
                                     Call for Proposals for HLST 

 1 

 
Proposal for the Use of 

High Level Support Team resources 
 

 

Abstract  
KInetic code for Plasma Periphery (KIPP), developed at IPP/Garching, was created 
as a tool to study kinetic effects of parallel plasma transport in the scrape-off layer 
and divertor. Experience gained in the code runs should form a scientific basis for 
implementation of kinetic effects (such as heat flux limiters/enhancements) in the 
present day 2D fluid codes such as SOLPS. Test runs of KIPP demonstrated the 
code’s stability and extreme accuracy. Benchmarks carried out in the limit of strong 
collisionality demonstrated good match to analytical expressions with accuracy within 
1% for most important transport coefficients: plasma electric conductivity, ion-
electron energy equipartition rate for realistic ratio of deuteron to electron mass, 
parallel heat conduction and ion-electron thermoforce. The code’s application to 
modelling real experimental profiles is presently hampered by its insufficient speed. 
Code optimisation for the speed of execution has been an integral part of its 
development right from the beginning. The critical issue for the code’s speed up: MPI 
parallelisation enabling the most CPU consuming operations of Coulomb collisions to 
be split among large number of processors, each dedicated to a separate spatial 
location, has been successfully implemented. It is believed however that involvement 
of computational experts in the code optimisation can result in a further considerable 
speedup of this code.  

 

 

Project Title Speeding up KInetic code for Plasma Periphery 

(KIPP) 

Project Acronym 
(up to 8 characters) 

KIPPADV 

 

Project coordinator: 

 

Name of Coordinator: Alex Chankin 

Institution: Max-Planck-Institute for Plasma Physics 

Street Address: Boltzmannstr. 2 

City: Garching 

Country: Germany 

Email: Alex.Chankin@ipp.mpg.de 

Phone: +49 89 32991844 
 

 

Principal Investigator(s) [other than coordinator]: 
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Institution:  

Names of Investigators:  

Street Address:  

City:  

Country:  

Email:  

Phone:  
Please duplicate the table above if Principal Investigators from more than one Research Unit 

 
 
 
 
 
 
 
 
Requirements for the present largest run of the code 
 

Total amount of CPU hours 1000 

Architecture(s) where application is already used TOK-P Cluster  

Number of CPUs 256 

Memory requirements 1x256=256 Gb 

Storage requirements  insignificant 

Pure MPI or mixed communication 

(OpenMP+MPI) 

Pure MPI 

Own code / 3rd party code Own code 

Code publicly available (yes/no)? no 

Library requirements MKL, MUMPS sparse matrix solver  

Special requirements none 

Site name(s) where application is already used  IPP/Garching 

Expected usage of the IFERC computer (yes/no)? yes 

 

 

 

Technical Improvement or adaptation work done so far 
1. Do you apply in parallel for similar support from other institutions?  

2. Has your code/project already received support (especially as part of a previous HLST 

call) related to improvement of its computational capabilities? 

1. No 

2. No 

 

 

Request for work 

 

a) Indicate nature (type) of HLST support being requested 
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b) Indicative level of support (in ppm
1
) 

 

a) Implementation of methods, algorithms and solver capable of speeding up the code. 

b) 6 ppm  

 

 

Involvement of the project proponents 

 

Indicate the effort (in ppm
1
) of the projects proponents to be given (in parallel to the 

HLST work) to the execution of the project 

 

6 ppm 

 

 

 

 

Potential Impact 

 

Indicate the estimated benefits that the HLST support activity will have on the software and 

physics modelling capabilities 

 

The present version of KIPP was created by physicists, with limited support from 

computation experts available in the TOK division. Primary goals were: a) accuracy of the 

code in solving known problems, b) stability, c) speed, so that test code runs could complete 

in reasonable amount of time to allow further code development. The code is presently 

parallelised, with the most time consuming operations split over ~ 256 processors using MPI 

parallelisation.  

 

It is believed that the execution time can be reduced by factor ~ 10 due to improvements in:  

parallelisation, including implementation of OpenMP parallelisation; choice of more efficient 

solvers; reorganisation of data flow including inter-processor communication.   

                                                 
1
 Note that 1ppy=12ppm 
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Detailed Project Description (max. 1-2 pages) 
 

KIPP is a continuum Vlasov-Fokker-Planck (VFP) code used to describe parallel plasma 

propagation (along magnetic field lines, ‘B-field’) in the scrape-off layer (SOL) and divertor. 

The code is 1d2v: one spatial coordinate and two velocity coordinates: parallel velocity and 

gyro-averaged perpendicular velocity. It is written in Fortran 90. The motivation for creating 

this code comes from the well known fact, despite the edge plasma in many respects being 

strongly collisional, some transport coeffecients, in particular parallel heat conduction 

coefficient, require kinetic analysis, since they are determined by a minority of supra-thermal 

charged particles which are poorly collisional. The widely used 2D edge fluid codes such as 

SOLPS don’t include kinetic effects, instead, they only use very simplified kinetic 

corrections.  

 

For numerical solution of the VFP equation for the (presently, only) electron distribution 

function fe(v||,v,s||,), KIPP uses an operator splitting scheme, by alternating steps with 

electron-electron (e-e) plus electron (e-i) Coulomb collisions, and parallel propagation (‘free-

streaming’). Also present are effects of the parallel electric field (E-field) and the Debye 

potential sheath drop at the divertor target. KIPP assumes plasma quasi-neutrality, with 

ambipolarity of the plasma flow along B-field achieved by adjustment of the E-field. 

 

1. Coulomb collisions 

One of the most CPU consuming operations in KIPP is calculation of the effect of Coulomb 

collisions. For each spatial position, one processor (core) is dedicated, and calculations are 

done on a large number of processors simultaneously using MPI parallelisation. A fully 

implicit scheme to solve the Fokker-Planck (FP) equation is used. The effect of the E-field is 

part of the same implicit scheme. The FP equation is solved using the 9-point stencil to 

describe effects (in velocity space) of convection, diffusion and pitch angle scattering, 

represented by various derivatives of fe.  A Multifrontal Massively Parallel Solver (MUMPS) 

in a one processor mode is used to solve the FP equation. The typical velocity grid size is 

256x512 and it takes ~ 0.1 s to solve the FP equation. Before the FP equation can be solved 

numerically, a number of other parameters and arrays need to be calculated as described 

below. 

 

On each individual processor (dedicated to certain position s|| in space) the solution of the FP 

equation at each time step requires prior sequential calculations of the two Rosenbluth 

potentials H(v||,v) and G(v||,v). Derivatives of these potentials determine transport 

coefficients in velocity space caused by Coulomb collisions. Rosenbluth potentials are 

calculated by solving the two Poisson equations in sequence, on a 5-point stencil again using 

the MUMPS sparse matrix solver.  

 

Solutions of the above mentioned Poisson equations in turn require boundary conditions, 

different for H and G arrays. The boundary conditions, being 1D arrays in velocity space 

(against vb - the array of velocities surrounding the velocity grid along its perimeter), are 

calculated as a product of the two Green functions (3D arrays in velocity space, e.g. 

GRH(v||,v,vb)) and 2D arrays in (v||,v) space with the subsequent summation over its 

elements using the vectorised matmul procedure. 
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Calculation of the two Green functions is the most CPU consuming operation. They however 

only depend on the velocity grid which doesn’t change during the run. For this reason Green 

functions are calculated before the KIPP run and are stored in files. Reading them from the 

files is one of the first operations in KIPP. They have to be stored in the memory of each 

processor throughout the whole run. This to a large degree determines memory requirements 

of KIPP. 

 

2. Parallel free-streaming 

These calculations are also parallelised using MPI. Similar to Coulomb collisions, changes in 

fe due to the free-streaming are calculated by each processor attached to a given spatial 

position. The 2
nd

 order high resolution explicit scheme used requires for each spatial cell 

knowledge of fe from the current cell and 4 of its neighbours, 2 from each side. This requires 

an exchange of fe‘s between individual processors presently achieved by four 

MPI_SENDRECV operations. 

 

3. Splitting the job between host and other processors 

Out of the total No. of processors, one (host processor) is dedicated to common tasks while all 

others – to Coulomb collisions and free-streaming operations for each spatial position. The 

host processor collects 1D arrays or macroscopic parameters (such as plasma density and 

temperature), calculates sources, sends them to individual processors, outputs results to the 

screen and writes them to files. The structure of the code was elaborated with the aim of 

splitting calculations among individual processors and minimising exchange between them. 

 

4. Possible ways of speeding up 

Speed up may potentially come from the following improvements: 

 Using OpenMP parallelisation in addition to the MPI parallelisation for calculations on 

individual processors. 

 Optimising data exchange among processors. 

 For the solution of the FP equation, using more efficient sparse matrix solvers than MUMPS 

which can benefit from parallelisation (calculations involving MUMPS are done on one 

processor). 

 For the solution of Poisson equations for Rosenbluth potentials, other schemes, apart from 

the MUMPS solver, e.g. based on iterative procedures, might be used. 

 

 


