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Objective: to develop a field-theoretical model that can provide a

description of the 2D fluids close to stationarity.

The theory is relevant for the classical debate on the relation between

(1) large-scale organized, quasi-coherent flows, and

(2) ”structures” (solitons, vortices, etc.)

Content

• The 2D discrete systems and the field theory formalism

• 2D water

• planetary atmosphere (2D quasi-geostrophic)

– tropical cyclone; relationships vmax
θ , Rmax, rvmax

θ

• plasma (coherent) flows; crystals of vortices in non-neutral plasmas

• Related subjects: Concentration of vorticity; Contour Dynamics;

statistics of turbulence; etc.
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Main idea : there exist preferred states of the system.

The system makes transitions between these states.

Quasi-coherent structures are observed in

• fluids (in oceans and in laboratory experiments)

• plasma (confined in strong magnetic field)

• planetary atmosphere (2D quasi-geostrophic)

• non-neutral plasma (crystals of vortices)

There are common features suggesting to develop models based on

the self-organization of the vorticity field. The fluids evolve at

relaxation precisely to a subset of stationary states.

It is found that besides conservation there is also action
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Coherent structures in fluids and plasmas (reality)

Rings of vorticity

(Leonard 1998)

Nice tornado vortex. Vortex ring emitted

by the volcano Etna.
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Coherent structures in fluids and plasmas (numerical 1)

Numerical simulations of the Euler equation.

D. Montgomery,

W.H. Matthaeus, D.

Martinez, S.

Oughton, Phys.

Fluids A4 (1992) 3.
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Coherent structures in fluids and plasmas (numerical 2)

Numerical simulations of the Navier-Stokes

equation.

H. Brands, S. R.

Maasen, H.J.H.

Clercx

Phys. Rev. E 60.
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Coherent structures in fluids and plasmas (numerical 3)

Numerical simulations of the MHD equations.

R. Kinney, J.C.

McWilliams, T.

Tajima

Phys. Plasmas 2

(1995) 3623.
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Compare the two approaches

Conservation eqs.

∂n

∂t
+ ∇· (nv) = 0

mn

(
∂

∂t
+ v · ∇

)
v = −∇p − ∇ · π + F

3

2
n

(
∂

∂t
+ v · ∇

)
T = −∇ · q − p (∇ · v) − π : ∇v + Q

Valid for : coffee, ocean, sun.

Lagrangian

L
(
xμ, φν , ∂ρφ

ν
)

→ S =

∫
dxdtL

∂

∂xμ

δL
δ
(
∂φν

∂xμ

) −
δL
δφν

= 0

Valid for : a single system.

Just give the initial state.

Lagrangians are preferable. But, how to find a Lagrangian ? See Phys.Rev.
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Ideal fluid in 2D space (Euler eq.)

dω

dt
= 0 → ∂∇2

⊥ψ
∂t

+ [(−∇⊥ψ × n̂) · ∇⊥]∇2
⊥ψ = 0

At late times of the relaxation process: the sinh-Poisson equation

Δψ + γ sinh (βψ) = 0 (1)

The Charney-Hasegawa-Mima equation
The equation (CHM) derived for the two-dimensional plasma drift

waves and for Rossby waves in meteorology is:(∇2
⊥ − 1

) ∂φ
∂t

+ κ
∂φ

∂y
+ [(−∇⊥φ× n̂) · ∇⊥]∇2

⊥φ = 0 (2)
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Equivalence with discrete models
We will try to write Lagrangians not directly for fluids and plasmas but

for equivalent discrete models.

An equivalent discrete model for the Euler equation

drik
dt

= εij
∂

∂rjk

N∑
n=1,n �=k

ωnG (rk − rn) , i, j = 1, 2 , k = 1, N (3)

the Green function of the Laplacian

G
(
r, r′

) ≈ − 1

2π
ln

( |r− r′|
L

)
(4)
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An equivalent discrete model for the CHM equation

The equations of motion for the

vortex ωk at (xk, yk) under the ef-

fect of the others are

−2πωk
dxk
dt

=
∂W

∂yk

−2πωk
dyk
dt

= −∂W
∂xk

where

W = π
N∑
i=1

N∑
j=1

i �=j

ωiωjK0 (m |ri − rj |)
The Rosette stone,

(British Museum) the same

message written in three alphabets

Physical model → point-like vortices → field theory.
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The water Lagrangian
2D Euler fluid: Non-Abelian SU (2), Chern-Simons, 4th order

L = −εμνρTr
(
∂μAνAρ +

2

3
AμAνAρ

)
+ (5)

iT r
(
Ψ†D0Ψ

)
− 1

2
Tr
(
(DiΨ)†DiΨ

)
+

1

4
Tr
([

Ψ†,Ψ
])2

where

DμΨ = ∂μΨ+ [Aμ,Ψ]

The equations of motion are

iD0Ψ = −1

2
D2Ψ− 1

2

[[
Ψ,Ψ†

]
,Ψ
]

(6)

Fμν = − i

2
εμνρJ

ρ (7)

F. Spineanu – IFA June 2010 –



Field Theory in fluids/plasmas 13

The Hamiltonian density is

H =
1

2
Tr
(
(DiΨ)† (DiΨ)

)
− 1

4
Tr

([
Ψ†,Ψ

]2)
(8)

Using the notation D± ≡ D1 ± iD2

Tr
(
(DiΨ)† (DiΨ)

)
= Tr

(
(D−Ψ)† (D−Ψ)

)
+

1

2
Tr
(
Ψ†
[[
Ψ,Ψ†

]
,Ψ
])

Then the energy density is

H =
1

2
Tr
(
(D−Ψ)† (D−Ψ)

)
≥ 0 (9)

and the Bogomol’nyi inequality is saturated at self-duality

D−Ψ = 0 (10)

∂+A− − ∂−A+ + [A+, A−] =
[
Ψ,Ψ†

]
(11)
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The static solutions of the self-duality equations

The algebraic ansatz:

[E+, E−] = H (12)

[H,E±] = ±2E±

tr (E+E−) = 1

tr
(
H2
)

= 2

taking

ψ = ψ1E+ + ψ2E− (13)

and

Ax =
1

2
(a− a∗)H (14)

Ay =
1

2i
(a+ a∗)H
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The gauge field tensor

F+− = (−∂+a∗ − ∂−a)H

and from the first self-duality equation

∂ψ1

∂x
− i

∂ψ1

∂y
− 2ψ1a

∗ = 0 (15)

∂ψ2

∂x
− i

∂ψ2

∂y
+ 2ψ2a

∗ = 0 (16)

and their complex conjugate from (D−ψ)
†
= 0.

Notation : ρ1 ≡ |ψ1|2, ρ2 ≡ |ψ2|2
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Δln (ρ1ρ2) = 0 (17)

Δ ln ρ1 + 2(ρ1 − ρ−1
1 ) = 0 (18)

We then have

Δψ + γ sinh (βψ) = 0. (19)

The water we drink is self-dual
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The Lagrangian of 2D plasma in strong magnetic field:

Non-Abelian SU (2), Chern-Simons, 6th order

• gauge field, with “potential” Aμ, (μ = 0, 1, 2 for (t, x, y)) described

by the Chern-Simons Lagrangean;

• matter (“Higgs” or “scalar”) field φ described by the covariant kine-

matic Lagrangean (i.e. covariant derivatives, implementing the min-

imal coupling of the gauge and matter fields)

• matter-field self-interaction given by a potential V
(
φ, φ†) with 6th

power of φ;

• the matter and gauge fields belong to the adjoint representation of

the algebra SU (2)
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L = −κεμνρtr
(
∂μAνAρ +

2

3
AμAνAρ

)
(20)

−tr
[
(Dμφ)† (Dμφ)

]
−V

(
φ, φ†

)
Sixth order potential

V
(
φ, φ†

)
=

1

4κ2
tr

[([[
φ, φ†

]
, φ
]
− v2φ

)† ([[
φ, φ†

]
, φ
]
− v2φ

)]
.

(21)

The Euler Lagrange equations are

DμD
μφ =

∂V

∂φ† (22)

−κενμρFμρ = iJν (23)
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The energy can be written as a sum of squares. The self-duality eqs.

D−φ = 0 (24)

F+− = ± 1

κ2

[
v2φ−

[[
φ, φ†

]
, φ
]
, φ†
]

The algebraic ansatz : in the Chevalley basis

[E+, E−] = H (25)

[H,E±] = ±2E±

tr (E+E−) = 1

tr
(
H2) = 2

The fields

φ = φ1E+ + φ2E−

A+ = aH,A− = −a∗H
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Equations for the components of the density of vorticity (here for ′+′)

−1

2
Δ ln ρ1 = − 1

κ2
(ρ1 − ρ2)

[
2 (ρ1 + ρ2)− v2

]
(26)

−1

2
Δ ln ρ2 =

1

κ2
(ρ1 − ρ2)

[
2 (ρ1 + ρ2)− v2

]
(27)

Δ ln (ρ1ρ2) = 0

introduce a single variable

ρ ≡ ρ1
v2/4

=
v2/4

ρ2
(28)

and obtain

−1

2
Δ ln ρ = −1

4

(
v2

κ

)2(
ρ− 1

ρ

)[
1

2

(
ρ+

1

ρ

)
− 1

]
(29)
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The energy at Self-Duality for two choices of the Bogomolnyi form for the

action functional
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This simplest form of the equation governing the stationary states of

the CHM eq.

Δψ +
1

2
sinhψ (coshψ − 1) = 0

The ’mass of the photon’ is

m =
v2

κ
=

1

ρs

κ ≡ cs

v2 ≡ Ωci
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Half-way Conclusions

The field theoretical formalism provides interesting results:

• identifies preferred states as extrema of an action functional

• derives explicit differential equations for these states

• allows to investigate neighboring states and reveals the existence

of cuasi-degenerate directions and multiple minima of the action

in the function space

• reveals the universal nature of the extrema, as self-dual states

• practical applications

The FT model still has to be examined:

It needs a clear mapping: ”formalism” - ”physics”

It needs better investigation of the equations of motion

It invites to study the natural extension of the theory.
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Integration of the differential equation
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Figure 1: The structure of the space of initial conditions. The success-

ful (coherent vortex) solutions are shown as red dots.

Solutions: trivial, turbulent, coherent, strongly concentrated.
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Comparison with experiment
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Figure 2: The pair (ψ, ω) and the experiment (ω is negative).
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Comparison with numerical simulations in the

asymptotic regime

Figure 3: Comparison between numerical calculation of the CHM sta-

tionary states (Khukharin 2002) and solution of the Equation (1).

Periodic structure of vortices.
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Applications

Figure 4: The atmospheric vortex, the plasma vortex, the flows in

tokamak,the crystal of vortices in non-neutral plasma.
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The tropical cyclone
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Figure 5: The tangential component of the velocity, vθ(x, y)

This is an atmospheric vortex.
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The tropical cyclone , comparisons
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Figure 6: The solution and the image from a satelite.

The solution reproduces the eye radius, the radial

extension and the vorticity magnitude.
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Scaling relationships between main parameters of the tropical cyclone

eye-wall radius, maximum tangential wind, maximum radial extension
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Few remarkable hurricanes

Table 1: Comparison between calculated and respectively observed

magnitudes of the maximum tangential wind for four cases of tropical

cyclones

Name Input (obs) Calculated Observed

Rphys
max

(km)

rvmax
θ

Rmax
L

Rossby ρg

(km)

(vmax
θ )

(m/s)

(vmax
θ )

(m/s)

Andrew 120 0.1 0.72 117.85 64.31 68

Katrina 300 0.111 0.83 212 88.6 77.8

Rita 350 0.125 0.98 252.47 77.5 77.8

Diana 160 0.1125 0.845 133.81 56.86 55

(Comment ne pas perdre la tête?)
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Profile of the azimuthal wind velocity vθ (r)
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Comparison between the Holland’s empirical model for

vθ (continuous line) and our result (dotted line).
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Tokamak plasma. Solution for L = 307 : mono- and multipolar vortex
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Self-organisation of the drift turbulence (Wakatani-Hasegawa)
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The crystals of plasma vortices
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Figure 7: The crystals of plasma vortices.

Comparisons of crystal-type solutions with experiment.
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Vortex crystals in non-neutral plasma

Comparison of our vortex solution with experiment.
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Laser generated plasma

Figure 8: Structure of the magnetic field in a plasma generated by a

strong Laser pulse. The equation for B has the same nonlinear form

as the CHM equation.
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Filamentation in Laser-generated plasmas (for Inertial Fusion)

The equation for the magnetic field generated in a laser-driven plasma

1

μ0en0

∂

dt
∇2B +

(
1

μ0en0

)2

[(−êz ×∇B) · ∇]∇2B

=
∂B

∂t
+

1

μ0en2
0

[(−êz ×∇n0) · ∇]∇2n0

+
1

en0
[(−êz ×∇n0) · ∇]∇2T1

where T1 is the perturbed temperature

∂T1

∂t
+ T0

[
(γ − 1)

n′
0

n0
− T ′

0

T0

]
∂B

∂y
= − [(−êz ×∇B) · ∇]∇2T1

When the T1 perturbation and the scalar nonlinearity B∂B/∂y can be

neglected, the equation for B becomes the classical CHM-type equation.

A sheet of current is broken up into filaments.
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Figure 9: Filamentation in a current sheet.

Current sheet.
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Final Conclusions

It seems it works.

• Hamlet: The rest is silance

• Einsetin: The rest is details

• (Field Theory Book): The rest is gauge

Save your work.

Prepare for shutdown.
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