.83 | 212 88.6 77.8

Rita 350 0.125 0.98 252.47 77.5 77.8

Diana 160 0.1125 || 0.845 | 133.81 56.86 55

(Comment ne pas perdre la téte?)
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Profile of the azimuthal wind velocity vy (1)
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Comparison between the Holland’s empirical model for

vy (continuous line) and our result (dotted line).
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Tokamak plasma. Solution for L = 307 : mono- and multipolar vortex

The sokition streamiuncion wixy)

The sohtion steamiunction wixy) Tha scluion streamiuncon w(xy)
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Self-organisation of the drift turbulence (Wakatani-Hasegawa)

(a) . TIME=S,0 (b) TIME=S.0 a4

FIG. 1. (a) The density contour and (b) the potential con-

tour from the three-di nal p lation of elec-

trostatic plasma turbulence in a cylindrical plasma with mag- -

netic curvature and shear. In (b) the solid (dashed) lines are FIG. 2. Profiles of elr) for a=04=0 mode i two

for the positive (negative) potential contours. Note the devel- ured ith the predicted ol {sols lee) hussd ot i el
Of Clmed P St near lhe ’ﬁo Suffﬂcﬁ, :I:J:i;n.‘l.iun conjecture. The predicted curve is fitted s
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The crystals of plasma vortices

The solution streamfunction y(x,y) The vorticity w(x,y) resulting from the solution y(x,y) L ' T
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Figure 7: The crystals of plasma vortices.
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Vortex crystals in non-neutral plasma

=

L
= 3
vorticity (10" sec)

FIG. 1. Vortex crystals observed in magnetized electron columns (Ref. 8). The color map is logarithmic. This figure shows vortex crystals with (from left to
right) M =3, 5, 6, 7, and 9 intense vortices immersed in lower vorticity backgrounds. In a voriex erystal equilibrium, the entire vorticity distribution {(r, #)
is stationary in a rotating frame; i.e., { is a function of the variable — ¢+ %ﬂrz, where 4 is the stream function and £} is the frequency of the rotating frame.

Too ® w0 % 2 0 @™ 40 0 W W

Comparison of our vortex solution with experiment.
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Laser generated plasma

230 Meurcu, Tajma, and Bdanow:

-
L = R R 1
s

&

FIQE. 18. %ortex row behind the laser pube se=nin the Eoooh-
tours of the magnetic field.

Figure 8: Structure of the magnetic field in a plasma generated by a
strong Laser pulse. The equation for B has the same nonlinear form
as the CHM equation.
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Filamentation in Laser-generated plasmas (for Inertial Fusion)

The equation for the magnetic field generated in a laser-driven plasma

—V*°B —e. B) - B
oen dtv -+ <u06n0> (—e, x VB)-V|V
OB 1 ~ 2
= = + Hoen? [(—€e. x Vng) - V]| Ving
+-1 [(—8. x Vo) - V] V2T
€no

where T7 is the perturbed temperature

8T1 n/ Té 83
—— 4T —1 — =
8?5 + 0 (fy ) o To 8y

—[(=e. x VB) - V| V°T}

When the T7 perturbation and the scalar nonlinearity BOB /0y can be
neglected, the equation for B becomes the classical CHM-type equation.

A sheet of current is broken up into filaments.
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The m of e funct pey) Th jon streamhunc v Contours of streamfunction wixy) and velocity vector fisld {v v }
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Figure 9: Filamentation in a current sheet.
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Final Conclusions

It seems it works.

e Hamlet: The rest is silance
e LEinsetin: The rest 1s details

e (Field Theory Book): The rest is gauge

Save your work.

Prepare for shutdown.
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