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Objective: to develop a field-theoretical model that can provide a

description of the 2D fluids close to stationarity.

The theory is relevant for the classical debate on the relation between

(1) large-scale organized, quasi-coherent flows, and

(2) ”structures” (solitons, vortices, etc.)

Content

• The 2D discrete systems and the field theory formalism

• 2D water

• planetary atmosphere (2D quasi-geostrophic)

– tropical cyclone; relationships vmax
θ , Rmax, rvmax

θ

• plasma (coherent) flows; crystals of vortices in non-neutral plasmas

• Related subjects: Concentration of vorticity; Contour Dynamics;

statistics of turbulence; etc.
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Main idea : there exist preferred states of the system.

The system makes transitions between these states.

Quasi-coherent structures are observed in

• fluids (in oceans and in laboratory experiments)

• plasma (confined in strong magnetic field)

• planetary atmosphere (2D quasi-geostrophic)

• non-neutral plasma (crystals of vortices)

There are common features suggesting to develop models based on

the self-organization of the vorticity field. The fluids evolve at

relaxation precisely to a subset of stationary states.

It is found that besides conservation there is also action
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Coherent structures in fluids and plasmas (reality)

Rings of vorticity

(Leonard 1998)

Nice tornado vortex. Vortex ring emitted

by the volcano Etna.
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Coherent structures in fluids and plasmas (numerical 1)

Numerical simulations of the Euler equation.

D. Montgomery,

W.H. Matthaeus, D.

Martinez, S.

Oughton, Phys.

Fluids A4 (1992) 3.
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Coherent structures in fluids and plasmas (numerical 2)

Numerical simulations of the Navier-Stokes

equation.

H. Brands, S. R.

Maasen, H.J.H.

Clercx

Phys. Rev. E 60.
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Coherent structures in fluids and plasmas (numerical 3)

Numerical simulations of the MHD equations.

R. Kinney, J.C.

McWilliams, T.

Tajima

Phys. Plasmas 2

(1995) 3623.
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Compare the two approaches

Conservation eqs.

∂n

∂t
+ ∇· (nv) = 0

mn

(
∂

∂t
+ v · ∇

)
v = −∇p − ∇ · π + F

3

2
n

(
∂

∂t
+ v · ∇

)
T = −∇ · q − p (∇ · v) − π : ∇v + Q

Valid for : coffee, ocean, sun.

Lagrangian

L
(
xμ, φν , ∂ρφ

ν
)

→ S =

∫
dxdtL

∂

∂xμ

δL
δ
(
∂φν

∂xμ

) −
δL
δφν

= 0

Valid for : a single system.

Just give the initial state.

Lagrangians are preferable. But, how to find a Lagrangian ? See Phys.Rev.
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Ideal fluid in 2D space (Euler eq.)

dω

dt
= 0 → ∂∇2

⊥ψ
∂t

− [(−∇⊥ψ × n̂) · ∇⊥]∇2
⊥ψ = 0

At late times of the relaxation process: the sinh-Poisson equation

Δψ + γ sinh (βψ) = 0 (1)

The Charney-Hasegawa-Mima equation
The equation (CHM) derived for the two-dimensional plasma drift
waves and for Rossby waves in meteorology is:(

1 −∇2
⊥
) ∂φ
∂t

− κ
∂φ

∂y
− [(−∇⊥φ× n̂) · ∇⊥]∇2

⊥φ = 0 (2)
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Equivalence with discrete models
We will try to write Lagrangians not directly for fluids and plasmas but

for equivalent discrete models.

An equivalent discrete model for the Euler equation

drik
dt

= εij
∂

∂rjk

N∑
n=1,n �=k

ωnG (rk − rn) , i, j = 1, 2 , k = 1, N (1)

the Green function of the Laplacian

G
(
r, r′

) ≈ − 1

2π
ln

( |r− r′|
L

)
(2)
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An equivalent discrete model for the CHM equation

The equations of motion for the
vortex ωk at (xk, yk) under the ef-
fect of the others are

−2πωk
dxk

dt
=

∂W

∂yk

−2πωk
dyk

dt
= −∂W

∂xk

where

W = π
N∑

i=1

N∑
j=1

i �=j

ωiωjK0 (m |ri − rj |)
The Rosette stone,

(British Museum)

Physical model → point-like vortices → field theory.
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The water Lagrangian
2D Euler fluid: Non-Abelian SU (2), Chern-Simons, 4th order

L = −εμνρTr
(
∂μAνAρ +

2

3
AμAνAρ

)
+ (3)

iT r
(
Ψ†D0Ψ

)
− 1

2
Tr
(
(DiΨ)†DiΨ

)
+

1

4
Tr
([

Ψ†,Ψ
])2

where

DμΨ = ∂μΨ+ [Aμ,Ψ]

The equations of motion are

iD0Ψ = −1

2
D2Ψ− 1

2

[[
Ψ,Ψ†

]
,Ψ
]

(4)

Fμν = − i

2
εμνρJ

ρ (5)
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The Hamiltonian density is

H =
1

2
Tr
(
(DiΨ)† (DiΨ)

)
− 1

4
Tr

([
Ψ†,Ψ

]2)
(6)

Using the notation D± ≡ D1 ± iD2

Tr
(
(DiΨ)† (DiΨ)

)
= Tr

(
(D−Ψ)† (D−Ψ)

)
+

1

2
Tr
(
Ψ†
[[
Ψ,Ψ†

]
,Ψ
])

Then the energy density is

H =
1

2
Tr
(
(D−Ψ)† (D−Ψ)

)
≥ 0 (7)

and the Bogomol’nyi inequality is saturated at self-duality

D−Ψ = 0 (8)

∂+A− − ∂−A+ + [A+, A−] =
[
Ψ,Ψ†

]
(9)
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The static solutions of the self-duality equations

The algebraic ansatz:

[E+, E−] = H (10)

[H,E±] = ±2E±

tr (E+E−) = 1

tr
(
H2
)

= 2

taking

ψ = ψ1E+ + ψ2E− (11)

and

Ax =
1

2
(a− a∗)H (12)

Ay =
1

2i
(a+ a∗)H
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The gauge field tensor

F+− = (−∂+a∗ − ∂−a)H

and from the first self-duality equation

∂ψ1

∂x
− i

∂ψ1

∂y
− 2ψ1a

∗ = 0 (13)

∂ψ2

∂x
− i

∂ψ2

∂y
+ 2ψ2a

∗ = 0 (14)

and their complex conjugate from (D−ψ)
†
= 0.

Notation : ρ1 ≡ |ψ1|2, ρ2 ≡ |ψ2|2
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Δln (ρ1ρ2) = 0 (15)

Δ ln ρ1 + 2(ρ1 − ρ−1
1 ) = 0 (16)

We then have

Δψ + γ sinh (βψ) = 0. (17)

The water we drink is self-dual
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The Lagrangian of 2D plasma in strong magnetic field:

Non-Abelian SU (2), Chern-Simons, 6th order

• gauge field, with “potential” Aμ, (μ = 0, 1, 2 for (t, x, y)) described

by the Chern-Simons Lagrangean;

• matter (“Higgs” or “scalar”) field φ described by the covariant kine-

matic Lagrangean (i.e. covariant derivatives, implementing the min-

imal coupling of the gauge and matter fields)

• matter-field self-interaction given by a potential V
(
φ, φ†) with 6th

power of φ;

• the matter and gauge fields belong to the adjoint representation of

the algebra SU (2)
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L = −κεμνρtr
(
∂μAνAρ +

2

3
AμAνAρ

)
(18)

−tr
[
(Dμφ)† (Dμφ)

]
−V

(
φ, φ†

)
Sixth order potential

V
(
φ, φ†

)
=

1

4κ2
tr

[([[
φ, φ†

]
, φ
]
− v2φ

)† ([[
φ, φ†

]
, φ
]
− v2φ

)]
.

(19)

The Euler Lagrange equations are

DμD
μφ =

∂V

∂φ† (20)

−κενμρFμρ = iJν (21)
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The energy can be written as a sum of squares. The self-duality eqs.

D−φ = 0 (22)

F+− = ± 1

κ2

[
v2φ−

[[
φ, φ†

]
, φ
]
, φ†
]

The algebraic ansatz : in the Chevalley basis

[E+, E−] = H (23)

[H,E±] = ±2E±

tr (E+E−) = 1

tr
(
H2) = 2

The fields

φ = φ1E+ + φ2E−

A+ = aH,A− = −a∗H
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Equations for the components of the density of vorticity (here for ′+′)

−1

2
Δ ln ρ1 = − 1

κ2
(ρ1 − ρ2)

[
2 (ρ1 + ρ2)− v2

]
(24)

−1

2
Δ ln ρ2 =

1

κ2
(ρ1 − ρ2)

[
2 (ρ1 + ρ2)− v2

]
(25)

Δ ln (ρ1ρ2) = 0

introduce a single variable

ρ ≡ ρ1
v2/4

=
v2/4

ρ2
(26)

and obtain

−1

2
Δ ln ρ = −1

4

(
v2

κ

)2(
ρ− 1

ρ

)[
1

2

(
ρ+

1

ρ

)
− 1

]
(27)
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The energy at Self-Duality for two choices of the Bogomolnyi form for the

action functional
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This simplest form of the equation governing the stationary states of

the CHM eq.

Δψ +
1

2
sinhψ (coshψ − 1) = 0

The ’mass of the photon’ is

m =
v2

κ
=

1

ρs

κ ≡ cs

v2 ≡ Ωci
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Half-way Conclusions

The field theoretical formalism provides interesting results:

• identifies preferred states as extrema of an action functional

• derives explicit differential equations for these states

• allows to investigate neighboring states and reveals the existence

of cuasi-degenerate directions and multiple minima of the action

in the function space

• reveals the universal nature of the extrema, as self-dual states

• practical applications

The FT motel still has to be examined:

It needs a clear mapping: ”formalism” - ”physics”

It needs better investigation of the equations of motion

It invites to study the natural extension of the theory.
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Integration of the differential equation
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Figure 1: The structure of the space of initial conditions. The success-

ful (coherent vortex) solutions are shown as red dots.

Solutions: trivial, turbulent, coherent, strongly concentrated.
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Comparison with experiment
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The right hand side of the Massive−Photon equation

λ = 10.

Figure 2: The pair (ψ, ω) and the experiment (ω is negative).
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Comparison with numerical simulations in the

asymptotic regime

Figure 3: Comparison between numerical calculation of the CHM sta-

tionary states (Khukharin 2002) and solution of the Equation (1).

Periodic structure of vortices.
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Applications

Figure 4: The atmospheric vortex, the plasma vortex, the flows in

tokamak,the crystal of vortices in non-neutral plasma.
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The tropical cyclone
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Figure 5: The tangential component of the velocity, vθ(x, y)

This is an atmospheric vortex.
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The tropical cyclone , comparisons
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Figure 6: The solution and the image from a satelite.

The solution reproduces the eye radius, the radial

extension and the vorticity magnitude.

F. Spineanu – IFA June 2010 –PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com/


Field Theory in fluids/plasmas 29

Scaling relationships between main parameters of the tropical cyclone

eye-wall radius, maximum tangential wind, maximum radial extension
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Few remarkable hurricanes

Table 1: Comparison between calculated and respectively observed

magnitudes of the maximum tangential wind for four cases of tropical

cyclones

Name Input (obs) Calculated Observed

Rphys
max

(km)

rvmax
θ

Rmax
L

Rossby ρg

(km)

(vmax
θ )

(m/s)

(vmax
θ )

(m/s)

Andrew 120 0.1 0.72 117.85 64.31 68

Katrina 300 0.111 0.83 212 88.6 77.8

Rita 350 0.125 0.98 252.47 77.5 77.8

Diana 160 0.1125 0.845 133.81 56.86 55

(Comment ne pas perdre la tête?)
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Profile of the azimuthal wind velocity vθ (r)
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Comparison between the Holland’s empirical model for

vθ (continuous line) and our result (dotted line).
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Tokamak plasma. Solution for L = 307 : mono- and multipolar vortex
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Self-organisation of the drift turbulence (Wakatani-Hasegawa)
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The crystals of plasma vortices
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Figure 7: The crystals of plasma vortices.

Comparisons of crystal-type solutions with experiment.
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Vortex crystals in non-neutral plasma

Comparison of our vortex solution with experiment.
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Laser generated plasma

Figure 12: Structure of the magnetic field in a plasma generated by a

strong Laser pulse. The equation for B has the same nonlinear form

as the CHM equation.
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Filamentation in Laser-generated plasmas (for Inertial Fusion)

The equation for the magnetic field generated in a laser-driven plasma

1

μ0en0

∂

dt
∇2B +

(
1

μ0en0

)2

[(−êz ×∇B) · ∇]∇2B

=
∂B

∂t
+

1

μ0en2
0

[(−êz ×∇n0) · ∇]∇2n0

+
1

en0
[(−êz ×∇n0) · ∇]∇2T1

where T1 is the perturbed temperature

∂T1

∂t
+ T0

[
(γ − 1)

n′
0

n0
− T ′

0

T0

]
∂B

∂y
= − [(−êz ×∇B) · ∇]∇2T1

When the T1 perturbation and the scalar nonlinearity B∂B/∂y can be

neglected, the equation for B becomes the classical CHM-type equation.

A sheet of current is broken up into filaments.
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Figure 8: Filamentation in a current sheet.

Current sheet.
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Final Conclusions

It seems it works.

• Hamlet: The rest is silance

• Einsetin: The rest is details

• (Field Theory Book): The rest is gauge

Save you work.

Prepare for shutdown.
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Quasi-degenerate directions

in the function space of solutions

There is a class of functions that verify to a good precision the

equation but they are NOT exact solutions.

Solutions and approx-solutions, representing static flow

configurations, may have:

• different shapes (from smooth to highly concentrated)

• approximately the same energy and total vorticity

This suggests that the system may slide along paths in the function

space at almost no cost in energy or vorticity. This is interesting for

vorticity concentration
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Peaked profiles have lower energy
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Numerical solution starting with sech4/3

Figure 9: Three intervals on the (peaking factor, amplitude) parameter

space.

Very weak variation of the error functional along the path (line of

minimum error relative to the exact solution).
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Radial integration
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Figure 10: The functional error
∫
d2r(ω + nl)2.

String of quasi-solutions.
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Along the string of quasi-solutions the vortices are more and more

concentrated

Figure 11: Green points: smooth, but progressively more peaked vor-

tices; red: quasi-singular vortices.

The energies Efinal and the vorticities Ωfinal are only slightly different.

We conclude that the system can drift along this path, under the

action of even a small external drive.
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System of interacting particles in plane

A system of particles in the plane interacting through a potential. The

Hamiltonian is

H =
N∑

s=1

1

2
msv

2
s

where

msvs = ps − esA (rs|r1, r2, ..., rN )

the potential at the point rs

A (rs|r1, r2, ..., rN ) ≡ (ais (r1, r2, ..., rN )i=1,2

ais (r1, r2, ..., rN ) =
1

2πκ
εij

N∑
q �=s

eq
rjs − rjq

|rs − rq|2

The vector potential As is the curl of the Green function of the Laplacian

1
2π
εij r

j

r2
= εij∂j

1
2π

ln r ∇2 1
2π

ln r = δ2 (r)

F. Spineanu – IFA June 2010 –PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com/


Field Theory in fluids/plasmas 46

The continuum limit is a classical field theory

• separate the matter degrees of freedom

• Consider the interaction potential as a free field = new degree of

freedom of the system, and find the Lagrangian which can give

this potential.

• Couple the matter and the field by an interaction term in the

Lagrangian

According to Jackiw and Pi the field theory Lagrangian

L = Lmatter + LCS + Linteraction

with

Lmatter =
N∑
s=1

1

2
msv

2
s
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The Chern-Simons part of the Lagrangian

LCS =
κ

2

∫
d2r εαβγ∂αAβAγ

=
κ

2

∫
d2r

∂A

∂t
×A−

∫
d2r A0B

where

xμ = (ct, r)

B = ∇×A

E = −∇A0 − ∂A

∂t

The interaction Lagrangian is

Lint =
N∑
s=1

esvs ·A (t, rs)−
N∑
s=1

esA
0 (t, rs)
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Define the current

vμ = (c,vs)

jμ (t, r) =

N∑
s=1

esv
μ
s δ (r− rs)

the interaction Lagrangian can be written

Lint = −
∫
d2r Aμj

μ

=

∫
d2r A · j−

∫
d2r A0ρ

The current at the continuum limit

jμ = (ρ, j)

with
∂ρ

∂t
+∇ · j = 0
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Two steps to get the Hamiltonian form

1. Eliminate the gauge-field variables in favor of the matter variables,

by using the gauge-field equations of motion.

The equations of motion of the gauge field are

κ

2
εαβγFαβ = jμ (28)

B = − 1

κ
ρ

Ei =
1

κ
εijjj

2. Define the canonical momenta.

But not yet.
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It is time to find the field that will represent the continuum

limit of the density of discrete points

The right choice : a complex scalar field Φ.

Remember now that the momentum is the generator of the space

translations which means that it has the form : ∂/∂x.

(No subversive quantum activities)

Define the momenta as covariant derivatives

Π (r) ≡ [∇−ieA (r)] Ψ (r)

= DΨ(r)

and the conjugate

Π† ≡ (DΨ)
†

The number density operator is

ρ = Ψ†Ψ
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The potential A (r) is constructed such as to solve the

Chern-Simons relation between the field B = ∇×A and the charge

density eρ:

B = − e

κ
ρ

The potential is then

A (r) = ∇× e

κ

∫
d2r′ G (r− r′) ρ (r′)

where G (r− r′) is the Green function of the Laplaceian in plane.

The curl of the Green function is

∇×G (r− r′) = − 1

2π
∇θ (r− r′)

where

tan θ (r− r′) =
y − y′

x− x′

and θ is multivalued.
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The Hamiltonian

H =

∫
d2r H

is

H =
1

2m
(DΨ)

∗
(DΨ)− g

2
(Ψ∗Ψ)

2

with the equation of motion

i
∂Ψ(r, t)

∂t
= − 1

2m
D2Ψ(r, t) + eA0 (r, t)− gρ (r, t)Ψ (r, t) (29)

The potential is related to the density ρ and to the current j:

A (r, t) = ∇× e

κ

∫
d2r G (r− r′) ρ (r′, t) + gauge term

A0 (r, t) = −∇× e

κ

∫
d2r G (r− r′) j (r′, t) + gauge term
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Write Ψ as amplitude and phase Ψ = ρ1/2 exp (ieχ) and inserting this

expression into the equation of motion derived from the Hamiltonian

the imaginary part gives the equation of continuity

∂ρ

∂t
+∇ · j = 0

and the real part gives:

∇2 ln ρ = 4m
(
eA0 − gρ

)
+2

(
eA− 1

2
∇× ln ρ

)(
eA+

1

2
∇× ln ρ

)
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The static self-dual solutions

All starts from the identity (Bogomolnyi)

|DΨ|2 = |(D1 ± iD2)Ψ|2 ±m∇× j± eBρ

Then the energy density is

H =
1

2m
|(D1 ± iD2)Ψ|2 ± 1

2
∇× j−

(
g

2
± e2

2mκ

)
ρ2

Taking the particular relation

g = ∓ e2

mκ

and considering that the space integral of ∇× j vanishes,

H =
1

2m

∫
d2r |(D1 ± iD2)Ψ|2

This is non-negative and attains its minimum, zero, when Ψ
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satisfies

D1Ψ± iD2Ψ = 0

or

DΨ = iD×Ψ

which is the self-duality condition.

Then decomposing again Ψ in the phase and amplitude parts,

A = ∇χ± 1

2e
∇× ln ρ

Introducing in the relation derived from Chern-Simons

B = ∇×A = − e

κ
ρ

we have

∇2 ln ρ = ±2
e2

κ
ρ

which is the Liouville equation.
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Formulation in terms of a curvature
SD is a geometrico-algebraic property of a fiber space : a differential

form is equal to its Hodge dual.

For this model there is no clear geometric structure. However:

Define the two ”potential-like” fields

A+ = A+ − λφ

A− = A− + λφ†

and calculate the ”curvature-like” fields

K± ≡ ∂±A∓ − ∂∓A± + [A±,A∓]
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We then have

tr {K+K−}
= −2

[
(∂+a

∗ + ∂−a) + λ2 (ρ1 − ρ2)
]2

−λ2 |(∂+φ∗2 + ∂−φ1) + 2 (aφ∗2 − a∗φ1)|2

or

−tr {K+K−} ≥ 0

since it is a sum of squares and the equality with zero is precisely the

SD equations.

The self-duality indeed appears as a condition of a flat

connection. A non-zero curvature means that the Euler fluid is not

at stationarity.
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The energy close to stationarity (or: self-duality)
We can use the expression of the energy, after applying the

Bogomolnyi procedure,

E =
1

2m
tr
(
(D−φ)

†
(D−φ)

)
The energy becomes

E =
1

2m

(
ρ1

∣∣∣∣ 1

2ρ1

∂ρ1
∂x−

+ i
∂χ

∂x−
− 2a∗

∣∣∣∣
2

+ ρ2

∣∣∣∣ 1

2ρ2

∂ρ2
∂x−

+ i
∂η

∂x−
+ 2a∗

∣∣∣∣
2
)

and, if we take

ρ1 =
1

ρ2
= ρ = exp (ψ)

χ = −η
we have
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E =
1

2m
[exp (ψ) + exp (−ψ)]

∣∣∣∣12 ∂ψ

∂x−
+ i

∂χ

∂x−
− 2a∗

∣∣∣∣
2

This form of the energy shows in what consists the approach to the

stationarity and the formation of structure:

1. a constant ψ on the equilines combines its radial variation with

that of of the angle χ;

2. the potentials a and a∗ become velocities and they contain the

derivatives along the equilines of the angle χ.
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The expression of the FT current
The formula for the FT current

J0 =
[
Ψ†,Ψ

]
J i = − i

2

([
Ψ†, DiΨ

]− [(DiΨ)
†
,Ψ
])

We have

Jx =
1

2

[
2i(a− a∗) (ρ1 + ρ2)− i

∂

∂x
(ρ1 − ρ2)

]
H

Jy =
1

2

[
2(a+ a∗) (ρ1 + ρ2)− i

∂

∂y
(ρ1 − ρ2)

]
H

J0 = (ρ1 − ρ2)H

or
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J+ =
1

2
i (ρ1 + ρ2) ∂+ [ψ − (2iχ)]− 1

2
i∂+ (ρ1 − ρ2)

J− = −1

2
i (ρ1 + ρ2) ∂− [ψ + (2iχ)]− 1

2
i∂− (ρ1 − ρ2)

at SELF-DUALITY we have

ω = − sinhψ

and it results

J+ =
1

2
i (ρ1 + ρ2) ∂+ [ψ − (2iχ)]− 1

2
i∂+ω

J− = −1

2
i (ρ1 + ρ2) ∂− [ψ + (2iχ)]− 1

2
i∂−ω

Is-there any pinch of vorticity?
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The equations of motion of the FT model
The equation resulting from E+.

i
∂φ1
∂t

− 2ibφ1 (30)

= −1

2

∂2φ1
∂x2

+
1

2

[
∂ (a− a∗)

∂x
φ2 + (a− a∗)

∂φ2
∂x

]

−1

2

∂φ1
∂x

(a− a∗)− 1

2
(a− a∗)2 φ1

−1

2

∂2φ2
∂y2

+
1

2i

[
∂ (a+ a∗)

∂y
φ2 + (a+ a∗)

∂φ2
∂y

]

−1

2

∂φ2
∂y

(
−1

i

)
(a+ a∗) +

1

2
(a+ a∗)2 φ2

− (ρ1 − ρ2)φ1
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The equation resulting from E−.

i
∂φ2
∂t

+ 2ibφ2 (31)

= −1

2

∂2φ2
∂x2

+
1

2

[
∂ (a− a∗)

∂x
φ2 + (a− a∗)

∂φ2
∂x

]

−1

2

∂φ2
∂x

(a− a∗) +
1

2
(a− a∗)2 φ2

−1

2

∂2φ2
∂y2

+
1

2i

[
∂ (a+ a∗)

∂y
φ2 + (a+ a∗)

∂φ2
∂y

]

+
1

2i

∂φ2
∂y

(a+ a∗) +
1

2
(a+ a∗)2 φ2

+(ρ1 − ρ2)φ2

Compare with Liouville (non-Abelian) case. Where is the dynamics?
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Abelian-dominated dynamics

The last Lagrangian
In certain cases the model collapses to an Abelian structure, where

(φ,Aμ) are complex scalar functions

L = (Dμφ)
∗
(Dμφ) +

1

4
κεμνρAμFνρ − V

(
|φ|2

)
where

Dμφ =
∂φ

∂xμ
+ ieAμφ

and

V
(
|φ|2

)
=
e2

κ2
|φ|2

(
|φ|2 − v2

)2
with metric

gμν = (1,−1,−1)

F. Spineanu – IFA June 2010 –PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com/


Field Theory in fluids/plasmas 65

The equations of motion

DμDμφ = − ∂V

∂φ∗

1

2
εμνρFνρ = Jρ

where

Jμ = ie [φ∗ (Dμφ)− (Dμφ)∗ φ]

From the second equation of motion B = − e
κρ one finds

A0 =
κ

2e2
B

|φ|2 − 1

e

∂

∂t
[phase of (φ)]

In a field theory one can obtain the energy-momentum tensor by

writing the action with the explicit presence of the metric gμν

F. Spineanu – IFA June 2010 –PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com/


Field Theory in fluids/plasmas 66

followed by variation of the action to this metric.

Tμν = (Dμφ)
∗
(Dνφ) + (Dμφ) (Dνφ)

∗

−gμν
[
(Dλφ)

∗
(Dλφ)− V

(
|φ|2

)]
The energy is the time-time (00) component of this tensor

E =

∫
d2r

[
(D0φ)

∗
(D0φ) + (Dkφ)

∗
(Dkφ) + V

(
|φ|2

)]

=

∫
d2r

[(
∂ |φ|
∂t

)2

+
κ2

4e2
B

|φ|2 + (Dkφ)
∗
(Dkφ) + V

(
|φ|2

)]

The second term imposes that B and |φ|2 vanish in the same points.

Then the magnetic flux lies in a ring around the zeros of |φ|2.
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The SELF-DUALITY

The energy is transformed similar to the Bogomolnyi form

E =

∫
d2r

[
|(Dx ± iDy)φ|2

+

∣∣∣∣ κ2eφ−1B ± e2

κ
φ∗
(
|φ|2 − v2

)∣∣∣∣
2

+

(
∂ |φ|
∂t

)2
]

±ev2Φ+
1

2

∫
r=∞

dl · J

Restrict to the states

1. static (∂/∂t ≡ 0);

2. the current goes to zero at infinity such that the last integral is zero.

Then the energy consists of a sum of squared terms plus an

additional term that has a topological nature, proportional with the

total magnetic flux through the area.
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Taking to zero the squared terms we get

(Dx ± iDy)φ = 0

eB = ∓m
2

2

|φ|2
v2

(
1− |φ|2

v2

)

The mass parameter is

m ≡ 2e2
v2

κ

These are the equations of self-duality and the energy in this case is

bounded from below by the flux

E ≥ ev2 |Φ|
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The equation for the ring-type vortex

The first of the two SD equations can be written

eAk = ±εkj∂j ln |φ|+ ∂k [phase of φ]

Replacing the potential in the second SD equation we get

Δ ln
(
|φ|2

)
−m2 |φ|2

v2

(
|φ|2
v2

− 1

)
= 0

equation that is valid in points where |φ| �= 0. For these points there is

an additional term, a Dirac δ coming from taking the rotational operator

applied on the term containing the phase of φ.

Δψ = exp (ψ) [exp (ψ)− 1] + 4π
N∑
j=1

δ (x− xj)
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The return of the topological constraint
At infinity (|φ| � v) the covariant derivative term goes to 0

Dkφ→ 0 at r → ∞ ∂kφ+ ieAkφ→ 0∫
r=∞

dl · ∇ ln (φ) = i

∫
d (phase of φ) = 2πin (32)

The flux is

Φ =

∫
d2r (∇×A) =

2π

e
n

The magnetic flux is discrete, integer multiple of a physical quantity. The

topological constraint is ensured by a mapping from the circle at infinity

into the circle representing the space of the internal phase of the field φ in

the asymptotic region, S1 → S1 classified according to the first homotopy

group,

π1

(
S1) = Z
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Why we substitute ρ with exp (ψ)
The paper on Bosonization of three dimensional non-abelian

fermion field theories by Bralic, Fradkin, Schaposnik.

The initial self-interacting massive fermionic SU (N) theory in Euclidean

2 + 1 = 3 space

L = ψ
(
i∂/ +m

)
ψ − g2

2
jaμjaμ

NOTE

This is precisely the Lagrangian for the Thirring model, for which it is

possible to demonstrate the quantum equivalence with the sine-Gordon

model. See Ketov.

The model is here Abelian.

The action is

IT [ψ] =

∫
d2x

[
ψγμ∂μψ −mFψψ − g

2

(
ψγμψ

)2]
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In order to show the equivalence the following substitution is made

ψ± = exp

{
2π

iβ

∫ x

−∞
dx′

∂φ (x′)
∂t

∓ iβ

2
φ (x)

}
where

ψ ≡
⎛⎝ ψ+

ψ−

⎞⎠
Note that ψ are spinors and φ are bosons.

The equivalence will now consist of the following statement:

The functions ψ± satisfy the Thirring equations of motion provided the

function φ satisfies the sine-Gordon equation.

And viceversa.

This allows to demonstrate the equivalence between the correlation

functions of the two models.
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Between the coupling constant of the two theories there is the following

relation
β2

4π
=

1

1 + g/π

which shows that the strong coupling of the Thirring (fermions) model is

mapped onto the weak coupling of the sine-Gordon (kinks and anti-kinks)

model.

The mesons of the SG theory are the fermion-antifermion bound states of

the Thirring theory.

The quantum bosonisation is done on the basis of the substitution shown

above, but taking the normal-ordered form of the exponential.

ψ± = C± : exp [A± (x)] :

where

A± (x) =
2πm

i
√
λ

(∫ x

−∞
dx′

∂φ (x′)
∂t

)
∓ i

√
λ

2m
φ (x)
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This implies the relations

m2
0m

2

λ
cos

(√
λ

m
φ

)
= −mFψψ

−
√
λ

2πm
εμν∂νφ = ψγμψ

We make the following Remark: We see that the density of spinors (or

point-like vortices) ψψ is expressed as the cos function of the scalar field of

the SG model. This looks very similar to what we have in our, more

complex, model. In our model the density of vorticity (which represents

the continuum limit of the density of point-like vortices) is

φ†φ = ρ1 − ρ2

and the two functions are

ρ1 ≡ |φ+|2

ρ2 ≡ |φ−|2
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We can introduce scalar streamfunctions for each of these densities, since

they are associated with a sign of helicity

ρ1,2 = exp (ψ1,2)

Then the total density of vorticity should be written

φ†φ = ρ1 − ρ2

= exp (ψ1)− exp (ψ2)

But we know that at self-duality

Δ ln ρ1 +Δ ln ρ2 = 0

or

Δψ1 +Δψ2 = 0

If we do not consider any background flow, then one possible solution of

this equation is

ψ1 = −ψ2
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and this gives the form of the density of vorticity

φ†φ = exp (ψ1)− exp (ψ2)

= 2 sinhψ

We conclude that our theory is an extended form of the equivalence

between the fermion system in plane (like the Thirring model) and the

Sinh-Gordon model in plane.

Then, using the equivalences shown in the Thirring-sine-Gordon case, we

can identify the function φ from their equation (the sine-Gordon variable)

with the streamfunction ψ of our fluid, but multiplied with i.

And the current of fermions in their case ψγμψ, which is proved to be

expressed as a rotational of the SG function φ, appears in our case as

follows: the current of point-like vortices is equal with the velocity since

their φ is our streamfunction ψ and their rotational of the SG’s φ is our

rotational of ψ, or the physical velocity.

We can say that we assist at a typical scenario of equivalence between the
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system of point-like vortices and the system of sinh-Gordon streamfunction

field, in a more extended, including Non-Abelian form.

The simplified result of the classical equivalence: Thirring/sine-Gordon

was that the density of vorticity is cos of a bosonic field.

We do not need the bosonization, i.e. the substitution of the fermionic

variable with the exponential of the bosonic variable. However this can be

a demonstration of the adequacy of the substitution

ρ ≡ exp (ψ)

we do at the end of the calculation: we do that since we have in mind the

equivalence Thirring/sine-Gordon and the possibility to interpret our

introduction of the streamfunction ψ as a similar relationship between the

fermionic and bosonic fields.
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