EURATOM MEdC Association Day, lasi, 02.07.2010

Deuteron breakup on medium nuclei and induced activation analysis for the IFMIF EVEDA

Marilena Avrigeanu and Vlad Avrigeanu

"Horia Hulubei" National Institute for Physics and Nuclear Engineering, P.O. Box MG-6, Bucharest, Romania

http://tandem.nipne.ro/~vavrig/, http://fp6.cordis.lu/fp6/partners/RCN 49105

Motivation
Elastic Scattering (OMP)
Breakup
Direct reactions
Pre-equilibrium
Evaporation
Activation cross sections calculations

IFMIF

(International Fusion Material Irradiation Facility) D-Li neutron source for testing fusion reactor candidate materials

General purpose : Activation/transmutation data library

[U. Fischer: "Nuclear Data Libraries for Advanced Systems: Fusion Devices", Nov 2007, IAEA, Vienna]

 Urgent need for qualified IFMIF reference data library
 IEAF/EAF : (n, p, d), to be further developed, improved and validated
 Cross section measurements & calculations required for neutrons (E >20 MeV): Cr, Co, V, W, Ta, Pb, Bi, Au, Mn deuterons (E < 40 MeV): Cu, AI, Nb, Co protons (E < 12 MeV): Cu, AI, Nb, Ta, W, Au, Pb
 Evaluations (n, p, d) to be further developed, improved and validated

Reliable gas production cross-section data (H, He)

Dosimetry data file to be developed for E > 20 MeV (IRDF)

Nuclear Model Calculations

Pure elastic scattering OP analysis

SCAT2 [O. Bersillon]
phenomenological OP
semi-microscopic (DF) OP

(local version)

DFOLD [M. Avrigeanu]

- double folding method

Microscopic Optical Model Potential U(E,R)= $\int dr_1 \int dr_2 \rho_1(r_1) \rho_2(r_2) v_{eff}(\rho,E,s=R+r_1-r_2)$

• $\rho_{1,2}$ - density distributions of projectile (1) and target (2)

• V(r) - effective NN-interaction:

isoscalar and isovector components of direct and exchange parts of M3Y interaction (g-matrix using Reid/Paris NN potential)

M. Avrigeanu et al., PRC **62** (2000) 017001; *EPJ* **A 12** (2001) 399 ; *NP* **A723** (2003) 104; *NP* **A764** (2006) 246; *PRC* **79** (2009) 044610; *At. Data Nucl. Data Tables* **95** (2009) 501

Direct reactions FRESCO-2003 [I.J. Thompson]

- breakup: elastic component (CDCC)
- elastic transfer: weakly bound systems
- stripping & pick-up: (d,p), (d,n), (d,t)

Composite system equilibration

STAPRE-H95 [V. Avrigeanu, M. Avrigeanu] (updated)

- OMP:SCAT2000; preequilibrium: GDH / EXCITON; evaporation: Hauser-Feshbach
- TALYS 1.0; TALYS 1.2 [A. Koning, S. Hilaire, M. Duijvestijn]
 - OMP:ECIS'97; preequilibrium: MSD / EXCITON; evaporation: Hauser-Feshbach

Optical Model Potential

- NO GLOBAL OPTICAL MODEL POTENTIAL (OMP) for d + Nucleus (A<27)
- COMPARATIVE ANALYSIS of global OMPs for d + ²⁷Al, ^{63,65}Cu, ^{54,56,58}Fe, ⁹³Nb, ⁵⁹Co

Lohr-Haeberli (1974): A~40-209, E=8-13 MeV
 Perey-Perey (1963,1976): A~40-208, E=12-25 MeV
 Daehnick et al. (1980): A~27-238, E=11.8-90 MeV
 Bojowald et al. (1988): ²⁷Al, ⁸⁹Y, ¹²⁰Sn, and ²⁰⁸Pb at E_d=58.7 and 85 MeV

- None of these global OMP describes data at E<15 MeV
- Semi-microscopic OMP by using realistic nucleon-nucleon interaction U_{DF}, & more accurate parameterization for <u>W_V</u>, <u>W_D</u>, <u>V_{SO}</u>

Phenomenological OMP : parameterization for <u>U_R</u> (frozen W&V_{so})

Cross-Sections calculations

DF-real & phenomenological imaginary/s.o. potentials —>>> Phenomenological OMP

Marilena Avrigeanu

EURATOM MEdC Association Day, Iasi, 02.07.2010

5

d + ^{63,65}Cu: activation cross sections first step: d-OMP

d + ^{63,65}Cu: activation cross-sections

EPJ Web of Conferences 2, 01004 (2010) DOI:10.1051/epjconf/20100201004

© Owned by the authors, published by EDP Sciences, 2010

d + ²⁷AI: activation cross-sections

Marilena Avrigeanu

EURATOM MEdC Association Day, lasi, 02.07.2010

8

Empirical breakup components f^{BU} systematics

STRIPPING calculations details

(FRESCO)

M. Avrigeanu et al., Fus. Eng. Des. 84, 418 (2009) ²⁷AI(d,p)²⁸AI 100 FT E_=12 MeV E_=23 MeV E_d=6 MeV _{ຉ ຓ ຓ}g.s. 10 neutron-proton interaction: $\triangle \Delta \triangle$ g.s., 3⁺ $<\phi(d),\phi(p/n)>; V=V_0e^{-(r/rd)^2}$ 0.01 x10 g.s. + 0.031 V₀=72.15 MeV; rd=1.484 fm 0.031 M. Kamimura et al., Prog. Theor. Phys. Suppl. 80 (1986) 1 x10² 0.01 1E-4 0.031, 2⁺ 0.1 ----- DR nucleon bound state: x10⁶ ······ PE+CN DR+PE+CN x10⁴ 1E-6 1.014 <φ(Target),φ(Residual)> 1.014, 3⁺ 1E-4 real-WS: V₀; r₀=1.25; a=0.65 g.s. + 0.031 1E-8 x10⁵ 1E-3 spectroscopic factors, S^{IJ}_{Isj}: experimental proton/neutron angular distributions 2.138 x10⁴ x10⁶ 1E-6 2.138, 2 1E-10 d₀/dΩ (mb/sr) $\Psi_{JM}(\xi,r) \sim \sum_{lsi} A^{lJ}_{lsi} [\phi^{l}_{target}(\xi) \phi_{lsi}]_{JM};$ 1.014 x10¹² [™]∆ x10 $|\mathbf{A}^{IJ}_{Isi}|^2 = \mathbf{S}^{IJ}_{Isi}$ x10⁸ 1E-12 2.272 1E-8 2.272, 4 1E-5 **35** levels up to **5.135 MeV** for the x10 2.138 1E-14 x10¹⁵ odd-odd ²⁸AI (²⁷AI(d,p)²⁸AI) x10¹⁰ 2.656 2.656, 4 1E-10 2.272 1E-16 0000 24 levels up to 11.4 MeV for the x10¹⁸ 1E-7 x10¹² even-even ²⁸Si (²⁷Al(d,n)²⁸Si) 3.465 1E-18 2.656 3.465, 4 1E-12 3.030 MeV for the 63 levels up to ×10 🛌 🗠 x10²¹ 1E-20 x10¹⁴ ⁶⁴Cu (⁶³Cu(d,p)⁶⁴Cu) odd-odd 3.591 3.465 3.591, 3 1E-9 1E-14 x10 $\Delta\Delta$ 1E-22 52 levels up to 3.080 MeV for the x10²⁴ 3.591 odd-odd ⁶⁶Cu (⁶⁵Cu(d,p)⁶⁶Cu) (**10**¹⁶ 4.765, 2 x10 1E-24 4.904, 2 1E-16 **119** levels up to 6 **MeV** for the x10¹³ 1E-11 x10¹⁸ odd-odd ⁵⁹Co (⁵⁹Co (d,p) ⁶⁰Co) 1E-26 $x10^{2}$ 5.135, 3⁻ 4.315, 1 4.904 1E-18 1E-28 Chen+ (1972) 0 Carola+ (1971) Maher+(1972) 60 80 100 30 60 90 120 150 20 40 30 40 0 0 0 10 20 50 θ_{c.m.}(deg) θ_{c.m.}(deg) $\vartheta_{c.m.}(deg)$

Breakup and Pick-up contributions to activation cross-sections

M. Avrigeanu, V. Avrigeanu, Int. Conf. on Nucl. Data for Sci. and Tech., Jeju-Korea, 26-30 April, 2010

Deuteron breakup contribution to activation cross-sections

M. Avrigeanu, V. Avrigeanu, Int. Conf. on Nucl. Data for Sci. and Tech., Jeju, Korea, 26-30 April, 2010

CONCLUSIONS

- Semi-microscopic OMP analysis
 - * U_{DF}: ρ_d (charge) & ρ_{AI} (charge) & M3Y Paris-NN
 - W_D & V_{SO} phenomenological

Improved agreement with data adding the dispersion corrections

Phenomenological OMP analysis for ²⁷AI, ^{63.65,nat}Cu, ⁹³Nb

- agreement with all available measured data
- good description of (d,d) data vs. TALYS default OMPs
- improved description of (d,d) data vs. global OMPs

Analysis of d interaction with ²⁷Al, ^{63,65}Cu, ⁹³Nb, ⁵⁹Co

- BU, BF Deuteron break-up mechanism contributions,
- DR mechanism considered trough n & p stripping, pick-up
- PE and evaporation mechanisms contributions
- Comparison of d-activation with TENDL-2009 library

F4E-2008-GRT-06 (ES-AC) / Task 5b further work:

Annex B

DMS #	F4E_D_N10783		
Call #	F4E-2010-GRT-056		
Page	7 / 12	Rev.	00.0

Task 5.2. Microscopic real optical potentials will be used for a final setup of improved model.

Latest measurements of deuteron induced reaction cross sections will be taken into account.

Deuteron activation c.s. calculations for EUROFER constituents EURATOM MEdC Association Day, Iasi, 02.07.2010

Thank you !