

The EU Plasma Wall Interaction Task Force : Recent Achievements and Plans

R. Zagórski

PWI Responsible Officer EFDA CSU Garching

Special thanks to: E. Tsitrone (CEA) and R.Neu (IPP) and EU TF on PWI

R.Zagórski: RCM on Dust Characterization in Fusion Devices, 21-23 June, 2010

Outline

1) What is EFDA and the EU PWI TF?

2) Recent achievements of the PWI TF: highlights of 2009

3) Work programme 2010-2011 : dust & fuel removal

4) Summary

R.Zagórski: RCM on Dust Characterization in Fusion Devices, 21-23 June, 2010

New Organisation in force end 2007

The overall fusion programme remains coordinated by the Commission in the frame of Euratom

Joint Undertaking for ITER "Fusion for Energy" (F4E)

- Domestic Agency to provide and manage EU contribution to ITER
- EU Contribution to Broader Approach
- Located in Spain (Barcelona)

European Fusion Development Agreement (EFDA)

- Agreement between all EU fusion labs and Euratom
- Coordinated research (physics in support to ITER, longer term technology) and JET
- Garching (D) and Culham(UK)

Associations:

European Fusion Laboratories associated to Euratom through "Contracts of Association"

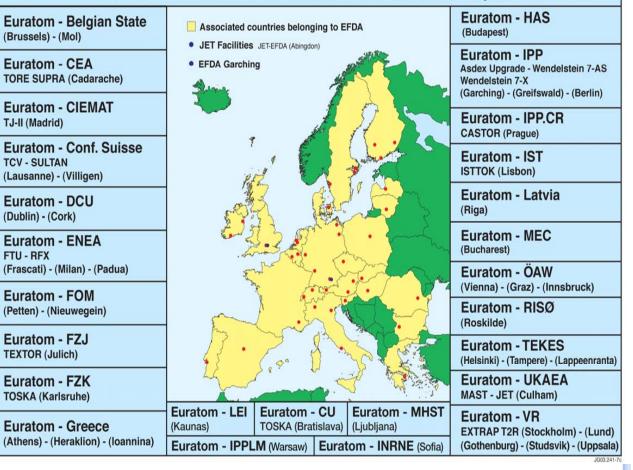
EFDA

All EU Laboratories/Institutions working on Fusion are parties to EFDA

• Collective use of JET

EUROPEAN FUSION DEVELOPMENT AGREEMEN

•Reinforced coordination of physics and technology in EU laboratories


• Training

•EU contributions to international collaborations outside

EURATOM : KEY ACTION FUSION Associated Laboratories, parties to EFDA

Francesco Romanelli EFDA Leader and EFDA Associate Leader for JET

R.Zagórski: RCM on Dust Characterization in Fusion Devices, 21-23 June, 2010

Coordination of R&D:

EFDA Task Forces & Topical Groups

Task Forces under EFDA

PWI Task Force: Leader	R.Neu (IPP)
TM Task Force: Leaders	P.Strand (VR), R. Coelho (IST), LG Eriksson (EC)
Topical Groups under EFDA	
Transport Topical Group:	Chairman C.Hidalgo (CIEMAT)
H&CD Topical Group:	Chairman A.Becoulet (CEA)
Materials Topical Group:	Chairman S.Dudarev (UKAEA)
Diagnostics Topical Group:	M. Reith (FZK) Chairman T.Donné (FOM)
MHD Topical Group:	Chairman P.Martin (ENEA-RFX)

EFDA Emerging Technologies and DEMO activities

What is the EU PWI TF?

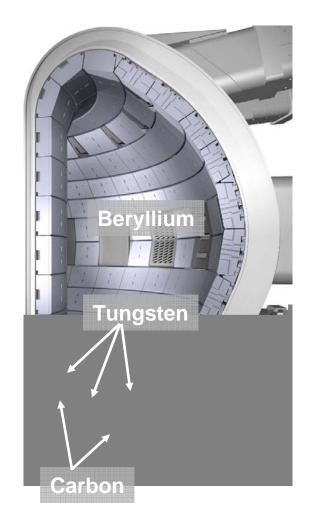
The aim of the **PWI Task Force** is to **concentrate** European **research on the most urgent problems in the field of PWI for ITER** and future devices, and to propose scientific and technological concepts to overcome these problems.

ITER high priority research needs : strongly PWI related

1. Disruption/ Runaway Mitigation

Heat loads, runaway electrons: reduction > 1 order of magnitude

2. ELM Control/ Mitigation reduction > 1 order of magnitude


3. Plasma Facing Materials

Physics basis for ITER reference scenarios with W/ Be PFCs ; C removal

4. Scenario Development

5. Diagnostics

Dust / Hot dust ; divertor erosion ; mirrors ; H/D/T inventory

[D. Campbell, ITPA CC meeting June 2008]

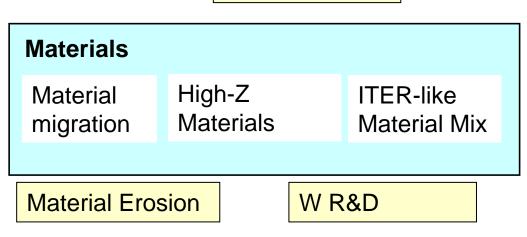
EU-PWI TF : targeted at ITER through 7 SEWGs

1. Disruption/ Runaway Mitigation

Heat loads, runaway electrons: reduction > 1 order of magnitude

2. ELM Control/ Mitigation

ITPA Div SOL : 5 topics


Transient heat loads

ELMs and disruptions

Heat loads

3. Plasma Facing Materials

Physics basis for ITER reference scenarios with W/ Be PFCs ; C removal

5. Diagnostics

Dust / Hot dust ; divertor erosion ; mirrors ; H/D/T inventory

Dust	Fuel retention		Dust
Dust in fusion devices	Fuel retention	Fuel Removal	Fuel retention
R.Zagórski: RCM on Dust Characterization in Fusion Devices, 21-23 June, 2010			8

ITPA Div/SOL

EFDA:

ITM-TF (codes) TG MHD (disr.) TG H&CD (ICWC) TG diags (LIBS) TG Mat (W alloys) TG Trans (impur.)

Emerging techno (Dust & T)

EFDA-JET:

TF-E1/E2 (ILVV) TF-FT

EU PWI TF: mature organisation

Task Force Plasma-Wall Interaction

Main orientations at Annual General Meeting Contact Persons from 23 associations + JET TF E1/E2 and FT, EFDA, F4E, ITER IO

Special Expert Working Groups Annual specialised meeting of SEWG members Joint meetings

Associations

Baseline work programme Priority support

1

Task Agreements

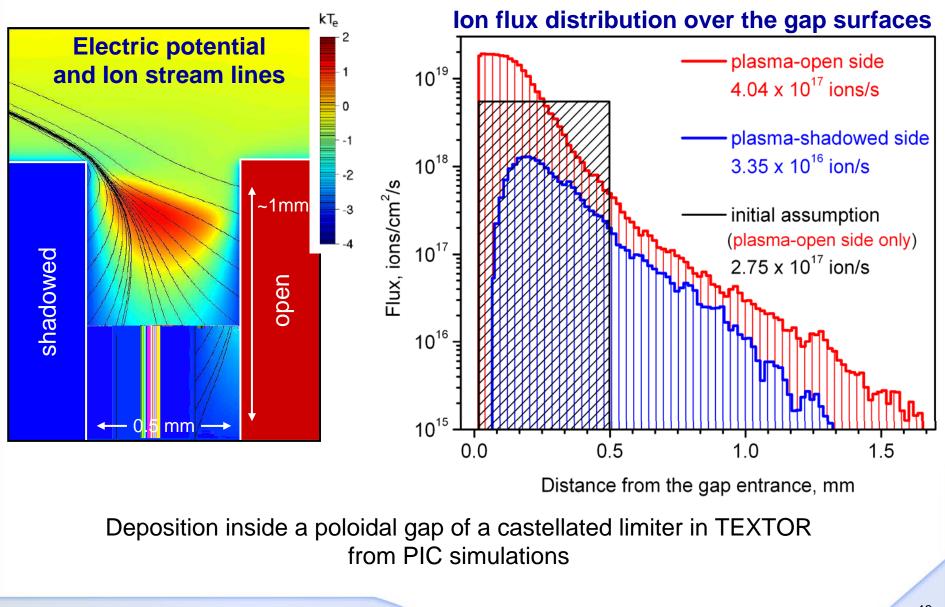
Contracts between EFDA and Associations

SEWG Meetings:

Dust and Fuel Removal: 8-9 June, Garching Material Mix & Material Migration: 30 June – 02 July, Jülich Fuel Retention: 19-21 July, Garching High Z Materials and Liquid Metals: 21-23 July, Garching Transients and Heat Loads: 1- 2 September, Jülich

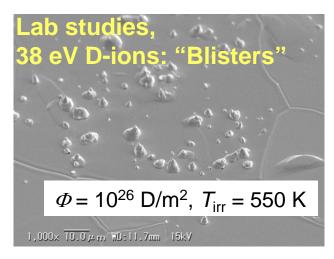
EFDA Meeting on modelling activities of EU-PWI Task Force 7-8 September 2010, Culham, JET

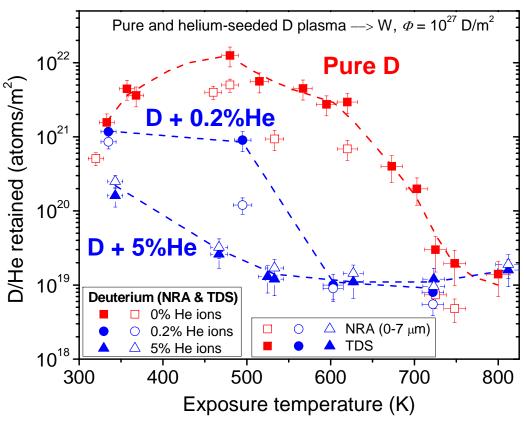
PWI Annual Meeting, 3-5 November, Vienna, Austria


Recent scientific achievements : highlights of 2009

Scientific highlights for 2009

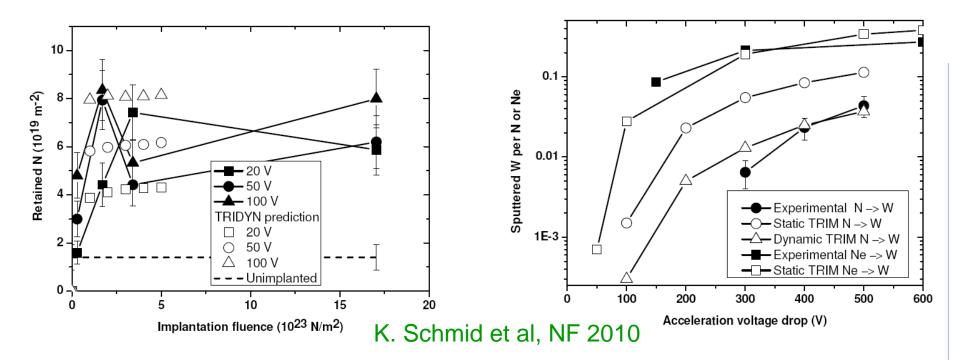
- evidence for threshold in chemical erosion at 1-2 eV;
- development of transport codes: ELMs and gaps in ERO, grid extension to the wall ongoing in SOLPS
- H retention in W confirmed to be low: impact of He bombardment, simulation of neutron damage; porosity network in CFC characterized by high resolution tomography
- first characterization of runaway electrons in Tore Supra and TEXTOR; similar valves in MAST, TEXTOR and JET for massive gas injection (MGI) studies; modelling effort started for runaways and MGI (FZK)
- performance of N seeded scenarios well established in full W AUG and nitrogen wall pumping evidenced; improved plasma performance with liquid lithium limiter in FTU
- coordinated experiments on ICRF cleaning in TEXTOR, Tore Supra, AUG as well as in JET under TFE/H
- dust trajectories investigated in several devices using fast cameras
- exploration of ternary systems (Be-C-W, Be-O-W) (IPP, MedC); benchmarking of ERO-TRIDYN ongoing (collab. with the PISCES-B)




Modelling of Deposition in Gaps

Low fuel retention in W confirmed in dedicated lab experiments

- Temperature dependence
 explored : complex behaviour
 → blisters formation
- Simultaneous He bombardment : retention reduced
- Impact of neutrons : damage simulated by heavy ions bombardment
- ➔ moderate increase



Retention in W under He bombardment [IPP Garching]

Lab Experiments on N-W interaction

- N wall storage saturates after a fluence a few 10²³N/m²
- saturation depending on injection energy
- N deposition depth ~ implantation range <2 nm (negligible diffusion)
- saturation density $D_{N,sat} \leq 10^{20} \text{ N/m^2}$, compatible with the formation of WN
- strong reduction of N content at higher sample temperatures, in line with decomposition of W nitride above 600K
- reduction of W sputter yield in N saturated samples ('surface dilution')

Similar investigations for Be-N under way

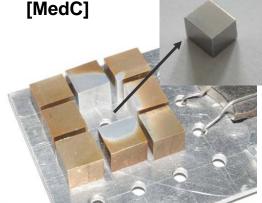
SEWG Fuel removal

ICWC optimization, first trial on gaps

Chemical Methods - O_2 , N_2 , $NH_3 \rightarrow ITER$

Fuel removal efficiency of ICWC explored in coordinated experiments

- (Textor, Tore Supra, AUG)
 - Optimisation ongoing (pulsed cycle ICWC on/off, pressure, gas mixture, B field etc)
 - First trials for recovery after disruption promising


Removal in gaps

thermo-oxydation (CIEMAT), ECR or GDC (IPP, FZJ),

laser (CEA), plasma torch (MedC)

Before ablation After ablation

Dust production during cleaning processes :

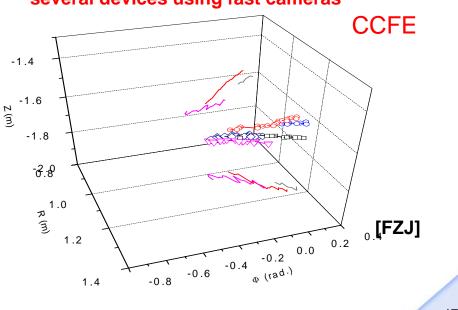
laser cleaning (CEA, IPPLM, VR) : dust/flake production with significant fuel content

SEWG Dust

Dust measurements during plasma, dust injection experiments

Dust collection ongoing : JET, AUG, Textor, Tore Supra

Complex structure for C dust, spherical for W (droplets from transients ?)


 \Rightarrow Conversion factor: 5-8 % in TS

Dust measurements during plasma operation :

CCD (TS, AUG), fast IR (AUG), electrostatic detector (TS), Thomson scattering (FTU) Dust trajectories investigated in several devices using fast cameras

Preliminary dust injection experiments in Textor

Driving force = $j \times B$ Edge C increased, no effect in core

Work programme 2010-2011 (dust & fuel removal):

Main orientations for 2010/11

• Bilateral collaborations :

- mixed materials : PISCES (US) → EFDA PWI TF
- material damage : plasma guns (RF) → F4E, but modelling + dust = PWI TF

Including recent ITER requests

- disruptions/runaways
- W R&D
- divertor re-attachment heat loads
- IC wall conditionning

• Integrated plasma operation : impact of impurity seeding

- erosion, mixed material, fuel retention ...
- Strengthening of modelling for extrapolation to ITER and DEMO
 - Interpretative modelling for benchmarking tools used for ITER simulations (SOLPS, ERO, DIVIMP ...)
 - in close connection with ITM-TF (code development)

7 TAs for 2010

Resources: 25.2 PPY PS, 430 kEuro Hardware

•Fuel retention :

TA-1: Fuel retention as a function of wall materials foreseen for ITER

• Fuel removal : (2.75 ppy, 20 kEuro hardware)

TA-2: Fuel removal compatible with retention in different and mixed first wall materials

• Dust : (1.9 ppy, 32 kEuro hardware)

•TA-3: Dust generation and characterization in different devices

• Material migration : TA-4: Erosion, transport and deposition of first wall impurities

• High Z :

•TA-5: Development of the PWI basis in support of integrated high-Z scenarios for ITER. Liquid plasma-facing components

• Mixed materials :

TA-6: Expected alloys and compounds and their influence on PWI processes

•Transients :

•TA-7: Mitigation of disruption loads for ITER. Heat load in ITER relevant ELM scenarios

Resources: 2.5 PPY PS, 40 kEuro Hardware

- Wall conditioning and discharge tailoring: Assessment of wall conditioning techniques with emphasis on fuel removal, H-isotope exchange, dust production and plasma restart.
- Investigations of chemical cleaning methods: Explore the impact of repetitive oxidising plasmas (GDC/RF) on beryllium bulk properties and other in-vessel components, Study the effect of sample temperature and impact of nitrogen-containing molecules.
- Further development of photonic cleaning methods: Study film break-up processes in photonic "cleaning", optimising gaseous release, and preventing spread of dust.
- Fuel removal in gaps: Removal of deposited films in tile gaps and castellations with glow discharge cleaning in oxygen or O-based gas mixtures or plasma torch.

Resources: 2.5 PPY PS, 70 kEuro Hardware

- Assess dust generation (in particular conversion factor from material erosion to dust) and dust properties in tokamaks: Carbon and Metal dust formation (W and Be), the fuel content, size distribution, surface specific area and reactivity.
- Improve detection of dust in the plasma. Improve understanding of the impact of dust formation on the plasma performance and operation: Relate the dust generation to discharge conditions and the impact of dust formation and mobilization on plasma performance and machine operation.

- ITER : several top priority issues are PWI related (disruptions, ELMs, W R&D, diags for dust and T)
- EU PWI TF : well targeted and reactive to ITER requests (ICWC, divertor reattachment, disruptions/runaways)
- Coordination : European (other EFDA TF/TGs, F4E) and international (bilateral collaboration with US, ITPA DivSOL)
 - Workprogramme 2011 established (Call in preparation) Effort to strengthen modelling for extrapolation to ITER Emphasis on issues raised by ITER and formulated within ITPA

Thank you for your attention